
  

1 

Abstract— Teleoperation is the dominant form of 
dexterous robotic tasks in the field. However, there are many 
use cases in which direct teleoperation is not feasible such as 
disaster areas with poor communication as posed in the 
DARPA Robotics Challenge, or robot operations on spacecraft 
a large distance from Earth with long communication delays. 
Presented is a solution that combines the Affordance Template 
Framework for object interaction with TaskForce for 
supervisory control in order to accomplish high level task 
objectives with basic autonomous behavior from the robot. 
TaskForce, is a new commanding infrastructure that allows for 
optimal development of task execution, clear feedback to the 
user to aid in off-nominal situations, and the capability to add 
autonomous verification and corrective actions. This 
framework has allowed the robot to take corrective actions 
before requesting assistance from the user. This framework is 
demonstrated with Robonaut 2 removing a Cargo Transfer 
Bag from a simulated logistics resupply vehicle for spaceflight 
using a single operator command. This was executed with 80% 
success with no human involvement, and 95% success with 
limited human interaction. This technology sets the stage to do 
any number of high level tasks using a similar framework, 
allowing the robot to accomplish tasks with minimal to no 
human interaction. 

 

I. INTRODUCTION 

For future space missions, NASA is currently 

considering the need for pre-locating mission equipment prior 

to astronaut arrival as well as maintenance and upkeep of 

unmanned, but still operational, habitats and spacecraft before 

and between human visits. During these missions, robots that 

can interact with the human environment are necessary to 

perform these construction, maintenance, and upkeep tasks. 

Robonaut 2 (R2) is designed with a human form factor to 

enable it to interact with this human environment. Therefore, 

the environment does not need to be specifically designed for 

both a special robot manipulator and a human hand [19]. 

Thus, Robonaut is a critical development platform for these 

future “care-taker” robots. 

 

Due to the large distances from Earth that future missions 

will be conducted, the ability to teleoperate robots with latent 

and low bandwidth connections diminishes. Based on data 

from the International Space Station (ISS), the number of 

items and amount of time spent on logistics such as 

unpacking, stowing, setup, etc., for deep space missions will 

be substantial [18]. The burden of these logistics tasks can be 

decreased by the presence of a robot that is able to accomplish 

 
1http://www.davincisurgery.com/ 

them during the dormancy phase before astronauts arrive, 

allowing the humans to focus more time on science and 

exploration. Therefore, for NASA, there exists a clear need to 

develop robotic capabilities to control dexterous manipulation 

tasks far from Earth with large latencies. Supervisory control 

can mitigate these time delays while still providing an 

effective means to command a dexterous robot [22]. While 

the robot does need a certain level of autonomy for safety and 

efficacy, it is not unreasonable for the robot to stop an 

operation when an issue occurs, asking for human 

clarification or assistance. In these scenarios, it is desirable to 

provide the robot high-level tasks, and allow it to perform 

some of its own error mitigation, while also providing a 

pathway for the robot to “ask for help”. 

 

The Robonaut team has experience commanding dexterous 

manipulation tasks with the R2 unit that resides on the 

International Space Station (see Figure 1).  Examples of 

manipulation tasks conducted with the R2 on orbit include 

soft goods manipulation (blankets, wipes), switches and 

knobs, and tool manipulation such as RFID readers and air 

flow measurement tools [10].  The lessons learned from these 

experiments have driven the development presented in this 

paper. 

Figure 1.  Robonaut on the Internation Space Station 

II. BACKGROUND 

For decades, the robotics research community has 

attempted to define the appropriate level of autonomy for 

robot control, ranging on a sliding scale from direct 

teleoperation to fully autonomous operation. In practice, tasks 

that require dexterous manipulation have been dominated by 

teleoperation. Some examples of this include the well-known 

DaVinci Surgical system1, improvised explosive device 

disposal [3], and the Quince robots used after the Fukushima 
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Daiichi disaster [4].  The cognitive power of humans and their 

ability to quickly make decisions cannot currently be 

replicated by any autonomous systems technology. In 

addition, the need for situational awareness for the operator in 

relatively low latency conditions has been demonstrated 

through many experiments [1, 2].   

