

1

Abstract— Teleoperation is the dominant form of
dexterous robotic tasks in the field. However, there are many
use cases in which direct teleoperation is not feasible such as
disaster areas with poor communication as posed in the
DARPA Robotics Challenge, or robot operations on spacecraft
a large distance from Earth with long communication delays.
Presented is a solution that combines the Affordance Template
Framework for object interaction with TaskForce for
supervisory control in order to accomplish high level task
objectives with basic autonomous behavior from the robot.
TaskForce, is a new commanding infrastructure that allows for
optimal development of task execution, clear feedback to the
user to aid in off-nominal situations, and the capability to add
autonomous verification and corrective actions. This
framework has allowed the robot to take corrective actions
before requesting assistance from the user. This framework is
demonstrated with Robonaut 2 removing a Cargo Transfer
Bag from a simulated logistics resupply vehicle for spaceflight
using a single operator command. This was executed with 80%
success with no human involvement, and 95% success with
limited human interaction. This technology sets the stage to do
any number of high level tasks using a similar framework,
allowing the robot to accomplish tasks with minimal to no
human interaction.

I. INTRODUCTION

For future space missions, NASA is currently

considering the need for pre-locating mission equipment prior

to astronaut arrival as well as maintenance and upkeep of

unmanned, but still operational, habitats and spacecraft before

and between human visits. During these missions, robots that

can interact with the human environment are necessary to

perform these construction, maintenance, and upkeep tasks.

Robonaut 2 (R2) is designed with a human form factor to

enable it to interact with this human environment. Therefore,

the environment does not need to be specifically designed for

both a special robot manipulator and a human hand [19].

Thus, Robonaut is a critical development platform for these

future “care-taker” robots.

Due to the large distances from Earth that future missions

will be conducted, the ability to teleoperate robots with latent

and low bandwidth connections diminishes. Based on data

from the International Space Station (ISS), the number of

items and amount of time spent on logistics such as

unpacking, stowing, setup, etc., for deep space missions will

be substantial [18]. The burden of these logistics tasks can be

decreased by the presence of a robot that is able to accomplish

1http://www.davincisurgery.com/

them during the dormancy phase before astronauts arrive,

allowing the humans to focus more time on science and

exploration. Therefore, for NASA, there exists a clear need to

develop robotic capabilities to control dexterous manipulation

tasks far from Earth with large latencies. Supervisory control

can mitigate these time delays while still providing an

effective means to command a dexterous robot [22]. While

the robot does need a certain level of autonomy for safety and

efficacy, it is not unreasonable for the robot to stop an

operation when an issue occurs, asking for human

clarification or assistance. In these scenarios, it is desirable to

provide the robot high-level tasks, and allow it to perform

some of its own error mitigation, while also providing a

pathway for the robot to “ask for help”.

The Robonaut team has experience commanding dexterous

manipulation tasks with the R2 unit that resides on the

International Space Station (see Figure 1). Examples of

manipulation tasks conducted with the R2 on orbit include

soft goods manipulation (blankets, wipes), switches and

knobs, and tool manipulation such as RFID readers and air

flow measurement tools [10]. The lessons learned from these

experiments have driven the development presented in this

paper.

Figure 1. Robonaut on the Internation Space Station

II. BACKGROUND

For decades, the robotics research community has

attempted to define the appropriate level of autonomy for

robot control, ranging on a sliding scale from direct

teleoperation to fully autonomous operation. In practice, tasks

that require dexterous manipulation have been dominated by

teleoperation. Some examples of this include the well-known

DaVinci Surgical system1, improvised explosive device

disposal [3], and the Quince robots used after the Fukushima

Supervisory Control of a Humanoid Robot in Microgravity for

Manipulation Tasks

Logan C. Farrell, Phil Strawser, Kimberly Hambuchen, Will Baker, Julia Badger

Daiichi disaster [4]. The cognitive power of humans and their

ability to quickly make decisions cannot currently be

replicated by any autonomous systems technology. In

addition, the need for situational awareness for the operator in

relatively low latency conditions has been demonstrated

through many experiments [1, 2].

