

Design and Principles Enabling the Space Reference FOM

Björn Möller

Pitch Technologies

Repslagaregatan 25

58222 Linköping, Sweden

+46 13 4705503

bjorn.moller@pitch.se

Edwin Z. Crues

Simulation and Graphics Branch (ER7)

Software, Robotics, and Simulation Division (ER)

NASA Johnson Space Center

2101 NASA Road 1, Houston, TX

edwin.z.crues@nasa.gov

Dan Dexter

Simulation and Graphics Branch (ER7)

Software, Robotics, and Simulation Division (ER)

NASA Johnson Space Center

2101 NASA Road 1, Houston, TX

daniel.e.dexter@nasa.gov

Michael Madden

Simulation Development and Analysis Branch (D107)

NASA Langley Research Center

24 West Taylor Street, Hampton, VA

Michael.M.Madden@nasa.gov

Alfredo Garro

University of Calabria

Department of Informatics, Modeling, Electronics and

Systems Engineering (DIMES)

University of Calabria

Via P. Bucci 41C, 87036 Rende (CS), Italy

alfredo.garro@dimes.unical.it

Anton Skuratovskiy

RusBITech

Varshavskoye shosse 26

117105 Moscow, Russia

+7 495 648 0640

a.skuratovskiy@rusbitech.ru

Keywords: Space simulation, Reference FOM, HLA, Time Management,

Reference Frame, Execution Control, Simulation Initialization

ABSTRACT: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference

Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and

discusses the opportunity for reuse in other domains.

The focus of this first version of the standard is execution control, time management and coordinate systems, well-

known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is

the coordinated start-up process. This process contains a number of steps, including checking of required federates,

handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization.

An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze

mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High

Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps

is introduced, as well as an approach for finding common boundaries for fully synchronized freeze.

For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a

position and orientation related to a parent reference frame. This makes it possible for federates to perform

calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar

coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in

one reference frame have an unambiguous relationship to a coordinate in another reference frame.

While the Space Reference FOM is originally being developed for Space operations, the authors believe that many

parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems,

and require high fidelity and repeatability.

1. Introduction

Previous papers [1,2] provide a background on the

importance of distributed simulation for the space

domain, as well as examples of a number of High Level

architecture (HLA) [3] federations in the Space domain,

from the late 90’s up till today.

Continued discussions in the Simulation Interoperability

Standards Organization (SISO) space simulation

community led to the initiative to start up a group to

develop a standard that could serve as a foundation for

better a priori interoperability between space simulations.

A product nomination for a Space Reference Federation

Object Model (FOM) was composed, submitted to the

SISO Standards Activities Committee (SAC), and

ultimately approved by the SAC for development. A

Product Development Group (PDG) was formed to

develop the Space Reference FOM standard.

1.1. Progress of the standards development

The initial Space Reference FOM PDG meeting was held

at the SISO Fall 2015 Simulation Innovation Workshop

(SIW) in September 2015. Since this initial PDG meeting,

more than 60 meetings have been held. Space Reference

FOM PDG members include government, industry and

academia. The group has provided draft versions of the

standard to the international university outreach program

Simulation Exploration Experience (SEE, previously

SISO “Smackdown”) [4].

As of September 2017, a first, almost complete draft

exists. The next step is test and verification of the draft.

Three different teams in the drafting group are developing

three different implementations of the core components of

the Space Reference FOM, which will then be cross-

tested in different combinations. After the tests, the

standard will go through formal balloting, according the

SISO Balloted Products Development & Support Process

(BPDSP) [5]. The target is to release the final standard in

2018.

1.2. The standard broken down into design patterns

The standard provides detailed solutions to a number of

key requirements in a space federation. In this paper,

these solutions are presented in a generic form. This

makes it easier to explain their essence.

The approach chosen is known as “Design patterns” [6] in

the software community. A design pattern can be

described as a “general reusable solution to a commonly

occurring problem within a given context” (Wikipedia).

