
Implementation of a Space Communications
Cognitive Engine

Timothy M. Hackett∗, Sven G. Bilén∗, Paulo Victor R. Ferreira†, Alexander M. Wyglinski†, and Richard C. Reinhart‡
∗School of Electrical Engineering and Computer Science

The Pennsylvania State University, University Park, Pennsylvania 16801
Email: tmh5344@psu.edu, sbilen@psu.edu

†Department of Electrical Engineering & Computer Engineering
Worcester Polytechnic Institute, Worcester, MA 01609, USA

Email: prferreira@wpi.edu, alexw@wpi.edu
‡ NASA John H. Glenn Research Center, Cleveland, Ohio 44135

Email: richard.c.reinhart@nasa.gov

Abstract—Although communications-based cognitive engines
have been proposed, very few have been implemented in a
full system, especially in a space communications system. In
this paper, we detail the implementation of a multi-objective
reinforcement-learning algorithm and deep artificial neural net-
works for the use as a radio-resource-allocation controller. The
modular software architecture presented encourages re-use and
easy modification for trying different algorithms. Various trade
studies involved with the system implementation and integration
are discussed. These include the choice of software libraries
that provide platform flexibility and promote reusability, choices
regarding the deployment of this cognitive engine within a
system architecture using the DVB-S2 standard and commercial
hardware, and constraints placed on the cognitive engine caused
by real-world radio constraints. The implemented radio-resource-
allocation-management controller was then integrated with the
larger space–ground system developed by NASA Glenn Research
Center (GRC).

Keywords—cognitive engine; neural networks; reinforce-
ment learning; SCaN Testbed; space communications; ma-
chine learning

I. INTRODUCTION

With the continual increased computing performance with
each new generation of general purpose processors (GPPs)
and field programmable gate arrays (FPGAs), the usage of
software-defined radios (SDRs) has become increasingly fea-
sible to use in real space systems. As a result, proposed
advanced algorithms for communications, such as cognitive
algorithms, can now be deployed and tested.

Onboard the International Space Station (ISS), NASA cur-
rently has three operational SDRs on the Space Communi-
cations and Navigation (SCaN) Testbed. NASA is interested
in determining the applicability of SDRs for their future
missions by considering their flexibility in changing signaling
waveforms, new software development paradigms, and new
operational aspects. We plan to use one of the SDRs on-orbit
along with ground SDRs and commercial modems as part of
a system to test the performance of a newly proposed multi-
objective reinforcement learning algorithm using deep neural

networks for the use as a radio-resource-allocation controller
[1].

Currently, the state-of-the-art for NASA’s space communi-
cations is adaptive communications, which works based on
a lookup-table built by “experts” a priori. The table tells
the radio which modulation-coding pair (“modcod”) to use
based on the measured EsN0 (energy per symbol to noise
power spectral density ratio). This table is built to maintain
a quasi-error-free transmission [2]. In essence, this adaptive
algorithm is a radio-resource-allocation optimization that takes
into account bit error rate (BER) and throughput. Our proposed
reinforcement-learning neural network (RLNN) cognitive en-
gine [1] is to be a generalization of the adaptive algorithm’s
bi-objective optimization to a multi-objective optimization. In
our proposed case, the objectives that the cognitive algorithm
tries to optimize are bit error rate (BER), throughput, occupied
bandwidth, spectral efficiency, transmit power efficiency, and
DC power consumption. The different parameters that can
be changed in our experiment (thanks to the flexibility of
an SDR waveform) is the modulation and coding scheme
(modcod), roll-off factor, symbol rate, and additional transmit
power. Instead of creating a static table that maps EsN0 values
with transmission parameters (referred to as “action tuplets”
throughout this paper), the cognitive engine learns the optimal
actions given the channel condition through a reinforcement-
learning process [1].

The goal of our experiment is to reuse the same system
architecture as [2], but replace their adaptive algorithms work-
station with our proposed multi-objective cognitive engine
workstation. This significantly reduces development time, de-
creases project risk, and provides a fairer comparison between
the adaptive and cognitive algorithms. As a result, our im-
plementation of the multi-objective cognitive engine will also
be constrained to fit within the Digital Video Broadcasting–
Satellite–Second Generation (DVB-S2) standard [3] as did
the adaptive experiment in [2]. The DVB-S2 standard is
commonly used in the commercial satellite broadcast market
because of its granulairty of operational modes achieved via



several modcod pairs that allow scalable data rates when
using variable coding modulation (VCM) and adaptive coding
modulation (ACM).

