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To mitigate dust problems during launch/landing operations in lunar and Mars missions, 

it is desired to build solid pads on the surface. Recently, strong tiles have been fabricated from 

lunar regolith simulants using high-temperature sintering. The present work investigates 

combustion joining of these tiles through the use of exothermic intermetallic reactions. 

Specifically, nickel/aluminum (1:1 mole ratio) mixture was placed in a gap between the tiles 

sintered from JSC-1A lunar regolith simulant. Upon ignition by a laser, a self-sustained 

propagation of the combustion front over the mixture occurred. Joining was improved with 

increasing the tile thickness from 6.3 mm to 12.7 mm. The temperatures sufficient for melting 

the glass phase of JSC-1A were recorded for 12.7-mm tiles, which explains the observed better 

joining.  

I. Introduction 

ECENT interest in manned lunar and Martian landings has led to new research in the area of in situ resource 

utilization (ISRU) as a way of reducing transportation costs. It is hoped that native resources of the Moon and 

Mars could be used to provide propellants, life support, and construction materials for the missions. In particular, 

ISRU approaches could be useful for the construction of launch/landing pads.  

Previous lunar missions have experienced notable and potentially dangerous rocket plume effects on surface 

regolith during landing and takeoff.1 To mitigate the dust problems, it is desired to build a solid, flat pad in a location 

that has repeated launch and landings near any permanent infrastructure of an outpost.2 Obviously, it would be 

attractive to use local regolith for this purpose. To consolidate lunar/Martian regolith simulants, various methods have 

been proposed and tested, including incorporation of regolith into thermoplastics, 2-5 high-temperature sintering, 6-8 

and thermite-type reactions with aluminum9-12 and magnesium.13-17 Among them, sintering appears to be a robust, 

mature technology provided there is enough energy for heating the regolith to the required high temperature. Recently, 

the Granular Mechanics and Regolith Operations Lab at Kennedy Space Center has developed a sintering technique 

that converts lunar regolith simulants into ceramic tiles that are sufficiently strong and remain stable after being 

exposed to high-temperature gas flow in simulated thruster testing.18,19  

To build reliable launch/landing pads from regolith tiles, connecting these tiles together is desirable. One promising 

approach is based on the use of self-propagating high temperature synthesis (SHS), which has been used for synthesis 

of numerous ceramic and other materials.20,21 The SHS process may occur if the initial materials (e.g., powders) are 

able to interact exothermally and generate temperatures that are high enough for a self-sustained combustion, leading 

to the formation of the desired materials. The process is driven by the released chemical energy, with no external 

energy input needed, except for a small amount for the process initiation (ignition). One of various SHS techniques is 

the so-called combustion joining, where a mixture of reactive powders (usually, thermites or intermetallics) is placed 

in the gap between two parts and ignited, leading to the formation of a strong weld between the two parts.21,22   
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The present work aims to apply the combustion joining technique for regolith tiles. This involves the use of reactive 

powders mixed and placed between the tiles to be joined. Upon ignition, the combustion front propagates over the 

mixture, also affecting the edges of the tiles so they will merge with the combustion product in the gap, forming a 

single piece of a solid material after cooling. Because regolith for the tiles, and potentially at least part of the joining 

powder, would be available in situ on the Moon or Mars, the mass of materials brought from Earth would be 

dramatically reduced, thus increasing the chance of mission success, both technologically and financially.   

It is important to select a suitable reactive mixture for combustion joining of regolith tiles. The mixture should be 

sufficiently exothermic to generate combustion temperatures that will affect (e.g., melt) the tile edges so that they will 

easily merge with the formed combustion products. Lunar and Martian regolith simulants consist of mineral phases 

that melt at very high temperatures. However, it has been shown that JSC-1A lunar regolith simulant includes a glass 

phase that melts at 1120 °C.23 Based on this, it has been hypothesized that reaching this temperature may be sufficient 

for joining the regolith tiles.  

Many thermite and intermetallic mixtures generate much higher temperatures. Thermites, however, produce at 

least two phases (metal and oxide), which usually separate from each other because of gravity.14 This may worsen the 

properties of the weld. From this point of view, intermetallic mixtures appear to be more promising as they may form 

a single-phase product, thus eliminating the phase separation problem. 

In the present work, a mixture of nickel and aluminum powders was selected for the experiments. Thermodynamic 

calculations with THERMO software24 for a stoichiometric (1:1 mole ratio) nickel/aluminum mixture at 1 atm pressure 

have predicted an adiabatic flame temperature of 1912 K (1639 °C) and formation of a single intermetallic phase NiAl, 

which is 42% liquid and 58% solid at this temperature. Based on these calculations, it is expected that combustion of 

this mixture in the gap between the tiles will melt the edges of JSC-1A tiles and form a strong bond between the 

formed nickel aluminide and the adjacent edges of the tiles. Note that aluminum could be recovered from lunar and 

Martian regolith.   

The objective of the present work was to verify the feasibility of combustion joining of regolith tiles using 

nickel/aluminum mixture. Taking into account the lunar and Martian environments, the experiments were conducted 

at reduced pressure (10-60 mbar). 

 

II. Experimental 

The tiles were fabricated by sintering JSC-1A lunar regolith simulant in a furnace heated to 1125°C.  They were 

approximately 10 cm x 10 cm squares, with thicknesses of 6.3 mm and 12.7 mm.  For the experiments, the tiles were 

cut by a saw to 32 mm x 32 mm squares or 32 mm x 64 mm rectangles, while maintaining their original thicknesses.   

A three-dimensional inversion kinematics tumbler mixer (Inversina 2L, Bioengineering) was used for mixing Al 

(3.0-4.5 µm, 97.5% pure, Alfa Aesar) and Ni powders (3-7 µm, 99.9% pure, Alfa Aesar). The powders were mixed in 

the stoichiometric proportion (1:1 mole ratio). Mixing was conducted in an argon environment for 60 min.   