1.3. Federate Roles

Several of these patterns depend on the three federate

roles that are defined in the Space Reference FOM. They

are:

1. The Master role, that controls the initialization

and execution of the federation

2. The Pacer role, that manages the advancement

of scenario time in relationship to the real time

3. The Root Reference Frame Publisher role,

that publishes the root of the tree of reference

frames, as described later in this paper.

The patterns are grouped into three types:

1. Execution Control design patterns, where the

federates and the Master are important

2. Time Management design patterns, where the

Pacer and the Master are important.

3. Spatial design patterns, where the Root

Reference Frame Publisher and the Master are

important

All diagrams in this paper are based on the June 2017

draft version of the Space Reference FOM [7], which

contains diagrams with considerably more technical

detail. These solutions are based on lessons learned from

real life federations. Many of them are derived from the

Integrated Mission Simulation document [8] by NASA.

2. Execution Control Design Patterns

This section describes the six main patterns that are used

for initialization and execution control in the Space

Reference FOM. They are described in the order that they

are typically executed in a federate.

The patterns are:

1. Removal of orphaned Federation Execution

2. Centralized checking of required federates

3. Detection if a federate is a late joiner

4. Global configuration data in singleton instance

5. Synchronized multi-phase initialization

6. Central execution control with transition requests

Since there are many federates executing in parallel, these

patterns may be running in parallel in a federation

execution. As an example, several federates may be

performing a synchronized multi-phase initialization,

while a new federate detects if it is a late joiner or not.

2.1. Removal of orphaned Federation Execution

Requirement: A federation needs to ensure that it

executes in a clean federation execution when it starts. If

not, the federation execution may contain orphaned object

instances, or may have been advanced in HLA logical

time. Such a federation execution typically exists if

federates in a previous execution did not shut down

correctly.

Figure 1: Removal of Orphaned Federation

Solution: After connecting to the RTI, a federate

immediately destroys the federation execution. It then

creates and joins the federation execution. In case the

federation doesn’t exist anymore, since another federate

just destroyed it, the federate needs to go back and try to

create it.

Discussion: Note how this pattern needs to handle the

case when several federates are trying to join at almost the

same time and may potentially destroy each other’s

federation executions. This pattern also relies on the

property that a federation execution cannot be destroyed,

once a federate has successfully joined it.

2.2. Centralized checking of required federates

Requirement: a certain set of federates need to be present

before the simulation can start. This may be for technical

reasons, or to be able to perform a meaningful simulation.

Figure 2: Check for required Federates

Solution: a designated federate is used, in this case the

federate with the Master role. It has access to a list of the

federate names of the required federates, for example in a

configuration file. After joining the federation execution,

it uses the HLA Management Object Model (MOM) to

monitor which federates that have joined. When all

required federates have joined, it registers the

synchronization point “Initialization Started”.

Any other federate, that may potentially be a required

federate, needs to perform the following sequence. After

joining, it checks for the synchronization point

“Initialization Started”. If this synchronization point

hasn’t been announced, the federate enters a wait loop,

where it periodically checks if “Initialization Started” has

been announced. When it has been announced the

federate will start the main initialization.

Note that this pattern is extended later in the next pattern.

Discussion: In this pattern, the availability of a

synchronization point is used as a global flag. The pattern

doesn’t require any particular start order between the

Master federate and the required federates. The pattern

will, to some degree, ensure that all required federates

start the initialization process at the same time.

2.3. Detection if a federate is a late joiner

Requirement: This pattern applies to a federate that may

execute as either an early joiner or a late joiner. Late

joiner, in this context, means that the initialization has

already been completed. In case it joins a federation early

it needs to complete certain initialization steps. In case it

joins late, different steps may need to be performed.