This paper elaborates on the implementation details of
porting the MATLAB algorithms in [1] to a real system.
Section II discusses the cognitive applications to NASA’s
missions. Section III summarizes the structure of our cognitive
engine. Section IV discusses the software libraries used in
this implementation and justifications for their use. Section V
discusses implementation trade studies and adaptations of the
original proposed cognitive engine to meet the constraints im-
posed by the existing testing architecture. Section VI provides
the implemented architecture to be used for ground and on-
orbit testing. Finally, Section VII provides future work and
conclusions based on the work presented in this paper.

II. COGNITIVE APPLICATIONS TO NASAS MISSIONS

NASAs future space architecture will enable human,
robotic, and science exploration of the solar system. The rise in
science data volume requirements, greater inter-connectivity,
autonomous navigation, and the use of small satellites (among
other requirements) will all add greater complexity to the
communications network. Cognitive algorithms offer potential
solutions to improve the efficiency and reduce the complex-
ity of the future communications systems by managing and
operating the system without human operators. This approach
enables more system automation, but must also preserve the
high level of reliability that space missions have achieved.

The use of cognition in space communications is relatively
new. Research underway at NASAs Glenn Research Center is
looking at various aspects for cognitive applications [4]. The
first domain is between the radios of the science spacecraft
and either the ground station (for direct to ground connection)
or through a relay satellite to the gateway ground station (or
to a relay if on-board processed). The radios may optimize
the link between the two radio nodes striving to optimize the
pass (e.g. limit power consumption) or maximize the data
throughput. Cognition could be applied to trade operating
parameters (e.g., modulation, coding, frequency, power, and
bandwidth) with performance parameters (e.g., bit/frame error
rate, spectral efficiency, and power consumption). Effects on
the links might include range changes, scintillation and other
propagation effects, multipath, and interference. Cognitive
algorithms could learn system behavior and change the con-
figuration to optimize the links from different locations and
conditions.

The second application of cognitive algorithms might apply
to the inter-connectivity and data flow from and among the
science spacecraft, relay satellite, or ground station. As data
is relayed or communicated through the network, cognition
could update routing tables, move data through the network
using a store and forward protocol, transferring data custody
from node to node and optimally route data from science craft
back to mission operations centers through various paths.

Finally, higher level applications may benefit from cognition
such as scheduling or configuration. For example, automating

Explore 
NN

Exploit
NN

Choose 
Explore or 

Exploit

Output 
Action

Fig. 1. General flow block diagram of the RLNN (adapted from [1])
.

the scheduling of network assets among various space users
based on past use or patterns of use in an effort to optimize
the use of the network and maximize the time each user has
access to the system. The network might also change the initial
link configuration for a scheduled connection based on past
performance or identify anomalous asset performance through
a big data analysis. In addition, functions that the user space-
craft could perform for itself might include orbit propagation
to automate its antenna pointing, data storage monitoring to
automate its request for services, and performance monitoring
to report out of range telemetry or report quality of service
assessments to the network manager.

For each of these areas—radio-to-radio optimization, as-
sured data connectivity or internetworking, and system level
applications—cognition may offer potential benefits to reduce
complexity or improve operations. In addition, multi-objective
cognition will work across each of these domains and globally
optimize system behavior and performance and further provide
overall benefit to NASA missions.

III. OVERVIEW OF COGNITIVE ENGINE

The RLNN cognitive engine presented in [1] (an expan-
sion on [5]) consists of a reinforcement-learning framework
captured through the use of neural networks (NNs) to choose
actions for both exploration and exploitation. An overview of
the process flow of the RLNN is shown in Fig. 1. The explo-
ration NN ensemble takes in an action tuple and the current
EsN0 and predicts the normalized multi-objective weighted-
sum performance value. After predicting the performance for
every permutation of actions, one can then threshold the
actions that resulted in “good” and “bad” performances. Most
of the time, the reinforcement learner will choose to explore an
action tuple in the “good” performance space. This is referred
to as virtual exploration [1], [6].

The set of exploitation NN ensembles takes in the nor-
malized multi-objective performance metric values and the
current EsN0 and outputs the action parameter that should
achieve the input objective performances. The exploitation NN
ensembles hold the knowledge of the Q-table in traditional Q-
learning. The exploitation NN ensembles are used to provide
the action tuple that will give the best performance given
the actions/performances the RLNN has already seen and the
current EsN0 value.