Communication between a remote robot and its operator

can greatly affect situational awareness, due to bandwidth

limitations, latency, and lossy networks. Many current

applications for teleoperation of remote robots experience

disruptive network scenarios. The recent DARPA Robotics

Challenge, inspired by the Fukushima disaster, was a prime

example of this: part of the challenge was navigating the poor

information link [5, 6, 20]. When these connections become

latent or otherwise poor, the role of the human operator must

necessarily be reduced. The most common method for

accommodating poor communications is to increase

autonomous functions, either in the robotic system, in the user

interfaces, or both [7, 8]. As autonomous functionalities take

on more decision making roles for a task, the control mode

transitions from teleoperation to supervisory control.

Many supervisory control interfaces for dexterous robots

have been developed and tested in both research and real-

world environments. Path planning and obstacle avoidance

are common autonomous functions such as in [12]. Other

works add features to user interfaces to reduce operator

workload [13]. Some groups have attempted to make

dexterous manipulators fully autonomous, for example, the

DARPA ARM project [11]. Results generally point to

fragility in the solution due the complexity of the task.

In this paper, an integrated control methodology that

allows supervised control of a dexterous robotic manipulation

task is presented and tested in a relevant space environment.

To accomplish this supervised manipulation task, three

distinct building blocks are integrated which are outlined in

Section III. These building blocks are Affordance Templates,

object recognition and template placement, and both task

execution and supervision using TaskForce. The paper

concludes with the results of an experiment of this supervised

autonomy in a relevant manipulation task, the removal of a

Cargo Transfer Bag (CTB) held in a rack with a restraint

similar to those used in resupply vehicles seen in Figure 2.

III. METHODS

 To accomplish a supervised dexterous manipulation task,
three distinct software components are used in combination.
First, in order to understand how the robot can manipulate and
interact with objects the Affordance Template (AT)
Framework is utilized. Next, a series of supervisory controllers
are used to detect, localize, and place these Affordance
Templates in the robot’s planning scene without human input.
Finally, the task is executed using TaskForce, a new
commanding infrastructure that allows for easy development
of task execution, simple feedback to the user to aid in off-

2 http://wiki.ros.org/rviz
3 http://moveit.ros.org/

nominal situations, and the capability to add autonomous
verification and corrective actions.

A. Affordance Templates

The Affordance Template (AT) framework provides

a remote robot operator with a user interface for shared

control [9]. The framework consists of templates that describe

affordances of objects to a robot and exists within a visual

environment, RViz2, for operator interaction. These

affordances indicate to the robot how it should or can interact

with an object to successfully accomplish a task. Affordances

may consist of waypoint locations for end-effectors,

compliance gains for manipulators, or forces applied to an

object, among other information. The templates in the AT

framework define the affordances and provide an interactive

control marker [14] that visualizes the object with which the

robot should interact. This marker also allows the operator to

move the template around in a virtual environment as needed.

The library of affordance templates for R2 currently

consists of items such as drills, CTBs, buttons, switches,

screwdrivers, and ISS handrails. Affordances described

currently consist of waypoint locations for R2’s hands, and

grasp positions for its end-effectors. These affordances define

a discrete trajectory in space to reach the object, and how the

robot should grasp the object with its highly dexterous hand.

Each template may have several sets of waypoints/grasps

defined for it, and in the initial framework the operator is the

arbiter of which set of waypoints/grasps is appropriate for the

robot to interact with the object given the current

understanding of the robot’s environment. For example,

Figure 2 shows multiple sets of waypoints to grab the CTB’s

handles: one right handed set of waypoints to grab the small

handle, and a left handed set of waypoints to grab the larger

handle. This enables the operator to decide how a robot with

multiple end-effectors should manipulate an object. An

example of these affordances can be seen in Figure 3. The

goal is to replace this operator task with autonomous sensing

and decision making proposed in Sections III.B and III.C.

In order for the template to be useful, the template

must be registered to sensory data returned from the robot.

