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ABSTRACT: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference 

Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and 

discusses the opportunity for reuse in other domains. 

 

The focus of this first version of the standard is execution control, time management and coordinate systems, well-

known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is 

the coordinated start-up process. This process contains a number of steps, including checking of required federates, 

handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. 

 

An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze 

mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High 

Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps 

is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. 

 

For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a 

position and orientation related to a parent reference frame. This makes it possible for federates to perform 

calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar 

coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in 

one reference frame have an unambiguous relationship to a coordinate in another reference frame. 

 

While the Space Reference FOM is originally being developed for Space operations, the authors believe that many 

parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, 

and require high fidelity and repeatability. 



 

1. Introduction 

Previous papers [1,2] provide a background on the 

importance of distributed simulation for the space 

domain, as well as examples of a number of High Level 

architecture (HLA) [3] federations in the Space domain, 

from the late 90’s up till today.  

Continued discussions in the Simulation Interoperability 

Standards Organization (SISO) space simulation 

community led to the initiative to start up a group to 

develop a standard that could serve as a foundation for 

better a priori interoperability between space simulations.  

A product nomination for a Space Reference Federation 

Object Model (FOM) was composed, submitted to the 

SISO Standards Activities Committee (SAC), and 

ultimately approved by the SAC for development. A 

Product Development Group (PDG) was formed to 

develop the Space Reference FOM standard. 

1.1. Progress of the standards development 

The initial Space Reference FOM PDG meeting was held 

at the SISO Fall 2015 Simulation Innovation Workshop 

(SIW) in September 2015. Since this initial PDG meeting, 

more than 60 meetings have been held. Space Reference 

FOM PDG members include government, industry and 

academia. The group has provided draft versions of the 

standard to the international university outreach program 

Simulation Exploration Experience (SEE, previously 

SISO “Smackdown”) [4].  

As of September 2017, a first, almost complete draft 

exists. The next step is test and verification of the draft. 

Three different teams in the drafting group are developing 

three different implementations of the core components of 

the Space Reference FOM, which will then be cross-

tested in different combinations. After the tests, the 

standard will go through formal balloting, according the 

SISO Balloted Products Development & Support Process 

(BPDSP) [5]. The target is to release the final standard in 

2018. 

1.2. The standard broken down into design patterns 

The standard provides detailed solutions to a number of 

key requirements in a space federation. In this paper, 

these solutions are presented in a generic form. This 

makes it easier to explain their essence. 

The approach chosen is known as “Design patterns” [6] in 

the software community. A design pattern can be 

described as a “general reusable solution to a commonly 

occurring problem within a given context” (Wikipedia). 

1.3. Federate Roles 

Several of these patterns depend on the three federate 

roles that are defined in the Space Reference FOM. They 

are: 

1. The Master role, that controls the initialization 

and execution of the federation 

2. The Pacer role, that manages the advancement 

of scenario time in relationship to the real time 

3. The Root Reference Frame Publisher role, 

that publishes the root of the tree of reference 

frames, as described later in this paper. 

The patterns are grouped into three types:  

1. Execution Control design patterns, where the 

federates and the Master are important 

2. Time Management design patterns, where the 

Pacer and the Master are important. 

3. Spatial design patterns, where the Root 

Reference Frame Publisher and the Master are 

important 

All diagrams in this paper are based on the June 2017 

draft version of the Space Reference FOM [7], which 

contains diagrams with considerably more technical 

detail. These solutions are based on lessons learned from 

real life federations. Many of them are derived from the 

Integrated Mission Simulation document [8] by NASA.  

2. Execution Control Design Patterns 

This section describes the six main patterns that are used 

for initialization and execution control in the Space 

Reference FOM. They are described in the order that they 

are typically executed in a federate.  

The patterns are: 

1. Removal of orphaned Federation Execution 

2. Centralized checking of required federates 

3. Detection if a federate is a late joiner 

4. Global configuration data in singleton instance 

5. Synchronized multi-phase initialization 

6. Central execution control with transition requests 

Since there are many federates executing in parallel, these 

patterns may be running in parallel in a federation 

execution. As an example, several federates may be 

performing a synchronized multi-phase initialization, 

while a new federate detects if it is a late joiner or not. 



 

2.1. Removal of orphaned Federation Execution 

Requirement: A federation needs to ensure that it 

executes in a clean federation execution when it starts. If 

not, the federation execution may contain orphaned object 

instances, or may have been advanced in HLA logical 

time. Such a federation execution typically exists if 

federates in a previous execution did not shut down 

correctly. 