Destroy	Federation	

Execution

Create	Federation	

Execution

Join	Federation	

Execution

Start

End

Connect	to	RTI

Success
No

Yes

Register	Sync	Point	
“Initialization	
Started”

Master	

Federate	
Start

End

Check	joined	
federates	using	

MOM

Required	
federates	

joined

No

Yes

Other	

Federate	
Start

End

Synch	Point	
”Initialization	

Started”	
registered

No

Yes

Figure 3: Detection if a federate is a late joiner

Solution: A designated federate, in this case the federate

with the Master role, registers the synchronization point

“Initialization Completed”. If this synchronization point

hasn’t been announced, the federate will act as an early

joiner and go through the initialization steps. Otherwise it

will act as a late joiner and will go through the late joiner

steps.

Discussion: This pattern also uses the availability of a

synchronization point as a global flag. Note that this

pattern doesn’t guarantee that an early joiner federate

enters the initialization steps in sync with other federates.

2.4. Global configuration data in singleton instance

Requirement: A federation needs to share a number of

global properties, for example static data, such as epoch

or references to important object instances or dynamic

data, such as execution state. Storing static data in

configuration files for each federate, introduces a risk of

mismatching data.

Figure 4: Shared configuration data in singleton

Solution: A dedicated federate registers an object

instance of a particular object class with a specific HLA

object instance name. The dedicated federate sets the

attribute values. For static data, this may be based on

configuration data provided to the dedicated federate, or

by discovering data in the federation. For dynamic data,

other federates may send interactions to provide or

request data, as shown later in this paper. Other federates

will get the configuration data by subscribing to the

particular object class.

Discussion: In the Space Reference FOM, the federate

with the Master role registers an object instance called

“ExCO”, which stands for Execution Configuration

Object. It contains information like the Epoch, current

run/freeze mode, and name of the root reference frame.

2.5. Synchronized multi-phase initialization

Requirement: Before starting the main execution,

federates need to exchange initial data. Some of the data

cannot be calculated before some other data has been

provided by some other federate. To be able to control

and verify that all data has been provided, the federation

needs to go through a specified set of initialization phases.

Figure 5: Multi-phase Initialization

Solution: A number of named phases have been agreed

upon in advance, each phase with corresponding named

synchronization point. In the example in Figure 5 there

are two phases called A and B. A dedicated federate role

registers these synchronization points. It then achieves

them, one by one. After achieving a synchronization

Master	

Federate	
Start

Other	

Federate	
Start

End

Synch	Point	
”Initialization	

Started”	
registered

Yes

Perform	Master	

Initialization

Achieve	Sync	Point	

“Initialization	
Started”

Register	Sync	Point	

“Initialization	
Completed”

End

Create	&	Join

Synch	Point	
”Initialization	

Completed”	
registered

Perform	Late	Joiner	

Initialization

Perform	Early	Joiner	

Initialization

Achieve	Sync	Point	

“Initialization	
Started”

No
No

Yes

End

Master
Federate

Federate Federate

Runtime	Infrastructure	– RTI

ExCO Object

Epoch 01-Jan-2017	00:00
RootRefFrame MoonCentricInertial
RunMode Running
NextMode Freeze
NextModeTime 12345.66

Send	any	data	for	

Phase	A

Wait	for	required	

data	for	Phase	A

Achieve	Sync	Point	

“Phase	A”

Wait	for	“Phase	A”	

synchronized

Non-Master

Start

Next	phase

Achieve	Sync	Point	

“Phase	A”

Wait	for	“Phase	A”	

synchronized

Achieve	Sync	Point	

“Phase	B”

Wait	for	“Phase	B”	
synchronized

Master

Start

End

Register	Sync	Points	

“Phase	A”,	“Phase	B

Phase	A

point, it waits for the federation to be synchronized,

before achieving the next synchronization point.

Participating federates will perform the following for each

phase: first send out initialization data, then achieve the

synchronization point and finally wait for the federation

being synchronized.