The measured performances for each of the objectives in
the multi-objective function (bit error rate, throughput, occu-



pied bandwidth, spectral efficiency, transmit power efficiency,
and DC power consumption) are recorded. Periodically, the
exploration and exploitation NNs are re-trained (using the
Levenberg–Marquardt backpropagation algorithm) with the
most recent action/performance knowledge.

IV. SOFTWARE LIBRARIES

The RLNN was written in the C++ language (we are
using the C++11 standard [7]) with the intention of easily
porting the engine between different machines and platforms
(both ground-based radios and space-based radios). Unlike the
authors’ original simulations [1] in MATLAB, C++ (being
a lower-level language) does not come equipped with high
level constructs, such as matrix algebra or NNs. In order to
speed up development time, decrease development risk, and
promote reuse, software libraries were leveraged for the matrix
algebra operations, NN training and execution, and interfacing
to external modems.

A. Licensing

There are a multitude of different open source software
usage/redistribution licenses that an author can attribute to
their work including (but not limited to) Berkeley Software
Distribution (BSD) [8], GNU General Public License (GPL)
[9], and GNU Lesser General Public License (LGPL) [10].
The GPL license requires that a work that uses a GPL-
licensed work be released under GPL if redistributed [9]. As
the name suggests, the LGPL license is a little more relaxed:
a proprietary work that links to a LGPL-licensed library only
needs to release the source code of the linked LGPL-licensed
work, but not the full proprietary work [10]. These two types
of licenses are known as “copyleft” licenses. Unlike (L)GPL,
the BSD license is a permissive license that allows the use and
redistribution of a BSD-licensed work without the release of
the source code (but still needs to maintain copyright notices).
This allows any proprietary application to use a BSD license
without having to release its source code [8].

For our application, we chose to limit our software libraries
to those that use permissive licenses, such as BSD. As the
nature of SDR waveforms on space radios can be restricted
by the International Traffic in Arms Regulations (ITAR) and
other export control laws, the authors wanted to ensure their
software could be added to the STRS Repository [11] without
violating any software library licenses when redistributed.
Unfortunately, limiting ourselves to only BSD-licensed, C++
software severely limited the scope of the libraries that could
be used for this cognitive engine.

B. Neural Network Library

As the field of machine learning continues to rapidly ex-
pand, the number of software libraries continues to increase.
Many of these libraries have application program interfaces
(APIs) that use high level scripting languages (such as Python)
to make it easy for the user to get started. Although some of
these libraries were based on C/C++ cores (for performance),
their C++ APIs were generally undocumented or nonexistent.

For example, this was the case for the popular Torch library
[12]. Another common issue was that some of the more
popular libraries (such as Caffe [13]) that had C++ APIs also
had a long list of dependencies and a complex build process.
This issue would make it hard to port our cognitive engine to
resource-constrained space radios. A third issue encountered
was that some libraries (such as Darknet [14]) were designed
to be used for very complex, deep convolutional NNs, which
would be excessive for our cognitive engine.

MLPack [15] was chosen to be used for the NN library.
Although MLPack’s artificial neural network (ANN) is not
as mature as other software libraries, it provided many ad-
vantages. First, the build process was relatively simple and
the required dependency list was short. Second, its API is
well documented both with function definitions in Doxygen
and code usage examples. Third, other machine learning
algorithms in MLPack have been used by our cognitive com-
munciations colleagues at NASA GRC, so using a common
library would ease incorporation of our cognitive engine with
their activities. For those interested in using MLPack’s ANN
library, currently, the ANN support is not yet included in any
stable release—it is only included in the master GIT branch
[15]. Additionally, MLPack does not support the Levenberg–
Marquardt backpropagation algorithm for training. The authors
wrote their own implementation of the algorithm and verified
its performance using MATLAB’s “trainlm” function in its
Neural Network Toolbox.

C. Matrix Library

To handle the matrix and vector storage and operations, Ar-
madillo [16], was chosen. Armadillo abstracts matrix algebra
to an API similar to MATLAB, making it easier to port the
algorithms in [1]. This library was chosen primarily because
it was also used internally by MLPack making interfacing
easier. Another useful feature is that it transparently handles
multithreading for larger operations.