 

 

Figure 1: Removal of Orphaned Federation 

Solution: After connecting to the RTI, a federate 

immediately destroys the federation execution. It then 

creates and joins the federation execution. In case the 

federation doesn’t exist anymore, since another federate 

just destroyed it, the federate needs to go back and try to 

create it. 

Discussion: Note how this pattern needs to handle the 

case when several federates are trying to join at almost the 

same time and may potentially destroy each other’s 

federation executions. This pattern also relies on the 

property that a federation execution cannot be destroyed, 

once a federate has successfully joined it. 

2.2. Centralized checking of required federates 

Requirement: a certain set of federates need to be present 

before the simulation can start. This may be for technical 

reasons, or to be able to perform a meaningful simulation. 

 

Figure 2: Check for required Federates 

Solution: a designated federate is used, in this case the 

federate with the Master role. It has access to a list of the 

federate names of the required federates, for example in a 

configuration file. After joining the federation execution, 

it uses the HLA Management Object Model (MOM) to 

monitor which federates that have joined. When all 

required federates have joined, it registers the 

synchronization point “Initialization Started”. 

Any other federate, that may potentially be a required 

federate, needs to perform the following sequence. After 

joining, it checks for the synchronization point 

“Initialization Started”. If this synchronization point 

hasn’t been announced, the federate enters a wait loop, 

where it periodically checks if “Initialization Started” has 

been announced. When it has been announced the 

federate will start the main initialization. 

Note that this pattern is extended later in the next pattern. 

Discussion: In this pattern, the availability of a 

synchronization point is used as a global flag. The pattern 

doesn’t require any particular start order between the 

Master federate and the required federates. The pattern 

will, to some degree, ensure that all required federates 

start the initialization process at the same time. 

2.3. Detection if a federate is a late joiner 

Requirement: This pattern applies to a federate that may 

execute as either an early joiner or a late joiner. Late 

joiner, in this context, means that the initialization has 

already been completed.  In case it joins a federation early 

it needs to complete certain initialization steps. In case it 

joins late, different steps may need to be performed. 
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Figure 3: Detection if a federate is a late joiner 

Solution: A designated federate, in this case the federate 

with the Master role, registers the synchronization point 

“Initialization Completed”. If this synchronization point 

hasn’t been announced, the federate will act as an early 

joiner and go through the initialization steps. Otherwise it 

will act as a late joiner and will go through the late joiner 

steps. 

Discussion: This pattern also uses the availability of a 

synchronization point as a global flag. Note that this 

pattern doesn’t guarantee that an early joiner federate 

enters the initialization steps in sync with other federates.  

2.4. Global configuration data in singleton instance 

Requirement: A federation needs to share a number of 

global properties, for example static data, such as epoch 

or references to important object instances or dynamic 

data, such as execution state. Storing static data in 

configuration files for each federate, introduces a risk of 

mismatching data. 

 

Figure 4: Shared configuration data in singleton 

Solution: A dedicated federate registers an object 

instance of a particular object class with a specific HLA 

object instance name. The dedicated federate sets the 

attribute values. For static data, this may be based on 

configuration data provided to the dedicated federate, or 

by discovering data in the federation. For dynamic data, 

other federates may send interactions to provide or 

request data, as shown later in this paper. Other federates 

will get the configuration data by subscribing to the 

particular object class. 

Discussion: In the Space Reference FOM, the federate 

with the Master role registers an object instance called 

“ExCO”, which stands for Execution Configuration 

Object. It contains information like the Epoch, current 

run/freeze mode, and name of the root reference frame. 

2.5. Synchronized multi-phase initialization 

Requirement: Before starting the main execution, 

federates need to exchange initial data. Some of the data 

cannot be calculated before some other data has been 

provided by some other federate. To be able to control 

and verify that all data has been provided, the federation 

needs to go through a specified set of initialization phases. 

 

Figure 5: Multi-phase Initialization 

Solution: A number of named phases have been agreed 

upon in advance, each phase with corresponding named 

synchronization point. In the example in Figure 5 there 

are two phases called A and B. A dedicated federate role 

registers these synchronization points. It then achieves 

them, one by one. After achieving a synchronization 
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point, it waits for the federation to be synchronized, 

before achieving the next synchronization point. 

Participating federates will perform the following for each 

phase: first send out initialization data, then achieve the 

synchronization point and finally wait for the federation 

being synchronized. 