 

Communication between a remote robot and its operator 

can greatly affect situational awareness, due to bandwidth 

limitations, latency, and lossy networks. Many current 

applications for teleoperation of remote robots experience 

disruptive network scenarios. The recent DARPA Robotics 

Challenge, inspired by the Fukushima disaster, was a prime 

example of this: part of the challenge was navigating the poor 

information link [5, 6, 20]. When these connections become 

latent or otherwise poor, the role of the human operator must 

necessarily be reduced. The most common method for 

accommodating poor communications is to increase 

autonomous functions, either in the robotic system, in the user 

interfaces, or both [7, 8]. As autonomous functionalities take 

on more decision making roles for a task, the control mode 

transitions from teleoperation to supervisory control. 

 

Many supervisory control interfaces for dexterous robots 

have been developed and tested in both research and real-

world environments. Path planning and obstacle avoidance 

are common autonomous functions such as in [12]. Other 

works add features to user interfaces to reduce operator 

workload [13]. Some groups have attempted to make 

dexterous manipulators fully autonomous, for example, the 

DARPA ARM project [11]. Results generally point to 

fragility in the solution due the complexity of the task.  

 

In this paper, an integrated control methodology that 

allows supervised control of a dexterous robotic manipulation 

task is presented and tested in a relevant space environment. 

To accomplish this supervised manipulation task, three 

distinct building blocks are integrated which are outlined in 

Section III. These building blocks are Affordance Templates, 

object recognition and template placement, and both task 

execution and supervision using TaskForce. The paper 

concludes with the results of an experiment of this supervised 

autonomy in a relevant manipulation task, the removal of a 

Cargo Transfer Bag (CTB) held in a rack with a restraint 

similar to those used in resupply vehicles seen in Figure 2. 

III. METHODS 

 To accomplish a supervised dexterous manipulation task, 
three distinct software components are used in combination. 
First, in order to understand how the robot can manipulate and 
interact with objects the Affordance Template (AT) 
Framework is utilized. Next, a series of supervisory controllers 
are used to detect, localize, and place these Affordance 
Templates in the robot’s planning scene without human input. 
Finally, the task is executed using TaskForce, a new 
commanding infrastructure that allows for easy development 
of task execution, simple feedback to the user to aid in off-

 
2 http://wiki.ros.org/rviz 
3 http://moveit.ros.org/ 

nominal situations, and the capability to add autonomous 
verification and corrective actions.  

A.  Affordance Templates 

The Affordance Template (AT) framework provides 

a remote robot operator with a user interface for shared 

control [9]. The framework consists of templates that describe 

affordances of objects to a robot and exists within a visual 

environment, RViz2, for operator interaction. These 

affordances indicate to the robot how it should or can interact 

with an object to successfully accomplish a task. Affordances 

may consist of waypoint locations for end-effectors, 

compliance gains for manipulators, or forces applied to an 

object, among other information. The templates in the AT 

framework define the affordances and provide an interactive 

control marker [14] that visualizes the object with which the 

robot should interact. This marker also allows the operator to 

move the template around in a virtual environment as needed.  

 

The library of affordance templates for R2 currently 

consists of items such as drills, CTBs, buttons, switches, 

screwdrivers, and ISS handrails. Affordances described 

currently consist of waypoint locations for R2’s hands, and 

grasp positions for its end-effectors. These affordances define 

a discrete trajectory in space to reach the object, and how the 

robot should grasp the object with its highly dexterous hand.  

 

Each template may have several sets of waypoints/grasps 

defined for it, and in the initial framework the operator is the 

arbiter of which set of waypoints/grasps is appropriate for the 

robot to interact with the object given the current 

understanding of the robot’s environment. For example, 

Figure 2 shows multiple sets of waypoints to grab the CTB’s 

handles: one right handed set of waypoints to grab the small 

handle, and a left handed set of waypoints to grab the larger 

handle. This enables the operator to decide how a robot with 

multiple end-effectors should manipulate an object. An 

example of these affordances can be seen in Figure 3. The 

goal is to replace this operator task with autonomous sensing 

and decision making proposed in Sections III.B and III.C. 

 

In order for the template to be useful, the template 

must be registered to sensory data returned from the robot. 

