

Prediction of Turbulent Temperature Fluctuations in Hot Jets

Jim DeBonis
Inlets and Nozzles Branch
NASA Glenn Research Center
Cleveland, Ohio
james.r.debonis@nasa.gov

Prediction of Heated Jets

- Jets with significant temperature differences have many important applications
 - Aeroacoustics
 - Cooling flows
 - Fuel injectors
 - IR signatures
- Standard CFD methods (RANS) do a very poor job predicting these flows
- Possible reasons
 - Turbulence model
 - Turbulent Prandtl number variation
 - Turbulent heat flux modeling

Reynolds-Averaged Navier-Stokes

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_i} \left(\overline{\rho} \hat{u}_i \right) = 0$$

$$\frac{\partial}{\partial t} \left(\overline{\rho} \hat{u}_i \right) + \frac{\partial}{\partial x_j} \left(\overline{\rho} \hat{u}_i \hat{u}_j \right) + \frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\overline{\rho u_i' u_j'} \right) = 0$$

$$\frac{\partial}{\partial t} \left(\overline{\rho} \hat{e}_t \right) + \frac{\partial}{\partial x_j} \left(\overline{\rho} \hat{u}_j \hat{e}_t + \hat{u}_j \overline{p} \right) - \frac{\partial}{\partial x_j} \left[\hat{u}_i \overline{\tau}_{ij} - \hat{u}_i \left(\overline{\rho u_i' u_j'} \right) \right] + \frac{\partial}{\partial x_j} \left(\overline{q}_j + c_p \overline{\rho u_j' T'} \right) = 0$$

$$\overline{\tau_{ij}} = 2\mu \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]$$

$$\overline{q_j} = -c_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}$$

Reynolds-Averaged Navier-Stokes

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_i} \left(\overline{\rho} \hat{u}_i \right) = 0$$

$$\mathbf{Reynolds \ stress}$$

$$\frac{\partial}{\partial t} \left(\overline{\rho} \hat{u}_i \right) + \frac{\partial}{\partial x_j} \left(\overline{\rho} \hat{u}_i \hat{u}_j \right) + \frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\overline{\rho} u_i' u_j' \right) = 0$$

$$\frac{\partial}{\partial t} \left(\overline{\rho} \hat{e}_t \right) + \frac{\partial}{\partial x_j} \left(\overline{\rho} \hat{u}_j \hat{e}_t + \hat{u}_j \overline{p} \right) - \frac{\partial}{\partial x_j} \left[\hat{u}_i \overline{\tau}_{ij} - \hat{u}_i \left(\overline{\rho} u_i' u_j' \right) \right] + \frac{\partial}{\partial x_j} \left(\overline{q}_j + \overline{c_p \rho u_j' T'} \right) = 0$$

$$\overline{\tau_{ij}} = 2\mu \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]$$

$$\overline{q_j} = -c_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}$$
 Turbulent heat flux

Turbulence Closure

- Reynolds stress
 - Boussinesq approximation

$$-\overline{\rho u_i' u_j'} = \mu_t \left(2\hat{S}_{ij} - \frac{2}{3} \frac{\partial \hat{u}_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} \overline{\rho} k \delta_{ij}$$

$$\hat{S}_{ij} = \frac{1}{2} \left(\frac{\partial \hat{u}_i}{\partial x_j} + \frac{\partial \hat{u}_j}{\partial x_i} \right)$$

- Turbulent heat flux
 - Gradient diffusion & Reynolds Analogy

$$c_p \overline{\rho u_j' T'} = -c_p \frac{\mu_t}{P r_t} \frac{\partial T}{\partial x_j}$$

Approach

- Use large-eddy simulation (LES) to examine the turbulent heat flux vector, q^T_i, and turbulent Prandtl number,Pr_t, in hot jets
- Validate the LES using experimental data
 - PIV data for velocity
 - Rayleigh scattering and Raman spectroscopy for temperature
- Make a leap of faith that if u' and T' are validated separately, then u'T' should not be too bad
- Compare results to Reynolds-Averaged Navier-Stokes (RANS) simulations and evaluate

Large-Eddy Simulations

- WRLES code
 - Explicit high-resolution finite-difference code
 - 11-pt DRP differencing scheme (Bogey & Bailly, 2004)
 with matching filter
 - 4-stage, 3rd order Runge-Kutta time stepping
 - Hybrid MPI/OpenMP parallelization

Grid

- Structured grid
- 36 million points
- 912x184x181 points downstream of nozzle exit

RANS Simulations

- Wind-US
 - Finite-volume
 - Structured grid axisymmetric mode
 - 2nd-order upwind biased RHS
 - Full block-implicit LHS
 - SST-V turbulence model (vorticity based production term)

Grid

- Taken from turbmodels.larc.nasa.gov
- 73,151 points
- Downstream of the nozzle exit 257x251 points
- Provides grid converged solutions with Wind-US