Discussion: In the Space Reference FOM, the Master 

federate manages the multi-phase initialization. One 

advantage of this pattern is that it makes it easier to verify 

and potentially troubleshoot the initialization. 

2.6. Central execution control with transition 

requests 

Requirement: Federates need to transition between 

initializing mode, running mode, freeze mode and 

shutdown in a controlled manner. Any federate may need 

to request a mode transition. Since federates may use 

different time steps, or may need some time to transition, 

the transition may not happen immediately. Late joining 

federates must perform a required transition, even if the 

transition was requested before a federate joined. 

 

Figure 6: Requesting mode transitions 

Solution: A global object instance, in this case the 

Execution Configuration Object (ExCO), stores the 

current mode, as well as the next mode, together with the 

time for the next mode. Any federate can make requests 

for mode transitions, as shown in Figure 6. The Master 

federate will calculate an acceptable time for the mode 

transition and store this in the ExCO.  

 

Figure 7: Execution Modes and synchronization 

Mode transitions to Freeze or Run start with achieving a 

synchronization point, in order to synchronize federates 

that take different time to transition, as shown in Figure 7. 

Mode transitions to Shutdown do not use a 

synchronization point. Note that it is possible for the 

federation to go directly to shutdown, if a federate fails 

during initialization. 

All federates that produce data or have HLA Time 

Regulation turned on, must transition to the next state as 

specified in the ExCO. Data loggers and visualizers may 

not always take part in the state transitions. 

Interaction and Attribute Updates related to requesting 

and performing the state changes need to be sent using 

Receive Order in a federation using HLA Time 

Management 

Discussion: Transitioning to shutdown needs special 

consideration in this pattern. An operator may require 

going to shutdown at any point in time, for example when 

a federate becomes unresponsive or faulty in other ways. 

A synchronization point cannot be used in this case, since 

unresponsive federates may never achieve a 

synchronization point, thus preventing the entire 

federation from shutting down. 

3. Time Management Design Patterns 

This section describes two patterns for managing time. 

The Space Reference FOM describes several time 

concepts, where some of the most important are: 

Scenario Time is the conceptual time associated with the 

physical systems that are modeled in the federates. 

HLA Logical Time is the time used by HLA to time-

stamp and order messages and to regulate time advance. 

The HLA logical time starts at zero. It can be related to 

the scenario time by providing an Epoch (starting point). 
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Physical time or “real world time” in the Space 

Reference FOM is based on the classical Newtonian 

concept of absolute time, which is a simplification 

compared to the relativistic space-time concept.  

The patterns are: 

1. Constant but potentially different federate time 

steps 

2. Mix of paced scenario time and physical time 

The time management patterns are closely related to the 

execution control patterns, in particular the transition 

requests between the Run, Freeze and Shutdown modes. 

Here they are presented standalone, but to get the exact 

details, the reader is encouraged to read the Space 

Reference FOM.  

3.1. Constant but potentially different federate time 

steps 

Requirement: A number of federates that use time-

stepped simulation need to execute together in a 

federation. The time-steps are constant but may be 

different between federates. The federation needs to have 

well-defined points in time when the federation wide state 

is complete and consistent, for example for check-

pointing, snap-shooting or freeze of the federation.  

 

Figure 8: Federate and Federation time steps 

Description: A common Federation Time Step is agreed 

upon. The federate with the pacing role shall advance 

time using this time step, as shown in Figure 8. Any other 

federate shall advance time using a time step, called the 

Federate Time Step, that shall be an integer multiple n>=1 

of the Federation Time Step.  

Each federate has a native time step of its internal physics 

model, here called the Simulation Time Step. The 

Federate Time Step shall be an integer multiple n>=1 of 

the Simulation Time Step. 

The pattern guarantees that there will be repeated HLA 

Logical times to which all federates will be granted, here 

called Common Time Boundaries. These can be 

calculated as the least common denominator of all 

Federate Time Steps. 

Discussion: Many, but not all, physics simulations have 

configurable time steps, which facilitates the choice of 

federation time step. If one federate is less flexible in the 

choice of time step, this may strongly influence the choice 

of time step. The more important aspect, when selecting 

time steps for physical models, may be the resolution and 

fidelity that is required for a particular simulation 

purpose. 

3.2. Mix of paced scenario time and physical time 

Requirement: An HLA federation can accommodate 

both simulations running in soft real-time and simulators 

that use central timing equipment (CTE) (e.g., a GPS 

timing board) for hard real-time synchronization. While 

the HLA federation is capable of going to freeze, and 

restarting, the simulations that synchronize using the 

CTE, must be able to handle these mode transitions.  