While past operations using Affordance Templates have 

relied on the human to register the template to sensory data, 

current testing uses autonomous template matching to register 

to data. If for any reason the human sees that template 

placement is incorrect, the operator can interact with the 

template to adjust placement accordingly. Once the template 

is placed, motion is planned along waypoints and is visually 

presented to the operator. R2 currently uses MoveIt!3, and the 

OMPL4 library to plan trajectories for waypoints. These plans 

are then sent to the robot to execute the motions.  

 

4 http://ompl.kavrakilab.org/ 



  

The two objects manipulated during this test were a 

restraint button to simulate a restraint on a spacecraft and can 

be seen in Figure (3.b). The second object is the CTB seen in 

Figure (2.a) which is a standard bag used in spaceflight for 

storing cargo. The affordances for these bags can be seen as 

the slightly transparent hands, showing the robot the 

waypoints to manipulate the object in Figure 3. 
 

B. Autonomous Template Placement  

To decrease the burden on the operator due to latency, a 

method for visual detection of objects to allow their 

corresponding Affordance Templates to be placed in the 

planning scene was implemented. Three separate algorithms 

were used for this phase of operations: a method to localize 

an object using R2’s camera system, a process that looks for 

that pose and creates a new, filtered pose at the objects center, 

and finally, a process looking for the final filtered pose and 

adding and removing Affordance Template objects.  

 

 Visual detection, recognition, and pose estimation of 

objects of interest is an area of substantial  ongoing research 

in the community [15-16], however, these are outside of the 

scope of this work. Instead, an architecture to allow any object 

detection algorithm to be integrated was developed. For these 

experiments, fiducial markers were used to localize the 

objects in question using the Robot Operating System (ROS) 

package AR Track Alvar5. This package will return a position 

 
5 https://github.com/sniekum/ar_track_alvar  

and orientation transform of the marker as detected through a 

monocular camera. The physical example of this can be seen 

in Figure 4. By separating the object detection and placement 

algorithms, the object localization method can be replaced by 

any that will give a transform for the object as technology 

advances.  

 

Once the marker pose is known, this must be translated into 

useful information for the robot. The first step of this 

automatic conversion is a continuously monitoring method, 

using the Transform Supervisor. The Tansform Supervisor 

monitors for any poses that are associated with objects based 

on a custom object description dictionary yaml file. If a pose 

is found, it will do a static transform to convert the marker 

pose to the objects center. Next, the Transform Supervisor 

will look for these known object poses as dictated by the 

object dictionary and filter them to take out noise in the 

positions, as the fiducial marker detection can sometimes 

return errant poses. The filter chosen for this experiment 

eliminates the top 25% and bottom 25% of transforms as 

determined by position from the positional average of the 

middle 50%. The average for just the middle 50% is then 

calculated, giving the filtered position for the object. Using 

the SLERP method for spherical linear interpolation between 

two quaternions, the interpolated rotation is found using the 

middle 50% of points [17]. This method results in a stable 

center pose for the object. 

 

 The final step in the object placement process is the 

Affordance Template Supervisor, or AT Supervisor. This 

supervisor method will look for the filtered pose of a known 

object based on the object dictionary, and if one is found, it 

will add that Affordance Template to the planning scene of 

the robot. It will continue to monitor the existence of the pose, 

and if the pose goes stale for longer than a user-specified time, 

it will then remove the object from the scene. This final step 

creates a scene of known objects and collisions for the robot, 

as well as a method for interacting with the known objects via 

Affordance Templates. 

 

      

 

Figure 2.    (a) Cargo Transfer Bag (CTB), (b) CTB with restraint in the 
rack 

  

      

 

Figure 3. (a) CTB left handle and front handle affordance,  
(b) Restraint affordances 

 

Figure 4.  Visual identification and object placement using fiducial 

markers and visual supervisors 

 

(a)                                           (b) 

(a)     2                                     (b) 
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 This approach also allows for any individual piece of the 

algorithm to be replaced in the future by more advanced work 

from the community. Each only looks for its individual 

transform, with no knowledge of the pieces around it, 

allowing more advanced visualization to be easily adopted, 

different filtering methods to be attempted, and different 

affordance types to be used. 