D. External Input-Output

The DVB-S2 receiver and the BPSK transmitter ground
modems attached to our cognitive engine communicate using
UDP. The Boost.Asio [17] library was leveraged to handle all
UDP inputs and outputs for our cognitive engine. Boost is a
very common and powerful C++ library and is also internally
used by MLPack. To save and resume the state of the cognitive
engine, the Boost.Serialization [18] library was used. This
allows us to compare how the cognitive engine performs when
using already trained weights on the next ground station pass
versus having to relearn the weights at the beginning of a pass.

V. TRADE STUDIES

Porting theoretical algorithms in MATLAB to a real system
brings many challenges. One of the goals of our experiments
is to leverage as much existing waveforms and technology
as possible. This lowers risk, lowers development time, and
increases chances of near-term adoption. We chose to fit our
algorithms within the DVB-S2 standard to reuse the already



developed and extensively tested space transmitter waveform
implemented by colleagues at NASA GRC [2]. Additionally,
we chose to use the same test setup as used by [2], which uses
commercial DVB-S2 receivers on the ground. These modems
have physical limitations, such as how fast the automatic gain
control (AGC) can handle transmit power changes and the rate
at which frame error rate (FER) statistics are updated. The fol-
lowing sections discuss how our implementation accomodates
these challenges.

A. Fitting within DVB-S2 Standard

In [1], a transmit action tuple consists of five parameters:
modulation scheme, code rate, roll-off factor, additional trans-
mit power, and symbol rate. Each time the cognitive engine
receives a new frame, it needs to record both the performance
of the frame (in terms of the multi-objective fitness values)
and the action tuple that was used on that frame. Although
the DVB-S2 protocol includes the modcod and roll-off factor
within the physical layer and baseband headers, respectively,
the symbol rate and additional transmit power are not included
in any of the headers. To generalize this cognitive engine
to any set of action parameters, the action tuple had to be
specified outside of the DVB-S2 headers.

The round trip time (RTT) for the adaptive algorithm in
[2] at 1M baud was measured to be approximately 40 ms.
This time includes both constant and variable delays. Constant
delays include the transmission time of an AOS frame on the
ML605 transmitter, the propagation delay from the ground
station to the ISS (assuming the changing range is negligible),
the frame decoding time on the space-based receiver, and
the propagation delay from the ISS to the ground. Variable
delays include the processing time on the ground (assuming
the algorithm runs on a CPU), the time it takes between when
the new action is decoded on the space radio to when the
next frame can be updated with the new parameters, and the
amount of time it takes for a DVB-S2 frame to transmitted
to the ground (higher symbol rates takes less time because
the number of bits in a DVB-S2 frame is fixed). These delays
make it more difficult to know on the ground which action
tuple was used on each frame if we want to update the action
tuple on a frame-by-frame basis.

In addition to the variable timing delays, the dynamic nature
of the wireless links causes another challenge. There is a
(relatively high) chance that corrupted frames will be received
on the ground when the cognitive engine makes “bad” action
decisions before it is fully trained. For a simple solution in
which a header is placed within the DVB-S2 payload with
the action tuple used, the cognitive engine would never know
the action tuples that caused poor performance. The uplink
feedback channel could also get corrupted, which would cause
the action tuple to not change on the next frame. This would
cause a solution that relied solely on timing to record a
received performance with the new action tuple, when in fact
the action tuple from the previous frame was used again.

In our case, the scheme is very simple and does not require
an additional protocol header. Instead of updating on a frame-

by-frame basis, our cognitive engine updates at a period equal
to or greater than the longest round trip time—in the 1M baud
case, this would be a 40-ms period. In that 40-ms period,
we will receive multiple frames with that action tuple, but
our RLNN only uses the latest sample with that action tuple.
We can solely base our protocol on timing without the need
for any headers—the ground system sends the new action
tuple and then waits for the worst case RTT. It then records
the performance of a frame after the RTT timer elapses and
chooses a new action. This makes the assumption that the
uplink channel will not corrupt the feedback AOS frame. This
is a valid assumption because, in our case, the feedback link
is a more robust link than the most robust DVB-S2 downlink
parameters. As a result, if the uplink gets corrupted and the
action tuple never gets changed, then it does not matter which
action is recorded on the ground because every action is going
to result in poor performance.