 

Figure 9: CTE time line and Scenario time line 

Description: The federation is regarded as having two 

time lines, the scenario time-line and the CTE time-line as 

shown in Figure 9. These are connected in Run mode but 

disconnected at Freeze mode. The federate with the 

Master is responsible for connecting them when entering 

Run mode using a separate CTE epoch, which specifies 

the offset between the CTE time and the scenario time.  
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Figure 10: Advancing scenario time vs CTE time 

In Run mode, each CTE-based federate will perform a 

Time Advance Request, wait for the next CTE time and 

then check that a Time Advance Grant has been received, 

before simulating the next time step as shown in Figure 

10. 

Discussion: This pattern requires that the Master is also 

required to be connected to the CTE. 

4. Spatial Design Patterns 

This section describes the patterns for handling spatial 

information. Space simulations may include assets that 

operate on or about celestial bodies other than the Earth.  

Therefore, there is no common reference frame of 

convenience for all space simulations.  Moreover, when 

modeling operations that span multiple celestial bodies, 

each federate may prefer to operate an asset in a local 

reference frame but the federation must relate those 

reference frames to each other using a common parent 

reference frame in order enable interaction.  For example, 

a simulation of a ground station on the Earth sending 

commands to a spacecraft orbiting Mars may simulate the 

ground station in an Earth-centered frame and the 

spacecraft in a Mars-centered frame but relates these two 

frames using a Solar System Barycenter frame.  The 

Space Reference FOM accomplishes this using two 

patterns:   

1. Reference frames are explicitly specified using 

object instances of a ReferenceFrame object 

2. Reference frames are organized using a 

replaceable and extendable tree of 

ReferenceFrame objects 

4.1. Reference Frames explicitly specified using 

object instances 

Requirement: Different models in a federation need to 

perform calculations related to positions that are 

geographically dispersed. It is conceptually and 

computationally inconvenient to perform all calculations 

using the same coordinate system.  

 

Figure 11: Reference Frame 

Description: Create one object instance for each 

reference frame that is required.  Each ReferenceFrame is 

identified using a name.  The Space Reference FOM 

defines a syntax for creating unambiguous reference 

frame names. Each ReferenceFrame object specifies a 

parent ReferenceFrame by name and the 

ReferenceFrame’s translational state (position and 

velocity) and rotational state (attitude and rotation rate) 

relative to the parent ReferenceFrame. Quaternions are 

used to describe orientation to avoid the singularities of 

Euler coordinates.  ReferenceFrames also specify the 

Terrestrial Time (TT) congruent with the translational and 

rotational state. 

Discussion: Many other FOMs use an implicit coordinate 

system, for example geodetic coordinates (latitude, 

longitude, and altitude). This becomes very inconvenient 

if you, for example, were to simulate the behavior of a 

rover on the surface of the moon using such Earth-based 

coordinates.  

Check	that	Time	

Advance	Granted	
has	been	received

Simulate	this	

time	step

Time	Advance	
Request

Wait	for	next	CTE	

time	

Go	to	Run	

mode

Mode

Freeze,

Shutdown

Run

Other	

Modes

Calculate	Scenario	

time	to	CTE	offset

HLAobjectRoot

ReferenceFrame

name : HLAunicodeString

parent_name : HLAunicodeString

state : SpaceTimeCoordinateState

ReferenceFrameTranslation

position : PositionVector

velocity : VelocityVector

ReferenceFrameRotation

attitude_quaternion : AttitudeQuaternion

angular_velcoity : AngularVelocityVector

SpaceTimeCoordinateState

time : Time

translational_state : ReferenceFrameTranslation

rotational_state : ReferenceFrameRotation



 

4.2. Replaceable and Extendable Tree of Reference 

Frames 

Requirement: Need to translate coordinates between 

several different reference frames in order to determine 

spatial relationships between entities using different 

coordinate systems. Need to be able to switch between 

different reference frames during execution, for most 

convenient computations. Need to be able to use different 

sets of reference frames for different scenarios. Need to 

extend common and standardized reference frames with 

custom reference frames. 

 

Figure 12: Tree of Coordinate Systems TBD 

Description: Structure the reference frames into one 

single directed acyclic graph (i.e. a tree). Each reference 

frame specifies its translational and rotational states with 

respect to the parent reference frame, except for the root. 

Translation between any two reference frames can be 

performed by traversing the graph to a common parent. 

New reference frames can be dynamically added into the 

tree as needed. The actual tree may be different between 

different scenarios.  