C. Task Execution via TaskForce 

TaskForce is an Integrated Development Environment 
(IDE) for developing software tasks using a component-based 
programming model [21].  Users define individual code 
elements, called Tasks, which can then be composed together 
to form a Block.  A Block can be composed not only of Tasks, 
but also other Blocks as well. With this composition pattern, 
an arbitrarily complex hierarchy of Tasks can be defined. 
Tasks interact with one another using a system of events. Each 
Task can define an arbitrary number of named events which it 
can emit, and then other Tasks can subscribe to those events. 
When a Task subscribes to an event, it declares an internal 
callback method to be called when that event has been 
received. This implicit invocation architecture is very 
beneficial in that it reduces any sort of coupling between 
Tasks.  

Using the Task Editor, Blocks are constructed using a 
visual programming interface. The user is presented with a 
canvas which represents the definition of the Block. Then, the 
user can drag-and-drop Tasks and Blocks from a library of 
existing Blocks and Tasks that have been previously created. 
Once the canvas is populated, the connection tool is used to 
draw subscriptions between two elements. There are several 
use-cases in which Blocks will be constructed using a very 
linear flow: task “A” triggers task “B” which then triggers task 
“C”, and any following tasks if they are required.  However, 
an arbitrary set of subscriptions can be defined: task “X” may 
call task “Y” which will return to “X” which will then call “Z” 
and “W.”  

 This framework allows rapid development of arbitrarily 
complex series of executions, insight into the progress and 
state of the execution, and the ability for the user to interact 
with the execution to modify or help the robot. It enables the 
developer to create a linear set of functions to do a task if 
required, or to create any number of task loops, supervisory 
checks, retry steps, and fail operations. Examples of both of 
these can be seen in the experimental task performed by the 
robot. Figure 5 shows the block diagram for the overall 
execution of the task. The linear series of blocks moved the 

 

 

Figure 5. TaskForce overall experiment execution block 

 

Figure 6. TaskForce Affordance Task Block for supervised execution of an Affordance Task 

 

 



  

robot through a set of poses to move into position in front of 
the objects to be manipulated.  

During this execution, it reaches the “Affordance Task.” 
This block can be seen in Figure 6 and is nonlinear in nature. 
The block executes an Affordance Task, which is an a priori 
series of waypoints for one or many Affordance Templates in 
the scene to accomplish a high level task. As part of this 
affordance task, other actions may be put in such as pauses, 
commands to look at different positions, and different checks 
to perform before proceeding.  

The Affordance Task block uses the specified dictionary of 
tasks corresponding to the requested high level task to be 
performed. The robot begins to execute the waypoints, or 
additional commands sequentially. As seen in Figure 6, there 
are other processes watching this commanding flow, giving 
authority to the robot to retry and correct different actions. The 
“Plan_Watcher” task is monitoring the trajectory plan status as 
new plans are made. If a plan is not found, it forces the process 
to go back and replan. If no plans are found in 5 attempts, it 
pauses the block and alerts the user there is an error. Similarly, 
the “Execute_Watcher” block monitors executions, and forces 
retries if the execution is not successful before continuing. 
These are basic building blocks to allow the robot to take 
simple corrective actions to accomplish tasks before alerting 
the operator of any issues or failures.  

This very simple monitoring method allows levels of 
autonomy previously unrealized in R2’s dexterous 
manipulation capability. In addition, further autonomy can be 
built in with this framework. For example, the monitoring of 
an object in the planning frame could indicate whether that 
object has been successfully manipulated. If the object is 
supposed to be manipulated and moved, and the visual system 
does not recognize the movement, the robot can return to the 
previous step to re-attempt. If this attempt fails a second time, 
the operator will be notified. Then, the operator can modify the 
position or understanding of the object based on the failed 
execution, and resume the high level task. This was applied 
directly in the experiment performed with removal of the 
restraint before continuing to remove the CTB. 

This can be easily extrapolated to further types of 
verification and autonomous corrective behavior based on the 
situation with any number of supervisor methods watching the 
status of the execution. While the execution is a simple list of 
waypoints, these could signal many different types of 
verification. For instance, one technology in under 
development is force monitoring of the arm joint, correlated to 
execution of tasks. For a given waypoint to be successful, a 
range of forces are expected and if the force profile does not 
match, a force supervisor could re-attempt that waypoint. This 
could be extended to visual checks, or any number of other 
verification methods to build up the autonomous functionality 
while remaining a generic commanding tool. 