While past operations using Affordance Templates have

relied on the human to register the template to sensory data,

current testing uses autonomous template matching to register

to data. If for any reason the human sees that template

placement is incorrect, the operator can interact with the

template to adjust placement accordingly. Once the template

is placed, motion is planned along waypoints and is visually

presented to the operator. R2 currently uses MoveIt!3, and the

OMPL4 library to plan trajectories for waypoints. These plans

are then sent to the robot to execute the motions.

4 http://ompl.kavrakilab.org/

The two objects manipulated during this test were a

restraint button to simulate a restraint on a spacecraft and can

be seen in Figure (3.b). The second object is the CTB seen in

Figure (2.a) which is a standard bag used in spaceflight for

storing cargo. The affordances for these bags can be seen as

the slightly transparent hands, showing the robot the

waypoints to manipulate the object in Figure 3.

B. Autonomous Template Placement

To decrease the burden on the operator due to latency, a

method for visual detection of objects to allow their

corresponding Affordance Templates to be placed in the

planning scene was implemented. Three separate algorithms

were used for this phase of operations: a method to localize

an object using R2’s camera system, a process that looks for

that pose and creates a new, filtered pose at the objects center,

and finally, a process looking for the final filtered pose and

adding and removing Affordance Template objects.

 Visual detection, recognition, and pose estimation of

objects of interest is an area of substantial ongoing research

in the community [15-16], however, these are outside of the

scope of this work. Instead, an architecture to allow any object

detection algorithm to be integrated was developed. For these

experiments, fiducial markers were used to localize the

objects in question using the Robot Operating System (ROS)

package AR Track Alvar5. This package will return a position

5 https://github.com/sniekum/ar_track_alvar

and orientation transform of the marker as detected through a

monocular camera. The physical example of this can be seen

in Figure 4. By separating the object detection and placement

algorithms, the object localization method can be replaced by

any that will give a transform for the object as technology

advances.

Once the marker pose is known, this must be translated into

useful information for the robot. The first step of this

automatic conversion is a continuously monitoring method,

using the Transform Supervisor. The Tansform Supervisor

monitors for any poses that are associated with objects based

on a custom object description dictionary yaml file. If a pose

is found, it will do a static transform to convert the marker

pose to the objects center. Next, the Transform Supervisor

will look for these known object poses as dictated by the

object dictionary and filter them to take out noise in the

positions, as the fiducial marker detection can sometimes

return errant poses. The filter chosen for this experiment

eliminates the top 25% and bottom 25% of transforms as

determined by position from the positional average of the

middle 50%. The average for just the middle 50% is then

calculated, giving the filtered position for the object. Using

the SLERP method for spherical linear interpolation between

two quaternions, the interpolated rotation is found using the

middle 50% of points [17]. This method results in a stable

center pose for the object.

 The final step in the object placement process is the

Affordance Template Supervisor, or AT Supervisor. This

supervisor method will look for the filtered pose of a known

object based on the object dictionary, and if one is found, it

will add that Affordance Template to the planning scene of

the robot. It will continue to monitor the existence of the pose,

and if the pose goes stale for longer than a user-specified time,

it will then remove the object from the scene. This final step

creates a scene of known objects and collisions for the robot,

as well as a method for interacting with the known objects via

Affordance Templates.

Figure 2. (a) Cargo Transfer Bag (CTB), (b) CTB with restraint in the
rack

Figure 3. (a) CTB left handle and front handle affordance,
(b) Restraint affordances

Figure 4. Visual identification and object placement using fiducial

markers and visual supervisors

(a) (b)

(a) 2 (b)

https://github.com/sniekum/ar_track_alvar

 This approach also allows for any individual piece of the

algorithm to be replaced in the future by more advanced work

from the community. Each only looks for its individual

transform, with no knowledge of the pieces around it,

allowing more advanced visualization to be easily adopted,

different filtering methods to be attempted, and different

affordance types to be used.

C. Task Execution via TaskForce

TaskForce is an Integrated Development Environment
(IDE) for developing software tasks using a component-based
programming model [21]. Users define individual code
elements, called Tasks, which can then be composed together
to form a Block. A Block can be composed not only of Tasks,
but also other Blocks as well. With this composition pattern,
an arbitrarily complex hierarchy of Tasks can be defined.
Tasks interact with one another using a system of events. Each
Task can define an arbitrary number of named events which it
can emit, and then other Tasks can subscribe to those events.
When a Task subscribes to an event, it declares an internal
callback method to be called when that event has been
received. This implicit invocation architecture is very
beneficial in that it reduces any sort of coupling between
Tasks.