Discussion: In the Space Reference FOM, the Master

federate manages the multi-phase initialization. One

advantage of this pattern is that it makes it easier to verify

and potentially troubleshoot the initialization.

2.6. Central execution control with transition

requests

Requirement: Federates need to transition between

initializing mode, running mode, freeze mode and

shutdown in a controlled manner. Any federate may need

to request a mode transition. Since federates may use

different time steps, or may need some time to transition,

the transition may not happen immediately. Late joining

federates must perform a required transition, even if the

transition was requested before a federate joined.

Figure 6: Requesting mode transitions

Solution: A global object instance, in this case the

Execution Configuration Object (ExCO), stores the

current mode, as well as the next mode, together with the

time for the next mode. Any federate can make requests

for mode transitions, as shown in Figure 6. The Master

federate will calculate an acceptable time for the mode

transition and store this in the ExCO.

Figure 7: Execution Modes and synchronization

Mode transitions to Freeze or Run start with achieving a

synchronization point, in order to synchronize federates

that take different time to transition, as shown in Figure 7.

Mode transitions to Shutdown do not use a

synchronization point. Note that it is possible for the

federation to go directly to shutdown, if a federate fails

during initialization.

All federates that produce data or have HLA Time

Regulation turned on, must transition to the next state as

specified in the ExCO. Data loggers and visualizers may

not always take part in the state transitions.

Interaction and Attribute Updates related to requesting

and performing the state changes need to be sent using

Receive Order in a federation using HLA Time

Management

Discussion: Transitioning to shutdown needs special

consideration in this pattern. An operator may require

going to shutdown at any point in time, for example when

a federate becomes unresponsive or faulty in other ways.

A synchronization point cannot be used in this case, since

unresponsive federates may never achieve a

synchronization point, thus preventing the entire

federation from shutting down.

3. Time Management Design Patterns

This section describes two patterns for managing time.

The Space Reference FOM describes several time

concepts, where some of the most important are:

Scenario Time is the conceptual time associated with the

physical systems that are modeled in the federates.

HLA Logical Time is the time used by HLA to time-

stamp and order messages and to regulate time advance.

The HLA logical time starts at zero. It can be related to

the scenario time by providing an Epoch (starting point).

Master
Federate

Federate Federate

Runtime	Infrastructure	– RTI

EcCO Object

Request	Mode	Transition	(Freeze)1

2 Set	Next	Mode	(Freeze,	1020.0)

Start

Initialization

Run

Shutdown

Freeze

Sync Sync

Sync

End

Physical time or “real world time” in the Space

Reference FOM is based on the classical Newtonian

concept of absolute time, which is a simplification

compared to the relativistic space-time concept.

The patterns are:

1. Constant but potentially different federate time

steps

2. Mix of paced scenario time and physical time

The time management patterns are closely related to the

execution control patterns, in particular the transition

requests between the Run, Freeze and Shutdown modes.

Here they are presented standalone, but to get the exact

details, the reader is encouraged to read the Space

Reference FOM.

3.1. Constant but potentially different federate time

steps

Requirement: A number of federates that use time-

stepped simulation need to execute together in a

federation. The time-steps are constant but may be

different between federates. The federation needs to have

well-defined points in time when the federation wide state

is complete and consistent, for example for check-

pointing, snap-shooting or freeze of the federation.

Figure 8: Federate and Federation time steps

Description: A common Federation Time Step is agreed

upon. The federate with the pacing role shall advance

time using this time step, as shown in Figure 8. Any other

federate shall advance time using a time step, called the

Federate Time Step, that shall be an integer multiple n>=1

of the Federation Time Step.

Each federate has a native time step of its internal physics

model, here called the Simulation Time Step. The

Federate Time Step shall be an integer multiple n>=1 of

the Simulation Time Step.

The pattern guarantees that there will be repeated HLA

Logical times to which all federates will be granted, here

called Common Time Boundaries. These can be

calculated as the least common denominator of all

Federate Time Steps.