IV. TEST SETUP 

To test the supervisory control method presented, a relevant 

task was outlined involving logistics of an unmanned module. 

Cargo is stored in visiting vehicles on spacecraft in large 

racks, held in by various buckle systems. The crew time 

needed to do these unpacking tasks could be better spent 

performing research and science on the spacecraft, which 

makes them a desirable task for the helper robot to accomplish 

before the crew arrives. In addition, due to the large 

communication delays present in deep space flight, it is 

necessary to reduce the overall number of interactions the 

operator must have with the robot to accomplish the task.  

 

To test R2 in a relevant microgravity environment, 

the robot was suspended in the Active Response Gravity 

Offload System (ARGOS) which offloads the robot’s center 

of mass and follows in the three dimensional environment to 

simulate a microgravity effects on the legs. The joints still 

have local weight, but the response of the robot to the leg 

torques is similar to that in microgravity. In this space there 

are panels with handrails similar to that found on the space 

station to allow for climbing testing of the robot. On one end 

of the panels, a rack is placed with shelves approximately 1m 

from the floor that can hold CTBs with a restraint across them.  

 

The high level task dictated to the robot is to remove 

the CTB from the rack. This task is the initial step in robotic 

logistics management, something that astronauts currently do 

on the ISS. This involves a series of joint moves that brings 

the robot in front of the rack followed by an Affordance Task 

using TaskForce as defined in section III.C. This process 

identifies the restraint and the bag using the fiducial markers 

and puts them into the robots known workspace. Then, the 

Affordance Task works through the necessary steps to release 

the buckle and remove the bag with checks at each step to 

verify correct execution and whether the restraint was fully 

released. Finally, the robot removes the bag and moves to its 

next position. This entire process lasts fewer than 5 minutes. 

The experiment was repeated 20 times to determine 

consistency and repeatability. 

V. RESULTS 

 The methods described were applied to the test setup 

discussed in Section IV. TaskForce is implemented to move 

the robot towards the goal, and then the Affordance Task is 

executed using an appropriate affordance task dictionary. The 

final solution was a single operator command to execute the 

high level task of “Remove the CTB from the rack.” Through 

experimentation, the robot was able to complete the task in 

85% of trails with no additional human interaction. 10% of 

trials the robot encountered an issue and stopped to ask for 

user input. In both cases, the localization of the restraint was 

slightly lower than the restraint itself. Using the Affordance 

Template framework discussed, the operator was able to 

quickly adjust the template based on viewing the robots 

previous execution attempt. Then, in the TaskForce interface, 

the operation was resumed and the task executed successfully. 

The human intervention lasted less than one minute. In 5% of 

cases, the robot experienced a fault causing a software e-stop 

that required the faults to be cleared and the robot reset, 

resulting in a failed attempt.  



  

VI. CONCLUSION AND FUTURE WORK 

A new framework for supervisory control of remote, 

dexterous robots was presented. This framework integrates 

Affordance Templates, which provide a visual definition for 

the robot to interact with objects, autonomous template 

placement, and TaskForce, a tool for task development and 

execution. Using this framework, a high level task involving 

many dexterous manipulations was accomplished. This 

framework allowed the robot to monitor its own processes and 

attempts to retry failed steps before alerting the user of issues. 

However, when issues arose, in all but one case, the operator 

was able to quickly rectify the situation due to the insights 

available from the tools. This framework has laid the 

foundation for building large levels of supervised autonomy 

that can be useful in long distance, long duration space 

missions.  

 

The framework presented can be used for the development 

and control of multiple robotic tasks, which inevitably leads 

to a library of tasks available for supervisory control, for 

example, removal of packed objects, stowing objects, and 

cleaning. Currently, development of autonomous climbing in 

a microgravity environment for R2 is ongoing. This climbing 

capability will allow the robot to move from task to task 

through the station, allowing many dexterous tasks to be 

strung together in a single, overall operation. For example, the 

robot could unstow a CTB, climb across the lab to place it into 

the required drawer, and return to access the next CTB using 

a series of Affordance Tasks. In addition, this framework is 

currently being coupled with a procedures system used by 

astronauts to enable more efficient human interaction with a 

robot and to eventually port human procedures into robotic 

tasks.  
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