For a cognitive engine that uses the knowledge of every
frame received (regardless of whether or not it is the same
action as the previous frame) a more complex timing architec-
ture can be used. By leveraging the knowledge of the constant
timing delays in the system, one can split the RTT time into
periods of “certainty” and “uncertainty”. In this architecture,
a header is included inside the DVB-S2 payload that contains
the action tuple. Essentially, if a DVB-S2 frame is received
during the period of “certainty”, the receiver already knows
which action tuple was used for that frame (it does not even
need to read the header inside of the payload). When a frame is
received during the period of “uncertainty”, it is ambiguous to
the receiver what action tuple was used, so it needs to read the
header inside of the frame. If the downlink is corrupted, then
any frame that is received during the period of “certainty” can
still be recorded (because the receiver is certain which action
was taken without reading the frame). Any corrupted frame
received during the period of “uncertainty” is just discarded
and not recorded. It is guaranteed that, in every RTT, there is
at least one frame in the window of “certainty”. Fig. 2 shows
a summary of how this timing architecture works.

Finally, the DVB-S2 standard is a constant-symbol-rate
protocol. It does not handle variable symbol rates as the
simulation in [1], so, in our testing, we will not be varying
the symbol rate. The testing will only change the modcod,
additional transmit power, and roll-off factor “on-the-fly”.

B. Hardware Limitations

An implicit assumption used in the simulation in [1] is
that the extra transmit power can be changed on a frame-by-
frame basis. It is true that the space transmitter can change the
additional transmit power on a frame-by-frame basis, but this
would result in poor performance at the receiver because the
AGC would not be able to keep up with the fast fluctuating
power. As a result, a patch will be used for the implemented
RLNN that limits the magnitude of the change in additional
transmit power from one action tuple to another.

Another hardware limitation is that the modem’s calculated
frame error rate is only updated at 1 Hz. As a result, many



40 ms 40 ms 40 ms 40 ms
12 12 12 122 2 2 2

40 ms
12 2 8 2 8 2 8 2 8 2 8 2

16 ms

40 ms

28 ms

8 8 8 8 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 8 8

8 8 8 8 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 8 8

Worst Case Window

Best Case Window

12 ms (uplink) + 4 ms (shortest downlink)

12 ms (uplink) + 4 ms (light delay) + 8 ms 
(processing delay) + 4 ms (shortest 
downlink)

12 ms (uplink) + 4 ms (light delay) + 8 ms 
(processing delay) + 8 ms (longest delay to 
next frame) + 8 ms (longest downlink)

Known at Receiver (Period of Certainty)

Ambiguous to Receiver (Period of Uncertainty)

Fig. 2. Timing architecture showing the period of “certainty” and period of “uncertainty” for a RTT of 40 ms (1M baud symbol rate). The rectangles with
“4”, “6”, and “8” represent the received 16-APSK, 8-PSK, and QPSK frames, respectively.

consecutive action tuples will all be given the same frame
error rate. Alternatively, we could use the EsN0 measurements
reported by the modem (at 100 Hz) and estimate by the FER
by using the FER-EsN0 curves (measured a priori) for the
received action tuple’s modcod. We plan to characterize and
compare both of these approaches.

VI. IMPLEMENTED ARCHITECTURE

The implemented RLNN cognitive engine was written in
object-oriented C++ using the libraries discussed in Section IV
and trade study results in Section V. The RLNN is made up of
an RLNN core, which is where the cognitive algorithms reside,
and external drivers, which communicate with the ground
modems. The object architecture for this implementation is
shown in Fig. 3. The following sections provide details on
each of these objects.

A. RLNN Core

The RLNN core is comprised of three modules: a training
buffer, the NN predictors, and an application-specific object.
The RLNN core provides the “glue” code between these
modules. The RLNN core is designed to be a standalone object
regardless of the physical interfaces. It has two main purposes:
choose an action tuple based on exploration and exploitation
and record the action tuple’s corresponding performance.

1) Training Buffer: The training buffer is the main database
holding the training samples for the explore and exploit
NNs. The buffer holds the latest N unique actions and their
corresponding performances. When training needs to occur,
the user provides the training buffer with the fields needed for
the input and output labels and any normalization parameters
for both the explore and exploit NNs. The buffer then outputs
the formatted input and output training samples to be directly

used with the NN Predictor modules. The training buffer is
constructed using Armadillo vector and matrix structures.