Using the Task Editor, Blocks are constructed using a
visual programming interface. The user is presented with a
canvas which represents the definition of the Block. Then, the
user can drag-and-drop Tasks and Blocks from a library of
existing Blocks and Tasks that have been previously created.
Once the canvas is populated, the connection tool is used to
draw subscriptions between two elements. There are several
use-cases in which Blocks will be constructed using a very
linear flow: task “A” triggers task “B” which then triggers task
“C”, and any following tasks if they are required. However,
an arbitrary set of subscriptions can be defined: task “X” may
call task “Y” which will return to “X” which will then call “Z”
and “W.”

 This framework allows rapid development of arbitrarily
complex series of executions, insight into the progress and
state of the execution, and the ability for the user to interact
with the execution to modify or help the robot. It enables the
developer to create a linear set of functions to do a task if
required, or to create any number of task loops, supervisory
checks, retry steps, and fail operations. Examples of both of
these can be seen in the experimental task performed by the
robot. Figure 5 shows the block diagram for the overall
execution of the task. The linear series of blocks moved the

Figure 5. TaskForce overall experiment execution block

Figure 6. TaskForce Affordance Task Block for supervised execution of an Affordance Task

robot through a set of poses to move into position in front of
the objects to be manipulated.

During this execution, it reaches the “Affordance Task.”
This block can be seen in Figure 6 and is nonlinear in nature.
The block executes an Affordance Task, which is an a priori
series of waypoints for one or many Affordance Templates in
the scene to accomplish a high level task. As part of this
affordance task, other actions may be put in such as pauses,
commands to look at different positions, and different checks
to perform before proceeding.

The Affordance Task block uses the specified dictionary of
tasks corresponding to the requested high level task to be
performed. The robot begins to execute the waypoints, or
additional commands sequentially. As seen in Figure 6, there
are other processes watching this commanding flow, giving
authority to the robot to retry and correct different actions. The
“Plan_Watcher” task is monitoring the trajectory plan status as
new plans are made. If a plan is not found, it forces the process
to go back and replan. If no plans are found in 5 attempts, it
pauses the block and alerts the user there is an error. Similarly,
the “Execute_Watcher” block monitors executions, and forces
retries if the execution is not successful before continuing.
These are basic building blocks to allow the robot to take
simple corrective actions to accomplish tasks before alerting
the operator of any issues or failures.

This very simple monitoring method allows levels of
autonomy previously unrealized in R2’s dexterous
manipulation capability. In addition, further autonomy can be
built in with this framework. For example, the monitoring of
an object in the planning frame could indicate whether that
object has been successfully manipulated. If the object is
supposed to be manipulated and moved, and the visual system
does not recognize the movement, the robot can return to the
previous step to re-attempt. If this attempt fails a second time,
the operator will be notified. Then, the operator can modify the
position or understanding of the object based on the failed
execution, and resume the high level task. This was applied
directly in the experiment performed with removal of the
restraint before continuing to remove the CTB.

This can be easily extrapolated to further types of
verification and autonomous corrective behavior based on the
situation with any number of supervisor methods watching the
status of the execution. While the execution is a simple list of
waypoints, these could signal many different types of
verification. For instance, one technology in under
development is force monitoring of the arm joint, correlated to
execution of tasks. For a given waypoint to be successful, a
range of forces are expected and if the force profile does not
match, a force supervisor could re-attempt that waypoint. This
could be extended to visual checks, or any number of other
verification methods to build up the autonomous functionality
while remaining a generic commanding tool.

IV. TEST SETUP

To test the supervisory control method presented, a relevant

task was outlined involving logistics of an unmanned module.

Cargo is stored in visiting vehicles on spacecraft in large

racks, held in by various buckle systems. The crew time

needed to do these unpacking tasks could be better spent

performing research and science on the spacecraft, which

makes them a desirable task for the helper robot to accomplish

before the crew arrives. In addition, due to the large

communication delays present in deep space flight, it is

necessary to reduce the overall number of interactions the

operator must have with the robot to accomplish the task.