Either four square samples or two rectangular samples were placed into a special holder (Fig. 1), with stainless 

steel pins used to establish pre-determined experimental gaps of 2, 4, and 6 mm. The gaps were filled with the mixture 

of Al and Ni powders using a lab spatula. To ensure the same density of the powder layer in the gap, the holder was 

placed onto a vibrating shaker (Gilson SS-28 Vibra Pad) and the vibrations were used to uniformly settle the powder 

in the tile gaps.   

The combustion experiments were conducted in a laser ignition facility (Fig. 2), previously used for studies of gas-

generating mixtures.25-27 This facility includes a windowed stainless steel chamber (volume: 11.35 L), equipped with 

a pressure transducer and connected to a compressed argon cylinder and a vacuum pump. An infrared beam of a CO2 

laser (Synrad Firestar ti-60) enters the chamber through a ZnSe window in the lid. The power of the CO2 laser beam 

is controlled by a laser controller (Synrad UC-2000), while the duration of the laser pulse is set using LabVIEW 

(National Instruments) software connected to the laser controller. A custom-made electronic scheme based on a 

photoresistor turns off the laser pulse upon the ignition.  
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Fig. 1. Holder with tiles. Fig. 2. Laser ignition facility. 

 

During the experiment, the holder with the tiles and the mixture was placed inside the chamber and the laser beam 

was aligned with the middle of the gap between the two tiles or with the center of the cross formed by the gaps if four 

tiles are tested (see Fig. 1). For this to be done, a red beam of a laser diode pointer (Synrad), pre-aligned with the 

infrared beam of the CO2 laser, was used. The chamber was then evacuated and filled with ultra-high purity argon gas. 

The experiments were conducted at pressures 10 mbar and 60 mbar. Thermocouples (95%W/5%Re−74%W/26%Re, 

type C, wire diameter: 76.2 µm, Omega Engineering) were used to measure the temperature of the mixture during 

combustion.   

 

III. Results and Discussion 

In experiments with both two and four tiles, as well as with all tile thicknesses and experimental gaps, upon 

ignition, the combustion front propagated steadily over the mixture in the gap between the tiles. 

Analysis of the products produced mixed results. In the test with four 6.3-mm thick titles, the formed solid product 

did not join the tiles. Although it retained its shape after separating from the tiles, only charring was observed on their 

edges (Fig. 2).   

Better results were obtained with thicker tiles. Figure 3 shows that four 12.7-mm thick tiles remained joined after 

cooling (the light grey powder seen on the tile surfaces spread during shaking and remained intact during combustion 

of the mixture). The joint was strong enough to hold the weight of the tiles. Apparently, successful joining in the 

experiments with thicker tiles is explained by a relatively smaller effect of heat losses from the tile surfaces and hence 

a higher combustion temperature.   

 

  
Fig. 2. Separation of 6.3-mm tiles after cooling. Fig. 3. Joined 12.7-mm tiles. 
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 Thermocouple measurements were conducted for 12.7-mm tiles. The configuration with two tiles was used and 

the distance between them was 6 mm. In one test (conducted at 60 mbar pressure), two thermocouples were placed 

approximately in the center of the powder fill, away from the laser ignition point. They recorded the maximum 

temperatures 1384 °C and 1407°C. For illustration, Figure 4 shows the time variation of the electromotive force (emf), 

generated by one of these thermocouples. Since a Type C thermocouple has a highly non-linear temperature 

characteristic, the curve shows the measured emf of the hot junction relative to 0 °C, while the dashed gridlines 

correspond to the standard temperature-emf relationship for a Type C thermocouple (ASTM E-230).  

 

 
 

Fig. 4. Thermocouple record during combustion with temperature correlations.   

 

 

 In another experiment (conducted at 10 mbar pressure), the thermocouple was placed on the edge of the powder, 

next to the tile. The maximum recorded temperature was 1235 °C in this case. It is seen that in the case of 12.7-mm 

tiles, the achieved temperatures were higher than 1120 °C, the melting point of the glass phase in JSC-1A composition, 

which explains the observed joining of the tiles. 

 

IV. Conclusions and Future Work 

Combustion joining of ceramic tiles sintered from JSC-1A lunar regolith simulant has been demonstrated. It has 

been shown that Ni/Al mixture (1:1 mole ratio) placed in a gap between two regolith tiles, upon ignition by a laser, 

exhibits a self-sustained propagation of the combustion front. Joining was improved with increasing the tile thickness 

from 6.3 mm to 12.7 mm, apparently because of decreased heat losses and higher temperatures. The measured 

maximum temperature was close to 1400 °C in the center of the gap and less by about 150 °C near the tile edge, i.e., 

higher than the melting point of the glass phase in JSC-1A composition. 

The future work includes studies on the effects of the gap thickness on the combustion stability, the front velocity, 

and the strength of the joint. Video recording and thermocouple measurements will be used for the front velocity 

measurements. To simulate the Martian environments, experiments will also be conducted in CO2. The obtained joints 
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will be characterized using X-ray diffraction analysis (Bruker D8 Discover XRD) as well as scanning electron 

microscopy and energy dispersive X-ray spectroscopy (SEM, Hitachi S-4800). Mechanical properties of the joint will 

also be examined using available facilities. 

Also, the specific heats and thermal diffusivities of the tiles will be measured using a differential scanning 

calorimeter (Netzsch DSC 404 F1 Pegasus) and a laser flash apparatus (Netzsch LFA 457 MicroFlash), respectively. 

These thermophysical properties will be used for modeling the combustion wave propagation over the reactive mixture 

in the gap between the regolith tiles.    
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