2) NN Predictor: The NN Predictor module abstracts ML-
Pack’s ANN architecture to a simple interface similar to
MATLAB’s Neural Network Toolbox. Each NN predictor
module instantiates an ensemble of parallel NNs to be used
for either exploration or exploitation prediction. When the
“predict” class method is called, each of the parallel NNs
compute a prediction and then the mean prediction is outputted
back to the user.

We use two types of NN Predictor modules: a trainer
module and an execution module. The trainer module is used
whenever the NNs need to be retrained. Upon retraining, the
weights are copied to the execution module, which is used for
online predictions. This decoupling allows the training to occur
simultaneously in a separate thread while the RLNN continues
normal execution. This is important because NN training can
take on the order of many seconds to complete, so we cannot
block the main execution until the training is complete. For the
exploration prediction, there is a single training module and a
single execution module. For the exploitation prediction, we
use a vector of trainer-module and execution-module pairs.
Each trainer-module and execution-module pair corresponds
to the prediction of one of the action parameters in an
action tuple. It is important to note that, within each of these
trainer/execution modules, there are multiple NNs running in
parallel. The number of NNs that need to be run in parallel
is a trade-off between the accuracy of the predicted action,
the number of threads that can be executed in parallel, and
training time, while maintaining real-time execution.

3) Application Specific Object: The RLNN core “glue”
code, training buffer, and NN predictor modules were designed
to be completely generic, so that the RLNN could be reused



RLNN Core

Training 
Buffer

Explore NN 
Predictor

Exploit NN 
Predictor

Exploit NN 
Predictor

Application 
Specific 
Module

ML605 
Driver

ASRP
 Driver

ViaSat 
Driver

Ethernet TX 
Driver

RCP Driver

ViaSat 
Driver

Logging

Fig. 3. Implemented software architecture of the RLNN.

easily. The application-specific object provides the “context”
for our particular experiment. This object processes the raw
measurements from the modems, calculates the normalized
multi-objective performances, and helps the RLNN algorithms
maintain generality. For those interested in reusing our cog-
nitive engine for a different application (or different multi-
objective performance metrics), only the Application Specific
Object needs to swapped with a new object containing the
new parameters and functions. For our experiment, this object
is also where any hardware constraint patches are applied—
estimating the FER from the FER-EsN0 curves and limiting
the magnitude between jumps of additional transmit power.

B. External Drivers
The external drivers communicate with the external

modems. In the on-orbit experiments, the ViaSat modem is
used for gathering EsN0/FER statistics and the ML605 modem
is used to transmit the new action tuplets to the space-
based DVB-S2 transmitter [2]. For ground testing, GRC has
ported the DVB-S2 waveform to their Advanced Space Radio
Platform (ASRP) instead of having to use the JPL radio
breadboard or ground integration unit.

1) ViaSat Modem Driver: The ViaSat modem sends its
EsN0/RSSI statistics over a UDP/IP/Ethernet stack, while the
FER statistics need to be polled using the simple network
management protocol (SNMP). This driver parses incoming
EsN0/RSSI packets from the Boost.ASIO UDP receiver and
SNMPGet application [19] and returns them for usage within
the RLNN core.

2) ML605 Modem Driver: The ML605 modem driver
packetizes the chosen action tuple into a UDP/IP/Ethernet
frame it requires for embedding into the AOS frame. We
use Boost.ASIO’s library to send raw Ethernet frames to the
ML605 because it does not support the full IP stack.

3) ASRP Modem Driver: The ASRP modem driver converts
the chosen action tuple into the format required for sending
remote procedure calls (RPC) to the ASRP web server. We
use the UNIX “curl” [20] command to build and send these
RPC messages.

C. Logging

Logging of important information on each iteration (action
tuple chosen, performance measured, exploitaiton/exploration,
timestamps, etc.) are written into a global text file using
a name/value pair. Logging is controlled using preprocessor
directives. The log file is easily parsed by name using a script
in MATLAB.

The Boost.Serialization library is used to archive and load
the state of the objects in the RLNN. The user has the
option to resume a session or start a new session and whether
or not to save that session upon exit. For each object, the
Boost.Serialization library writes its properties to a human-
readable text file. When the RLNN is instantiated, the proper-
ties are initialized with the values saved in the archive files.