To test R2 in a relevant microgravity environment,

the robot was suspended in the Active Response Gravity

Offload System (ARGOS) which offloads the robot’s center

of mass and follows in the three dimensional environment to

simulate a microgravity effects on the legs. The joints still

have local weight, but the response of the robot to the leg

torques is similar to that in microgravity. In this space there

are panels with handrails similar to that found on the space

station to allow for climbing testing of the robot. On one end

of the panels, a rack is placed with shelves approximately 1m

from the floor that can hold CTBs with a restraint across them.

The high level task dictated to the robot is to remove

the CTB from the rack. This task is the initial step in robotic

logistics management, something that astronauts currently do

on the ISS. This involves a series of joint moves that brings

the robot in front of the rack followed by an Affordance Task

using TaskForce as defined in section III.C. This process

identifies the restraint and the bag using the fiducial markers

and puts them into the robots known workspace. Then, the

Affordance Task works through the necessary steps to release

the buckle and remove the bag with checks at each step to

verify correct execution and whether the restraint was fully

released. Finally, the robot removes the bag and moves to its

next position. This entire process lasts fewer than 5 minutes.

The experiment was repeated 20 times to determine

consistency and repeatability.

V. RESULTS

 The methods described were applied to the test setup

discussed in Section IV. TaskForce is implemented to move

the robot towards the goal, and then the Affordance Task is

executed using an appropriate affordance task dictionary. The

final solution was a single operator command to execute the

high level task of “Remove the CTB from the rack.” Through

experimentation, the robot was able to complete the task in

85% of trails with no additional human interaction. 10% of

trials the robot encountered an issue and stopped to ask for

user input. In both cases, the localization of the restraint was

slightly lower than the restraint itself. Using the Affordance

Template framework discussed, the operator was able to

quickly adjust the template based on viewing the robots

previous execution attempt. Then, in the TaskForce interface,

the operation was resumed and the task executed successfully.

The human intervention lasted less than one minute. In 5% of

cases, the robot experienced a fault causing a software e-stop

that required the faults to be cleared and the robot reset,

resulting in a failed attempt.

VI. CONCLUSION AND FUTURE WORK

A new framework for supervisory control of remote,

dexterous robots was presented. This framework integrates

Affordance Templates, which provide a visual definition for

the robot to interact with objects, autonomous template

placement, and TaskForce, a tool for task development and

execution. Using this framework, a high level task involving

many dexterous manipulations was accomplished. This

framework allowed the robot to monitor its own processes and

attempts to retry failed steps before alerting the user of issues.

However, when issues arose, in all but one case, the operator

was able to quickly rectify the situation due to the insights

available from the tools. This framework has laid the

foundation for building large levels of supervised autonomy

that can be useful in long distance, long duration space

missions.

The framework presented can be used for the development

and control of multiple robotic tasks, which inevitably leads

to a library of tasks available for supervisory control, for

example, removal of packed objects, stowing objects, and

cleaning. Currently, development of autonomous climbing in

a microgravity environment for R2 is ongoing. This climbing

capability will allow the robot to move from task to task

through the station, allowing many dexterous tasks to be

strung together in a single, overall operation. For example, the

robot could unstow a CTB, climb across the lab to place it into

the required drawer, and return to access the next CTB using

a series of Affordance Tasks. In addition, this framework is

currently being coupled with a procedures system used by

astronauts to enable more efficient human interaction with a

robot and to eventually port human procedures into robotic

tasks.

REFERENCES

[1] Hirzinger, G. (1994). “ROTEX- The first space robot technology
experiment.” In Experimental Robotics III (pp. 579-598). Springer

Berlin Heidelberg.

[2] Imaida, T., Tokokohji, Y., Doi, T., et al. “Ground-Space Bilateral

Teleoperation of ETS-VII Robot Arm by Direct Bilateral Coupling
Under 7-s Time Delay Condition.” IEEE Trans. On Robotics and

Automation, 20.3, June 2004.

