SSC17-11-1

OpenSatKit Enables Quick Startup for CubeSat Missions

David McComas
NASA Goddard Space Flight Center
8800 Greenbelt Road Greenbelt, MD 20771
301-286-9038
david.c.mccomas@nasa.qov

Ryan Melton
Ball Aerospace & Technologies Corp.
1600 Commerce St., Boulder, CO 80301; 303-939-6771
rmelton@ball.com

ABSTRACT

The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether it’s a large
or small satellite. Even getting started can be a monumental task. Every satellite mission requires three primary
categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the
satellites and its payload(s). Second, while developing a satellite on earth, it is necessary to simulate the satellite’s
orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real
environment. Finally, the ground has to be able to communicate with the satellite, monitor its performance and
health, and display its data.

OpenSatKit provides these three software components in an open source software package. It combines NASA’s
Core Flight System (cFS)'2, NASA’s 42° spacecraft dynamics simulator, and Ball Aerospace’s COSMOS* ground
system into a system that can be deployed and operational within hours. OpenSatKit is designed to simplify the task
of integrating new FSW applications and an example Raspberry Pi target is included so users can gain experience
working with a low-cost embedded hardware target. All users can benefit from OpenSatKit but the greatest impact
and benefits will be to SmallSat missions with constrained budgets and small software teams.

OPENSATK'T OVERV'EW Commands & Telemetry (C&T)

The Core Flight System (cFS) is an open flight software

(FSW) architecture that provides a portable and car wcar
extendable platform with a product line deployment COSMOS cFSon Simﬁamr
model*2. As the cFS is designed for flexibility with it

many tunable parameters, it can be challenging for new Portto

users to configure and deploy. The OpenSatKit @ Target

addresses these issues by providing a fully functioning N\ Mardware

flight-ground system that runs on a desktop computer. caT f > HW C&T

The starter kit components are shown in Figure 1. Ball \ Tetos | —

Acrospace’s COSMOS, a user interface for command
and control of embedded systems, is used as the ground
system. The cFS running on Linux provides a desktop
FSW component. The 42 Simulator provides a Figure 1 — Starter Kit Block Diagram
simulation of spacecraft attitude and orbit dynamics and
control. All of these components are freely available as
open source software.

Starting with an operational flight-ground system
makes the FSW developer’s job much -easier.
Developers can focus on tailoring the kit’s cFS
components to their needs, adding new mission-specific
applications, and porting the cFS to their target
platform.

McComas 1 31t Annual AIAA/USU
Conference on Small Satellites

mailto:david.c.mccomas@nasa.gov

FLIGHT SOFTWARE

The cFS provides a significant portion of a mission’s
FSW. On recent National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center
(GSFC) missions using source lines of code (SLOC) as
a metric and excluding the operating system, the cFS
has provided about a third of the FSW. Much of the
functionality provided by the cFS is based on decades
of FSW experience. This functionality can be very
beneficial to inexperienced teams because they may not
even recognize that they may need some of the
functionality provided by the cFS, especially the
inflight diagnostic and maintenance features.

The starter kit can also serve as a cFS training platform.
It provides demonstrations to highlight common cFS
features and it contains a tool for automatically creating
a “Hello World” application. Since it is freely available
and easy to install, it can be used as a platform for
academic projects.

CORE FLIGHT SYSTEM

Figure 2 shows the cFS architecture. Two prominent
features are the Application Program Interface (API)-
based layers and the definition of an application as a
distinct well-defined architectural component.

cFS

Apps.
N Mission
Library

Application
Layer

| cFE API |

E tive Services
‘ Layer

‘ cFE Core

| osavsactonapt | [crEPsPaR | Platform Abstraction
Layer
0S Abstractions
(Linux, RTEMS, ELE P';:;T'gesgw“"
VxWorks)
l:l Open Source
L] rorwenn

Figure 2 — cFS Layered Architecture

The cFS defines 3 layers with an API between each
layer. Layer 1 supports portability by decoupling the
higher levels from hardware and operating system
implementation details. All access to the platform is
controlled through two APIs: the Operating System
Abstraction Layer (OSAL) and the Platform Support
Package (PSP).

Layer 2 contains the core Flight Executive (cFE) that
provides five services that were determined to be
common across most GSFC FSW projects. The core
services include a Software Bus (inter-app messaging),

Time Management, Event Messages (Alerts), Table
Management (runtime parameters), and Executive
Services (startup and runtime resource management).