VII. CONCLUSION

In this paper, the implementation of the algorithms de-
scribed in [1] has been presented. The software libraries
utilized, the modifications for real-world constraints, and the
object-oriented software architecture were discussed. At the
time of writing, this implemented system is currently in the
ground-testing stage and will be used for on-orbit experiments
in May 2017. The goal of this paper was to provide the reader
with insight into building cognitive engines and integrating
them into a real system. Upon export review, it is planned that
the RLNN core code will be released to the public. Additional
future work includes including a real-time received power
predictor into the RLNN based on channel models [21], [22].

ACKNOWLEDGMENT

This work was supported by a NASA Space Technology
Research Fellowship (grant number NNX15AQ41H) and a
cooperative agreement with NASA John H. Glenn Research
Center (grant number NNC14AA01A).

The authors would also like to thank Joseph Downey,
Michael Evans, Dale Mortensen, and the rest of the Cognitive
Communications Project team at NASA GRC for all of their
help and support.



REFERENCES

[1] P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett,
S. G. Bilén, R. C. Reinhart, and D. J. Mortensen, “Multi-objective
reinforcement learning for cognitive satellite communications using deep
neural networks ensembles,” PLACEHOLDER FOR JOURNAL, 2017,
submitted.

[2] J. A. Downey, D. J. Mortensen, M. A. Evans, J. C. Briones, and N. Tol-
lis, “Adaptive coding and modulation experiment with NASA’s Space
Communication and Navigation Testbed,” in 34th AIAA International
Communications Satellite Systems Conference, October 2016.

[3] ETSI, Digital Video Broadcasting-Satellite-Second Generation (DVB-
S2) Standard, ETSI EN 302 307, Std., Rev. 1.2.1, August 2009.

[4] R. C. Reinhart and B. K. Smith, “Using international space station for
cognitive system research and technology with space-based reconfig-
urable software defined radios,” in International Astronautical Congress,
October 2015.

[5] P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G.
Bilén, R. C. Reinhart, and D. J. Mortensen, “Multi-objective reinforce-
ment learning for cognitive radio–based satellite communications,” in
34th AIAA International Communications Satellite Systems Conference,
October 2016.

[6] ——, “Multi-objective reinforcement learning-based deep neural net-
works for cognitive space communications,” in 1st IEEE Cognitive
Communications for Aerospace Applications Workshop, June 2017.

[7] ISO, Information technology Programming languages C++, ISO/IEC
14882:2011, Std., 2011.

[8] U. of California Berkeley, Berkeley Software Distribution, Std., 1999.
[9] F. S. Foundation, GNU General Purpose License, Std., 2007.

[10] ——, GNU Lesser General Purpose License, Std., 2007.

[11] J. C. Briones. (2016) STRS repository. NASA Glenn Research Center.
Available at https://strs.grc.nasa.gov/repository/.

[12] R. Collobert, C. Farabet, K. Kavukcuoglu, and S. Chintala. (2017) Torch.
Available at http://torch.ch/.

[13] Y. Jia and E. Shelhamer. (2017) Caffe. Berkeley Vision and Learning
Center. Available at http://caffe.berkeleyvision.org/.

[14] J. Redmon. (2013–2017) Darknet: Open source neural networks in c.
Available at http://pjreddie.com/darknet/.

[15] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A.
Mehta, and A. G. Gray, “MLPACK: A scalable C++ machine learning
library,” Journal of Machine Learning Research, vol. 14, pp. 801–805,
2013.

[16] R. Curtin and C. Sanderson. (2017) Armadillo: C++ linear algebra
library. Available at http://arma.sourceforge.net.

[17] C. Kohlhoff. (2016) Boost.asio. Available at http://www.boost.org/doc/
libs/1 63 0/doc/html/boost asio.html.

[18] R. Ramey. (2004) Boost.serialization. Available at http://www.boost.org/
doc/libs/1 63 0/libs/serialization/doc/index.html.

[19] (2002) Snmpget. Available at http://www.net-snmp.org/docs/man/
snmpget.html.

[20] D. Stenberg. (2017) Curl. Available at https://curl.haxx.se/.
[21] P. V. R. Ferreira, R. Paffenroth, and A. M. Wyglinski, “Interactive

multiple model filter for land-mobile satellite communications at Ka-
band,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2017.

[22] T. M. Hackett, S. G. Bilén, P. V. R. Ferreira, A. M. Wyglinski, and
R. C. Reinhart, “Implementation of a parameterized interacting multiple
model filter on an FPGA for satellite communications,” in 34th AIAA
International Communications Satellite Systems Conference, October
2016.