To assure that all federates agree on the relative states 

between reference frames, a specialized federate 

calculates and publishes the translational and rotational 

states of the reference frames in the tree. The Space 

reference FOM requires that a designated Root Reference 

Frame Publisher exists in any federation. A reference to 

the root reference frame is stored in the ExCO object. 

Discussion: One advantage of this pattern is the 

opportunity to develop and reuse federates that simulate, 

for example, the bodies of the solar system. Alternate 

federates may provide different models with different 

fidelity. One disadvantage is the calculations needed to 

convert between different reference frames. However, in 

many space federates, this may always be required. 

5. Discussion 

5.1. Simpler and more advanced versions of the 

patterns 

The initialization patterns described in this paper are 

available in three different versions: 

1. This paper that presents these patterns “as simple as 

possible, but not simpler”. This makes the principles 

easier to understand. 

2. The Space Reference FOM that provides the same 

patterns with all details that are necessary to 

implement them, in particular with the HLA service 

calls described. Anybody that wishes to implement a 

federate compliant with the Space Reference FOM 

should study these carefully. 

3. The IMSim document that presents even more 

extended versions, also including check pointing. 

This is interesting background reading for the 

advanced developer. Note that there are a number of 

differences between these patterns and the Space 

Reference FOM. 

5.2. Comparison to defense training federations 

The most widely used FOM in the defense training 

domain is the SISO Real-time Platform Reference FOM 

[9,10]. There are major differences between the Space 

Reference FOM and RPR FOM. Most of them are due to 

the fact that the RPR FOM replicates the behavior and 

information model of the earlier DIS [11] standard (which 

is based on the even older SIMNET framework) and 

seeks to maintain backwards compatibility. The Space 

Reference FOM represents a view of simulation 

interoperability that is at least one or two decades newer. 

Some key differences are: 

Reliable data exchange. The information exchange in the 

Space Reference FOM uses reliable communication, as 

opposed to best effort transportation in the RPR FOM. 

Causality and repeatability. The use of time managed 

delivery of updates and federate time advance in the 

Space Reference FOM guarantees correct delivery order 

between federates, which is required for causality and 

repeatability. Not only may RPR FOM updates be 

delivered in the past of a federates logical time, it may 

even be lost. 

Well-managed set of federates. The required federates in 

a Space FOM federation are explicitly checked during 

startup. No corresponding mechanism is specified in the 

RPR FOM. 

Synchronization. Federates may take some time to go 

between run, freeze and shutdown. The Space Reference 

FOM guarantees that no simulation starts before all 

systems are ready. In the RPR FOM, all federates can be 

seen as “free-running” and starting their simulation 

independently after a freeze. Coordinated shutdown isn’t 

supported. 
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Support for soft real-time and Central Timing 

Equipment. The Space Reference FOM allows for any 

mix of soft real-time synchronized and central timing 

equipment. The RPR FOM is commonly used with GPS 

time or similar for time stamping, but there is no 

coordination between the GPS time and the delivery of 

updates with such time stamps.  

Use of multiple reference frames. The Space Reference 

FOM supports any number of reference frames, together 

with a system for translation between them. This enables 

simulations to use reference frames that are 

computationally convenient for them. The RPR FOM 

implicitly use geocentric coordinates, which may work for 

Earth centric simulations, but are inconvenient for space 

simulation. Note that the RPR FOM supports Relative 

Spatial attributes for relating entities to other “parent” 

entities. 

6. Conclusions  

A number of design patterns and principles from the 

Space Reference FOM have been presented. The patterns 

relate to three areas: execution control, time management 

and spatial design with reference frames. All simulations 

in the space domain need to implement solutions for these 

areas, even for running standalone. When several space 

simulations are federated, handling of initialization, time 

and space are the fundamental areas that need to be 

addressed, before higher level processes, like space travel, 

can be addressed. This is why these areas are the focus of 

the first version of the Space Reference FOM. 

6.1. Sharing knowledge inside and outside of the 

Space simulation community 

The main purpose of the paper is to introduce the patterns 

and design principles to developers of distributed 

simulation in the space domain. The Space Reference 

FOM is already getting attention from developers and 

organizations outside of the current SISO PDG, which is 

promising. A prerelease of the Space Reference FOM was 

also used in the SEE 2017 university outreach program. 

A secondary purpose is to share them with simulation 

developers from other domains. Through SISO and other 

organization we can exchange ideas, learn from each 

other and advance the state of the art. 
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