The Software Bus provides a publish-and-subscribe
Consultative Committee for Space Data Systems
(CCSDS) ¢ standards-based inter application messaging
system that supports single and multi-processor
configurations. Time Management provides time
services for applications. The Event Message service
allows applications to send time-stamped parameterized
text messages. Four message classes based on severity
are defined and filtering can be applied on a per-class
basis. Tables are binary files containing groups of
application defined parameters that can be changed
during runtime. The table service provides a ground
interface for loading and dumping an application’s
tables. Executive Services provides the runtime
environment that allows applications to be managed as
an architectural component. All of the services contain
tunable compile-time parameters allowing developers
to scale the cFE to their needs.

The APIs in Layers 1 and 2 have been instrumental in
the cFS’ success across multiple platforms and the cFE
API has remained unchanged since the launch of the
Lunar Reconnaissance Orbiter in 2009. The APIs,
their underlying services, and the cFS build tool chain
provide the architectural infrastructure that make
applications an explicit architectural component. A cFS
compliant application will run unchanged regardless of
the host platform. The application layer contains thread-
based applications as well as libraries (e.g. linear
algebra math library) which can be shared among
multiple applications. New applications can easily be
integrated into the build system and even dynamically
added/removed during runtime.

As shown in Figure 2 all of the source code has been
released as open source. The code is managed by a
multi-NASA Center configuration control board (CCB)
that ensures that the application context will evolved in
a controlled manner.

cFS Application Context

The application layer is where the bulk of the cFS
scalability and extendibility occurs. Users create new
missions using a combination of existing cFS compliant
apps (partial or complete reuse) and new mission-
specific apps. Just as the cFE provides common FSW
services there is a set of apps that provide common
higher level functional services. Figure 3 shows the
minimal context for a user app on a single processor
system. Three °kit’ apps provide the higher level
services.

McComas

31% Annual AIAA/USU
Conference on Small Satellites

Packet
‘Output Table

C—> Software Bus

——» Communication Link

Linked Software
Companents

Figure 3 — User Application Context

Apps must have the ability to receive commands from
and send telemetry to the ground systems. The
Command Ingest app receives commands from the
ground and sends them on the software bus. The
software bus uses the command message identifier to
route the command to the app that has subscribed to the
message id. An app also generates one or more
telemetry packets and sends them on the software bus.
The Telemetry Output app uses a table to determine
which message ids to subscribe to and how often to
forward them to the ground system.

Users have multiple mechanisms for how to control the
execution of an application. The scheduler app
provides a time synchronized mechanism for
scheduling application activities. The Scheduler app
uses a table to define time slots for when to send a
message that users can use to initiate an activity.
Activities can be scheduled to occur faster or slower
than 1 second. Even if an app’s execution is data driven
(.i.e. pends for one or more data packets to start its
execution) it is often convenient to use the scheduler as
control mechanism for when to send time-based
housekeeping telemetry.

42 SIMULATOR

42 is an open source software package that simulates
spacecraft attitude and orbital dynamics and control. 42
is design to be both powerful and easy to configure and
run. It supports multiple spacecraft anywhere in the
solar system and each spacecraft is a multi-body model
that can be a combination of rigid and flexible bodies.
42 consists of a dynamics engine and a visualization
front end. The two components can run on the same
processor, different processors, or just the dynamics can
be run without visualization.

Figure 4 shows the processing flow of the 42 simulation
models. The Ephemeris Models determine object

(spacecraft, sun, earth, etc.) positions and velocities in a
particular reference frame. This information is input to
the Environmental Models that computes the forces and
torques exerted on each object. The ephemeris and
environmental data is read by the Sensor Models. The
FSW algorithms read the sensor data, estimate states,
run control laws, and output actuator commands. The
Actuator Models compute control forces and torques.
The forces and torques from Environmental Models and
Actuator Models are input the Dynamics Model that
integrates the dynamic equations of motion over a time
step. The new states are fed back to the Ephemeris
Models and the simulation process is repeated.