Discussion: Many, but not all, physics simulations have

configurable time steps, which facilitates the choice of

federation time step. If one federate is less flexible in the

choice of time step, this may strongly influence the choice

of time step. The more important aspect, when selecting

time steps for physical models, may be the resolution and

fidelity that is required for a particular simulation

purpose.

3.2. Mix of paced scenario time and physical time

Requirement: An HLA federation can accommodate

both simulations running in soft real-time and simulators

that use central timing equipment (CTE) (e.g., a GPS

timing board) for hard real-time synchronization. While

the HLA federation is capable of going to freeze, and

restarting, the simulations that synchronize using the

CTE, must be able to handle these mode transitions.

Figure 9: CTE time line and Scenario time line

Description: The federation is regarded as having two

time lines, the scenario time-line and the CTE time-line as

shown in Figure 9. These are connected in Run mode but

disconnected at Freeze mode. The federate with the

Master is responsible for connecting them when entering

Run mode using a separate CTE epoch, which specifies

the offset between the CTE time and the scenario time.

Scenario Time / HLA Logical Time

Pacing
Federate

Federate Time Step = 4

Simulation Time Step = 1
Federate A

Federate Time Step = 8

Simulation Time Step = 8
Federate B

Federation Time Step = 4

CTE	Time	Line

Scenario	Time	Line

Run

Freeze

Run

0 10 20 30 40

Calculate
Offset

Calculate
Offset

12:01:05 12:01:06

Figure 10: Advancing scenario time vs CTE time

In Run mode, each CTE-based federate will perform a

Time Advance Request, wait for the next CTE time and

then check that a Time Advance Grant has been received,

before simulating the next time step as shown in Figure

10.

Discussion: This pattern requires that the Master is also

required to be connected to the CTE.

4. Spatial Design Patterns

This section describes the patterns for handling spatial

information. Space simulations may include assets that

operate on or about celestial bodies other than the Earth.

Therefore, there is no common reference frame of

convenience for all space simulations. Moreover, when

modeling operations that span multiple celestial bodies,

each federate may prefer to operate an asset in a local

reference frame but the federation must relate those

reference frames to each other using a common parent

reference frame in order enable interaction. For example,

a simulation of a ground station on the Earth sending

commands to a spacecraft orbiting Mars may simulate the

ground station in an Earth-centered frame and the

spacecraft in a Mars-centered frame but relates these two

frames using a Solar System Barycenter frame. The

Space Reference FOM accomplishes this using two

patterns:

1. Reference frames are explicitly specified using

object instances of a ReferenceFrame object

2. Reference frames are organized using a

replaceable and extendable tree of

ReferenceFrame objects

4.1. Reference Frames explicitly specified using

object instances

Requirement: Different models in a federation need to

perform calculations related to positions that are

geographically dispersed. It is conceptually and

computationally inconvenient to perform all calculations

using the same coordinate system.

Figure 11: Reference Frame

Description: Create one object instance for each

reference frame that is required. Each ReferenceFrame is

identified using a name. The Space Reference FOM

defines a syntax for creating unambiguous reference

frame names. Each ReferenceFrame object specifies a

parent ReferenceFrame by name and the

ReferenceFrame’s translational state (position and

velocity) and rotational state (attitude and rotation rate)

relative to the parent ReferenceFrame. Quaternions are

used to describe orientation to avoid the singularities of

Euler coordinates. ReferenceFrames also specify the

Terrestrial Time (TT) congruent with the translational and

rotational state.

Discussion: Many other FOMs use an implicit coordinate

system, for example geodetic coordinates (latitude,

longitude, and altitude). This becomes very inconvenient

if you, for example, were to simulate the behavior of a

rover on the surface of the moon using such Earth-based

coordinates.