[3] Elliott, Linda R., et al. “Robotic telepresence: Perception, performance,
and user experience”. No. ARL-TR-5928. ARMY RESEARCH LAB

ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND
ENGINEERING DIRECTORATE, 2012.

[4] Nagatani, Keiji, et al. "Emergency response to the nuclear accident at

the Fukushima Daiichi Nuclear Power Plants using mobile rescue

robots." Journal of Field Robotics 30.1 (2013): 44-63.

[5] Johnson, Matthew, et al. "Team IHMC's lessons learned from the
DARPA Robotics Challenge trials." Journal of Field Robotics 32.2

(2015): 192-208.

[6] Kohlbrecher, Stefan, et al. "Human‐robot Teaming for Rescue

Missions: Team ViGIR's Approach to the 2013 DARPA Robotics
Challenge Trials." Journal of Field Robotics 32.3 (2015): 352-377.

[7] McGill, Stephen, Seung-Joon Yi, and Daniel D. Lee. "Team THOR's
adaptive autonomy for disaster response humanoids." Humanoid

Robots (Humanoids), 2015 IEEE-RAS 15th International Conference

on. IEEE, 2015.

[8] Karumanchi, Sisir, et al. "Team RoboSimian: Semi‐autonomous

Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals."

Journal of Field Robotics (2016).

[9] Hart, Stephen, Paul Dinh, and Kimberly Hambuchen. "The affordance
template ROS package for robot task programming." Robotics and

Automation (ICRA), 2015 IEEE International Conference on. IEEE,

2015.

[10] Ahlstrom, Thomas, et al. "Robonaut 2 on the International Space

Station: Status update and preparations for IVA mobility." AIAA

SPACE 2013 Conference and Exposition. 2013.

[11] Hudson, Nicolas, et al. "Model-based autonomous system for

performing dexterous, human-level manipulation tasks." Autonomous
Robots 36.1-2 (2014): 31-49.

[12] Mainprice, Jim, et al. "From autonomy to cooperative traded control of
humanoid manipulation tasks with unreliable communication: System

design and lessons learned." Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014.

[13] García, J. C., et al. "User Interface Oriented to the Specification of

Underwater Robotic Interventions." Journal of Maritime Research 8.2
(2014): 47-62.

[14] D. Gossow, A. Leeper, D. Hershberger, and M. T. Ciocarlie,

“Interactive markers: 3-D user interfaces for ros applications [ros
topics],” IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp.

14–15, 2011

[15] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL),"
2011 IEEE International Conference on Robotics and Automation,

Shanghai, 2011, pp. 1-4.

[16] M. Quigley et al., "High-accuracy 3D sensing for mobile manipulation:

Improving object detection and door opening," 2009 IEEE
International Conference on Robotics and Automation, Kobe, 2009, pp.

2816-2822.

[17] N. Dantam and M. Stilman, "Spherical parabolic blends for robot
workspace trajectories," 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Chicago, IL, 2014, pp. 3624-3629.

[18] Lopez, Pedro, Jr., Bryan Mattfield, Chel Stromgren, and Kandycee

Goodliff. Logistics Needs for Potential Deep Space Mission Scenarios

Post Asteroid Redirect Crewed Mission. Proc. of 2015 IEEE Aerospace
Conference, Big Sky, MT. 07 Mar. 2015. Web.

[19] M. A. Diftler et al., "Robonaut 2 - The first humanoid robot in
space," 2011 IEEE International Conference on Robotics and

Automation, Shanghai, 2011, pp. 2178-2183.

[20] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. M. Vice,
“Analysis of Human-robot Interaction at the DARPA Robotics

Challenge Trials.,” J. Field Robotics, vol. 32, no. 3, pp. 420–444, 2015.

[21] P. Strawser, L. C. Farrell, K. Hambuchen, M. Goza, S. Azimi, J.

Badger, “TaskForce: A Task Design and Execution Framework” 2017

IEEE/RSJ international conference on intelligent robots and systems,
Vancouver, 2017, submitted for publication

[22] Sheridan, Thomas B. Telerobotics, Automation, and Human
Supervisory Control. Cambridge: MIT, 1992.