42
Simuiator
Ephemeris
Models

Environment | Maghet e | Sensor
Models Models
T Ia cFS
el LN
42
FSW |' Socket L e} -
Foca | Agorits |1 Interface | 1w FS::: N
Torques iTTT
‘ AL
Actuator
Models
Control

Dynamics
Models

Figure 4 — 42 Simulator

The dashed Socket Interface box in Figure 5 has been
added to the 42 simulator for the OpenSatKit and
replaces the FSW Algorithm box. The FSW Algorithm
App running on the cFS implements the 42 FSW
algorithms. The I/0 App communicates with the new
42 Socket Interface to transfer sensor and actuator data
between 42 and the cFS platform. 42 is command line
driven which allows it to be controlled by and external
program such as COSMOS. This control is not shown
in Figure 4.

COSMOS

Ball Aerospace COSMOS is an open source command
and control system that can be used to test and operate
any embedded system, from a single board to a
complete satellite. COSMOS is made up of a
collection of 15 tools that provide functionality such as
automated procedures, real-time and offline telemetry
display and graphing, logged data analysis and comma
separated variables (CSV) extraction, limits monitoring,
command and telemetry handbook creation, and binary
file editing.

McComas

31% Annual AIAA/USU
Conference on Small Satellites

The following diagram shows how the COSMOS
system is organized. At the heart of the real-time
system is the Command and Telemetry Server. All
commands and telemetry packets flow through the
server to/from the other modularly designed tools that
make up COSMOS. This ensures that all interaction
with the targets (typically a satellite and a set of GSE
hardware), is logged.

k cosmos

Architecture and Context Diagram

2) (s
-) \dg
ERWA
Pachot “Data
= =
Iy
Conig |
]
2) (k)
=) (=
)\
Yoo | = ?
come) | T

Figure 5 — COSMOS Architecture

For OpenSatKit, COSMOS has been preconfigured to
communicate with the cFS and the 42 Simulator over
TCP/IP. Out of the box, you have a set of COSMOS
test procedures ready to execute, telemetry screens to
display data from both systems, and the ability to
monitor and analyze all the telemetry in the system.
The full COSMOS functionality is ready to go and
you’ll immediately have a working user interface for
the system you are designing.

2 Test Runner

Fie Script Help

Exequtng Test Case: Examplefest : setp pass: skp: Ral: 0%

Paused Go Pause || stp

Saript Output:

2015/08/11 12:05:56.543 (SCRIPTRUNNER): S
2015/08/11 12:05:53.248 (example _t)
2015/08/11 12:05:59.361 (SCRIPTRUNNER): Usi

Figure 6 — COSMOS Tools

For more information, please see http://cosmosrb.com.

OPENSATKIT FEATURES

The OpenSatKit is distributed with instructions for
creating a Linux virtual machine'. OpenSatKit is started
by launching COSMOS from the cfs-kit/cosmos
directory. A customized COSMOS Launcher GUI
appears that is the standard COSMOS Launcher with
the addition of a cFS Starter Kit button as shown in
Figure 7. When you click the cFS Starter Kit icon
COSMOS’ Command and Telemetry Server and
Telemetry Viewer tools are launched since they are
required by the kit. The OpenSatKit main page shown
in Figure 8 is also opened.

McComas

31% Annual AIAA/USU
Conference on Small Satellites

http://cosmosrb.com/

M Launcher - + X

File Help

9 &) Yo
R,

=

COSMOS cFS Starter Command Limits
Kit and Monitor

Telemetry

Server

Commanding and Scripting

| 3|

Q] ¢

[cosvos] i cosmos] iy cosvos] lig cosmos)
Command Script Test Replay
Sender Runner Runner
Telemetry
p . | @
i o | SR
0 i *
= =
Packet Telemetry Telemetry Data
Viewer Viewer Grapher Viewer
Utilities
101001011101
011011001010

101001011101
011011001010
o) @ ﬁ i
TLM CMD
[cosvos] g cosmos] iy cosvos] g cosmos]

Telemetry Command Handbook Table
Extractor Extractor Creator Manager

Figure 7 — Custom COSMOS Launcher

= CFS_KIT CFS_KIT SCREEN - + X
cFS Starter Kit
Time(secs) 0
Enable Telemetry | Reset Time | App Summary |
—cFS-Functions
Manage Files | Manage Tables | Manage Memory |
Manage Recorder | Manage Autonomy | Manage Apps |

~ Kit-Tools

Verify cFS Config | Run Performance Monitor | Run Benchmarks |

Add Application | Manage Hardware Targets |

Event Messages

Figure 8- Starter Kit Main Page

The main page layout reflects the primary goals of the
kit: provide a complete cFS system to simplify cFS’
learning curve, simplify application development and
integration into a cFS system, and assist in porting the

cFS to a new platform. The main page has two tabs:
Home and Demo. The Home tab provides buttons to
perform all of the kit’s functions. The Demo tab
provides pre-configured demonstrations for most of the
Home tab’s functions.