Check	that	Time	

Advance	Granted	
has	been	received

Simulate	this	

time	step

Time	Advance	
Request

Wait	for	next	CTE	

time	

Go	to	Run	

mode

Mode

Freeze,

Shutdown

Run

Other	

Modes

Calculate	Scenario	

time	to	CTE	offset

HLAobjectRoot

ReferenceFrame

name : HLAunicodeString

parent_name : HLAunicodeString

state : SpaceTimeCoordinateState

ReferenceFrameTranslation

position : PositionVector

velocity : VelocityVector

ReferenceFrameRotation

attitude_quaternion : AttitudeQuaternion

angular_velcoity : AngularVelocityVector

SpaceTimeCoordinateState

time : Time

translational_state : ReferenceFrameTranslation

rotational_state : ReferenceFrameRotation

4.2. Replaceable and Extendable Tree of Reference

Frames

Requirement: Need to translate coordinates between

several different reference frames in order to determine

spatial relationships between entities using different

coordinate systems. Need to be able to switch between

different reference frames during execution, for most

convenient computations. Need to be able to use different

sets of reference frames for different scenarios. Need to

extend common and standardized reference frames with

custom reference frames.

Figure 12: Tree of Coordinate Systems TBD

Description: Structure the reference frames into one

single directed acyclic graph (i.e. a tree). Each reference

frame specifies its translational and rotational states with

respect to the parent reference frame, except for the root.

Translation between any two reference frames can be

performed by traversing the graph to a common parent.

New reference frames can be dynamically added into the

tree as needed. The actual tree may be different between

different scenarios.

To assure that all federates agree on the relative states

between reference frames, a specialized federate

calculates and publishes the translational and rotational

states of the reference frames in the tree. The Space

reference FOM requires that a designated Root Reference

Frame Publisher exists in any federation. A reference to

the root reference frame is stored in the ExCO object.

Discussion: One advantage of this pattern is the

opportunity to develop and reuse federates that simulate,

for example, the bodies of the solar system. Alternate

federates may provide different models with different

fidelity. One disadvantage is the calculations needed to

convert between different reference frames. However, in

many space federates, this may always be required.

5. Discussion

5.1. Simpler and more advanced versions of the

patterns

The initialization patterns described in this paper are

available in three different versions:

1. This paper that presents these patterns “as simple as

possible, but not simpler”. This makes the principles

easier to understand.

2. The Space Reference FOM that provides the same

patterns with all details that are necessary to

implement them, in particular with the HLA service

calls described. Anybody that wishes to implement a

federate compliant with the Space Reference FOM

should study these carefully.

3. The IMSim document that presents even more

extended versions, also including check pointing.

This is interesting background reading for the

advanced developer. Note that there are a number of

differences between these patterns and the Space

Reference FOM.

5.2. Comparison to defense training federations

The most widely used FOM in the defense training

domain is the SISO Real-time Platform Reference FOM

[9,10]. There are major differences between the Space

Reference FOM and RPR FOM. Most of them are due to

the fact that the RPR FOM replicates the behavior and

information model of the earlier DIS [11] standard (which

is based on the even older SIMNET framework) and

seeks to maintain backwards compatibility. The Space

Reference FOM represents a view of simulation

interoperability that is at least one or two decades newer.

Some key differences are:

Reliable data exchange. The information exchange in the

Space Reference FOM uses reliable communication, as

opposed to best effort transportation in the RPR FOM.

Causality and repeatability. The use of time managed

delivery of updates and federate time advance in the

Space Reference FOM guarantees correct delivery order

between federates, which is required for causality and

repeatability. Not only may RPR FOM updates be

delivered in the past of a federates logical time, it may

even be lost.

Well-managed set of federates. The required federates in

a Space FOM federation are explicitly checked during

startup. No corresponding mechanism is specified in the

RPR FOM.

Synchronization. Federates may take some time to go

between run, freeze and shutdown. The Space Reference

FOM guarantees that no simulation starts before all

systems are ready. In the RPR FOM, all federates can be

seen as “free-running” and starting their simulation

independently after a freeze. Coordinated shutdown isn’t

supported.