Round Jet Experiments

- Small Hot Jet Acoustic Rig (SHJAR)
- 2-inch nozzles: ARN2 and SMC000
- PIV Velocity Data
 - Bridges and Wernet, NASA TM 2011- 216807
 - Concensus dataset
 - Verified against hotwire and LDV
- Rayleigh Scattering Temperature Data
 - Mielke et al, AIAA Journal, Vol. 47, No. 4, 2009
 - Point measurement
- Raman Spectroscopy Temperature Data
 - Locke and Wernet, NASA TM 2017-219504
 - Point measurement

LES Methodology

- Implicit LES
- Nozzle boundary layer
 - No attempt to resolve a turbulent boundary layer
 - Transition occurs quickly in mixing layer
- Non-dimensional time

$$t^* = \frac{tD_j}{U_j}$$

• Startup time: 60t*

• Averaging time: $> 180t^*$

Flow Conditions

Set Point	M_{a}	T _j /T _∞	NPR	M _j
3	0.5	0.950	1.197	0.513
23	0.5	1.764	1.102	0.376
27	0.9	1.764	1.357	0.678

Mean Velocity

Axial Turbulence Intensity

Radial Turbulence Intensity

Radial Profiles – u' & v'

Mean Temperature

RMS Temperature

Radial Profiles – T'

Radial Profiles – q_x^T , q_y^T

Contours of $\langle \rho uu \rangle$ and q_x

Contours of $\langle \rho uv \rangle$ and q_v

Turbulent Heat Flux

Turbulent heat flux model

$$c_p \overline{\rho u_j' T'} = -c_p \frac{\mu_t}{P r_t} \frac{\partial T}{\partial x_j}$$

- Radial component
 - RANS & LES agree surprising well
 - Mean temperature gradient is in radial direction
- Axial component
 - LES predicts heat flux larger than radial component
 - RANS model predicts almost no heat flux
 - No temperature gradient in this direction
- LES heat flux agrees with experiments in the literature
 - Magnitude
 - Fabris (1979): <uT> & <vT> similar in magnitude
 - Tavoularis & Corrsin (1981): <uT> larger than <vT>
 - Alignment (angle between temp. gradient and heat flux vector)
 - Current LES: 57°
 - Tavoularis & Corrsin (1981): 63°
- Gradient diffusion model is not appropriate for this flow
- Heat flux behavior is analogous to momentum flux

Effect on the Energy Equation

Energy Equation

$$\frac{\partial}{\partial t} \left(\overline{\rho} \hat{e}_{t} \right) + \frac{\partial}{\partial x_{j}} \left(\overline{\rho} \hat{u}_{j} \hat{e}_{t} + \hat{u}_{j} \overline{p} \right) - \frac{\partial}{\partial x_{j}} \left[\hat{u}_{i} \overline{\tau}_{ij} - \hat{u}_{i} \left(\overline{\rho} \overline{u}_{i}' \overline{u}_{j}' \right) \right] + \frac{\partial}{\partial x_{j}} \left(\overline{q}_{j} + c_{p} \overline{\rho} \overline{u}_{j}' \overline{T}' \right) = 0$$
Divergence!

 Quantify the contribution of the missing axial component

$$\left\| \frac{\partial q_x^T}{\partial x} \right\| = \frac{\left| \frac{\partial q_x^T}{\partial x} \right|}{\sqrt{\left(\frac{\partial q_x^T}{\partial x} \right)^2 + \left(\frac{\partial q_r^T}{\partial r} \right)^2}}$$

Radial Profiles — $\|\frac{\partial q_x^T}{\partial x}\|$

Turbulent Prandtl Number

- Treated as a constant but varies, 0.5 < Pr_t < 1.0
- $Pr_t = 0.7$ is standard value for jets
- Variable Pr_t models often cited as a a solution to these types of problems
- Yoder's (2016) recent results showed no advantage for jets
- Can be computed from the LES

$$\epsilon_m = -\frac{\overline{\rho u'v'}}{\overline{\rho}\frac{\partial \overline{u}}{\partial y}}$$

$$\epsilon_T = -\frac{\overline{\rho v'T'}}{\overline{\rho}\frac{\partial \overline{T}}{\partial y}}$$

$$Pr_t = \frac{\epsilon_m}{\epsilon_T}$$

Radial Profiles – Pr_t

Summary and Conclusion

- LES and RANS methods were used to compute heated jet flows
 - RANS under-predicts spreading rate and inviscid core length (expected result)
 - LES agrees well with experimental data
- Turbulent heat flux
 - LES results consistent with literature
 - RANS model fails to replicate physics
 - Gradient diffusion assumption not appropriate for jets
- Turbulent Prandtl number
 - Little variation within the jet mixing layer
 - $Pr_{t} = 0.7$ is consistent with literature