The Home tab is divided into four sections: System,
cFS-Functions, Kit-Tools, and Event Messages. The
System section allows the user to start the cFS and
perform some simple system level operations to ensure
that the system is functioning properly. Each button in
the cFS-Function section opens a command and
telemetry page that allows the user to focus on a
particular cFS functional activity that requires one or
more apps. For example, the File Management page
(see Figure 9) is wused to manage onboard
directories/files using the File Manager (FM) app and
transfer files between COSMOS and the cFS using the
Trivial File Transfer Protocol (TFTP) app. The Demo
tab contains a demo for each of these functional areas.
The cFS-Function pages and corresponding demos help
user’s conquer the cFS learning curve. In addition the
page definitions and underlying Ruby scripts provide
examples that users can build upon for their mission-
specific applications.

McComas

31% Annual AIAA/USU
Conference on Small Satellites

5 CFS_KIT FILE MGMT_SCREEN - + X

File Management

— Directory Management File Manager Directory Listing

= | T | BT l—
ListtoPacket | WritetoFile | { TOTALFILES: | a
PACKETFILES: I 0
— File Management FIRSTFILE: I—O
Copy | Move | | FiEo1 namE: [
Rename | Decompress | FILEO2_NAME: I
Delete | Delete All | EIREUSTRENIES I
FILEO4_NAME: I
Concat | Get Info | U T I—
LEEERET FILEOS_NAME: [
- File Manager Housekeeping FILEO7_NAME: I
cmd Valid Cnt g || FILEOB NAME: I
Cmd Error Cnt I—O e I
Child Cmd Valid Cnt g | FILELLNAME: |
Child Cmd Error Cnt 0 (IS TS I
—File Transfer
Put File | Get File |
PUT FILE COUNT: | 0 GET FILE COUNT: | 0
Ground Working Directory
Flight Working Directory
Event Messages

Figure 9- File Management Page

The Kit-Tools section provides tools that assist the user
with verifying a platform, evaluation a platform’s
performance, integrating additional applications to the
kit, and porting the cFS to a new target. The current kit
includes a Raspberry Pi target.

Summary

OpenSatK:it is a freely available open source toolkit that
provides users with a complete cFS hosted on a Linux
platform. The cFS is a very mature and highly reliable
FSW system that has been used on several NASA Class
B missions®. We hope that this kit will greatly benefit
SmallSat missions that often have constrained budgets
and small software teams. In additional we’d like to
continue to grow the cFS community in an open
manner allowing additional assets to be developed and
shared among cFS-based missions.

Acknowledgments

The authors would like to acknowledge and thank the
cFS community for all the hard work and dedication in
maturing the cFS and contributing ideas, applications
and tools.

References

L

“Core Flight System” Retrieved from

http://coreflightsystem.org June 12t 2017.

“National Aeronautics and Space Administration,
Flight Software Systems Branch, cFS Overview”
Retrieved from
http://cfs.gsfc.nasa.gov/Introduction.html. June
12t 2017.

Stoneking, Eric, “42 Simulator” Retrieved from
https://sourceforge.net/projects/fortytwospacecra
ftsimulation/ June 12t 2017.

Melton, Ryan, “Ball Aerospace COSMOS”
Retrieved from http://cosmosrb.com/ June 121
2017.

National Aeronautics and Space Administration,
Online Directives Information System, Software
Engineering Requirements NPR-7150.2B,
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NP
R&C=7150&s=2

“The Consultative Committee for Space Data
Systems” Retrieved from
https://public.ccsds.org/default.aspx June 12t
2017

McComas

31% Annual AIAA/USU
Conference on Small Satellites

http://coreflightsystem.org/
http://cfs.gsfc.nasa.gov/Introduction.html
https://sourceforge.net/projects/fortytwospacecraftsimulation/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
http://cosmosrb.com/
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
https://public.ccsds.org/default.aspx