SolarSystemBarycentricInertial

SunCentricInertial MarsCentricInertialEarthMJ2000Eq

EarthFixed MoonCentricInertial

MoonFixed

MarsFixed

Support for soft real-time and Central Timing

Equipment. The Space Reference FOM allows for any

mix of soft real-time synchronized and central timing

equipment. The RPR FOM is commonly used with GPS

time or similar for time stamping, but there is no

coordination between the GPS time and the delivery of

updates with such time stamps.

Use of multiple reference frames. The Space Reference

FOM supports any number of reference frames, together

with a system for translation between them. This enables

simulations to use reference frames that are

computationally convenient for them. The RPR FOM

implicitly use geocentric coordinates, which may work for

Earth centric simulations, but are inconvenient for space

simulation. Note that the RPR FOM supports Relative

Spatial attributes for relating entities to other “parent”

entities.

6. Conclusions

A number of design patterns and principles from the

Space Reference FOM have been presented. The patterns

relate to three areas: execution control, time management

and spatial design with reference frames. All simulations

in the space domain need to implement solutions for these

areas, even for running standalone. When several space

simulations are federated, handling of initialization, time

and space are the fundamental areas that need to be

addressed, before higher level processes, like space travel,

can be addressed. This is why these areas are the focus of

the first version of the Space Reference FOM.

6.1. Sharing knowledge inside and outside of the

Space simulation community

The main purpose of the paper is to introduce the patterns

and design principles to developers of distributed

simulation in the space domain. The Space Reference

FOM is already getting attention from developers and

organizations outside of the current SISO PDG, which is

promising. A prerelease of the Space Reference FOM was

also used in the SEE 2017 university outreach program.

A secondary purpose is to share them with simulation

developers from other domains. Through SISO and other

organization we can exchange ideas, learn from each

other and advance the state of the art.

References

[1] B. Möller, E. Z. Crues, D. E. Dexter, A. Garro,

A. Skuratovskiy, A. Vankov. A First Look at the

Upcoming SISO Space Reference FOM.

Proceedings of the SISO 2016 Simulation

Innovation Workshop (SIW), Orlando, Florida,

USA, September 11-16, 2016.

[2] B. Möller, A. Garro, A. Falcone, E. Z. Crues, D.

E. Dexter. Promoting a-priori interoperability of

HLA-based Simulations in the Space domain: the

SISO Space Reference FOM initiative.

Proceedings of the 20th IEEE/ACM International

Symposium on Distributed Simulation and Real

Time Applications (ACM/IEEE DS-RT),

London, UK, September 21-23, 2016, ISBN:

978-150903504-5.

[3] IEEE: "IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture

(HLA)", IEEE Std 1516-2010, IEEE Std 1516.1-

2010, and IEEE Std 1516.2-2010, www.ieee.org,

August 2010.

[4] Simulation Exploration Experience (SEE)

project, [online], available

at http://www.exploresim.com/

[5] SISO BPDSP, www.sisostds.org

[6] E. Gamma, R. Helm, R. Johnson, and J.

Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA,

USA, 1995.

[7] SISO Space Reference FOM, Draft of May2017

[8] Daniel E. Dexter, Tony E. Varesic “Integrated

Mission Simulation (IMSim). Multiphase

Initialization Design with Late Joiners, Rejoiners

and Federation Save & Restore.”, NASA

Simulation and Graphics Branch (ER7) Software,

Robotics and Simulation Division (ER)

Engineering Directorate, Lyndon B. Johnson

Space Center, May 7, 2015

[9] SISO: “SISO-STD-001.1-2015, Standard for

Real-time Platform Reference Federation Object

Model (RPR FOM)”, www.sisostds.org,

September 2015.

[10] Björn Möller et al.: “RPR FOM 2.0: A

Federation Object Model for Defense

Simulations”, 2014 Fall Simulation

Interoperability Workshop, (paper 14F-SIW-

039), Orlando, FL, 2014.

[11] IEEE: “IEEE standard for, Distributed Interactive

Simulation – Application Protocols”, IEEE Std

1278.1-2012, www.ieee.org, 2012

Author Biographies

BJÖRN MÖLLER is the Vice President and co-

founder of Pitch Technologies. He leads the

development of Pitch’s products. He has more than

twenty-five years of experience in high-tech R&D

companies, with an international profile in areas such

as modeling and simulation, artificial intelligence and

web-based collaboration. Björn Möller holds a M.Sc.

in Computer Science and Technology after studies at

Linköping University, Sweden, and Imperial College,

London. He is currently serving as the chair of the

Space FOM Product Development group and the vice

chair of the SISO HLA Evolved Product Development

Group. He was recently the chair of the SISO RPR

FOM Product Development Group.

EDWIN “ZACK” CRUES has over 25 years of

professional experience in developing spacecraft

simulation and simulation technologies. Zack is currently

a member of the Simulation and Graphics branch at

NASA’s Johnson Space Center in Houston, Texas where

he leads the development of simulation technologies and

the application of those technologies in the simulation of

NASAs current and proposed crewed spacecraft. He has

developed hundreds of models and simulations for NASA

spacecraft including Shuttle, International Space Station

(ISS), Orion, Altair, Morpheus and the Multi-Mission

Space Exploration Vehicle. Zack’s recent research focus

has been developing and applying distributed computation

and distributed simulation technologies. This includes a

large-scale distributed simulation of NASAs proposed

human space exploration missions. Zack also has

international experience in developing simulations of

European Space Agency launch systems and Japanese

Aerospace Exploration Agency spacecraft.

DAN DEXTER is an engineer in the Simulation &

Graphics Branch in the Software, Robotics and

Simulation Division of the Engineering Directorate at

NASA’s Johnson Space Center in Houston, Texas. He has

over 22 years of software and simulation development

experience ranging from nonlinear signal and image

processing, distributed supercomputing, and flight related

software to national and international distributed

simulations. He is the principal developer of the

TrickHLA software package, a NASA developed

middleware software package for using the HLA

distributed simulation standard with NASA standard

M&S tools.

ALFREDO GARRO is an Associate Professor of

Computer and Systems Engineering at the Department of

Informatics, Modeling, Electronics and Systems

Engineering (DIMES) of the University of Calabria

(Italy). He is currently Visiting Professor (from January to

October 2016) at NASA Johnson Space Center (JSC),

working with the Software, Robotics, and Simulation

Division (ER). His main research interests include:

Modeling and Simulation, Systems and Software

Engineering, Reliability Engineering. His list of

publications contains about 100 papers published in

international journals, books and proceedings of

international and national conferences. He is vice chair of

the SISO Space Reference FOM Product Development

Group. He is the Technical Director of the “Italian

Chapter” of INCOSE.

MICHAEL MADDEN is the Chief Scientist for the

Simulation Development and Analysis Branch at NASA

Langley Research Center. He holds a B.S. and M.S.

degree in Aerospace Engineering from Virginia Tech. Mr.

Madden has 24 years of experience developing

simulations of wide variety of aerospace vehicles for

human-in-the-loop, hardware-in-the-loop, and distributed

applications. His areas of interests include physical

modeling of vehicles and their operating environments,

simulation and real-time software architectures, and

avionics software for both aircraft and spacecraft.

ANTON SKURATOVSKIY is a senior software

engineer with RusBITech. After his 10-year service in the

Air Force, he worked for D-3-Group and GTI6 companies

since 1999 participating in research activities focused on

using distributed simulation technologies in aerospace

applications including support to ATV-ISS simulation and

ground controller training. Currently at RusBITech he is

working on both HLA and DDS middleware.

