

#### Prediction of Turbulent Temperature Fluctuations in Hot Jets



Jim DeBonis Inlets and Nozzles Branch NASA Glenn Research Center Cleveland, Ohio james.r.debonis@nasa.gov

## **Prediction of Heated Jets**



- Jets with significant temperature differences have many important applications
  - Aeroacoustics
  - Cooling flows
  - Fuel injectors
  - IR signatures
- Standard CFD methods (RANS) do a very poor job predicting these flows
- Possible reasons
  - Turbulence model
  - Turbulent Prandtl number variation
  - Turbulent heat flux modeling

#### **Reynolds-Averaged Navier-Stokes**



$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_i} \left( \overline{\rho} \hat{u_i} \right) = 0$$

$$\frac{\partial}{\partial t} \left( \overline{\rho} \hat{u}_i \right) + \frac{\partial}{\partial x_j} \left( \overline{\rho} \hat{u}_i \hat{u}_j \right) + \frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left( \overline{\rho} u'_i u'_j \right) = 0$$

$$\frac{\partial}{\partial t} \left( \overline{\rho} \hat{e}_t \right) + \frac{\partial}{\partial x_j} \left( \overline{\rho} \hat{u}_j \hat{e}_t + \hat{u}_j \overline{p} \right) - \frac{\partial}{\partial x_j} \left[ \hat{u}_i \overline{\tau}_{ij} - \hat{u}_i \left( \overline{\rho u'_i u'_j} \right) \right] + \frac{\partial}{\partial x_j} \left( \overline{q}_j + c_p \overline{\rho u'_j T'} \right) = 0$$

$$\overline{\tau_{ij}} = 2\mu \left[ \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]$$

$$\overline{q_j} = -c_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}$$

#### **Reynolds-Averaged Navier-Stokes**

$$\begin{aligned} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial}{\partial x_i} \left( \overline{\rho} \hat{u}_i \right) &= 0 \\ \mathbf{Reynolds \ stress} \\ \frac{\partial}{\partial t} \left( \overline{\rho} \hat{u}_i \right) &+ \frac{\partial}{\partial x_j} \left( \overline{\rho} \hat{u}_i \hat{u}_j \right) + \frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \overline{\tau}_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left( \overline{\rho} u'_i u'_j \right) &= 0 \\ \frac{\partial}{\partial t} \left( \overline{\rho} \hat{e}_t \right) &+ \frac{\partial}{\partial x_j} \left( \overline{\rho} \hat{u}_j \hat{e}_t + \hat{u}_j \overline{p} \right) - \frac{\partial}{\partial x_j} \left[ \hat{u}_i \overline{\tau}_{ij} - \hat{u}_i \left( \overline{\rho} u'_i u'_j \right) \right] + \frac{\partial}{\partial x_j} \left( \overline{q}_j + \frac{c_p \overline{\rho} u'_j T'}{\rho u'_j T'} \right) &= 0 \\ \overline{\tau}_{ij} &= 2\mu \left[ \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right] \\ \overline{q}_j &= -c_p \frac{\mu}{P_T} \frac{\partial T}{\partial x_j} \end{aligned}$$
 Turbulent heat flux

## **Turbulence Closure**

- Reynolds stress
  - Boussinesq approximation

$$-\overline{\rho u_i' u_j'} = \mu_t \left( 2\hat{S}_{ij} - \frac{2}{3} \frac{\partial \hat{u}_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} \overline{\rho} k \delta_{ij}$$
$$\hat{S}_{ij} = \frac{1}{2} \left( \frac{\partial \hat{u}_i}{\partial x_j} + \frac{\partial \hat{u}_j}{\partial x_i} \right)$$

- Turbulent heat flux
  - Gradient diffusion & Reynolds Analogy

$$c_p \overline{\rho u_j' T'} = -c_p \frac{\mu_t}{P r_t} \frac{\partial T}{\partial x_j}$$



## Approach



- Use large-eddy simulation (LES) to examine the turbulent heat flux vector, q<sup>T</sup><sub>i</sub>, and turbulent Prandtl number, Pr<sub>t</sub>, in hot jets
- Validate the LES using experimental data
  - PIV data for velocity
  - Rayleigh scattering and Raman spectroscopy for temperature
- Make a leap of faith that if u' and T' are validated separately, then u'T' should not be too bad
- Compare results to Reynolds-Averaged Navier-Stokes (RANS) simulations and evaluate

## Large-Eddy Simulations



- WRLES code
  - Explicit high-resolution finite-difference code
  - 11-pt DRP differencing scheme (Bogey & Bailly, 2004) with matching filter
  - 4-stage, 3<sup>rd</sup> order Runge-Kutta time stepping
  - Hybrid MPI/OpenMP parallelization
- Grid
  - Structured grid
  - 36 million points
  - 912x184x181 points downstream of nozzle exit

## **RANS Simulations**

- Wind-US
  - Finite-volume
  - Structured grid axisymmetric mode
  - 2<sup>nd</sup>-order upwind biased RHS
  - Full block-implicit LHS
  - SST-V turbulence model (vorticity based production term)
- Grid
  - Taken from turbmodels.larc.nasa.gov
  - 73,151 points
  - Downstream of the nozzle exit 257x251 points
  - Provides grid converged solutions with Wind-US



## **Round Jet Experiments**

- Small Hot Jet Acoustic Rig (SHJAR)
- 2-inch nozzles: ARN2 and SMC000
- PIV Velocity Data
  - Bridges and Wernet, NASA TM 2011- 216807
  - Concensus dataset
  - Verified against hotwire and LDV
- Rayleigh Scattering Temperature Data
  - Mielke et al, AIAA Journal, Vol. 47, No. 4, 2009
  - Point measurement
- Raman Spectroscopy Temperature Data
  - Locke and Wernet, NASA TM 2017-219504
  - Point measurement

ARN2







## LES Methodology

- Implicit LES
- Nozzle boundary layer
  - No attempt to resolve a turbulent boundary layer
  - Transition occurs quickly in mixing layer
- Non-dimensional time

$$t^* = \frac{tD_j}{U_j}$$

- Startup time: 60t\*
- Averaging time: > 180*t*<sup>\*</sup>

#### **Flow Conditions**

| Set<br>Point | M <sub>a</sub> | T <sub>j</sub> /T∞ | NPR   | Mj    |
|--------------|----------------|--------------------|-------|-------|
| 3            | 0.5            | 0.950              | 1.197 | 0.513 |
| 23           | 0.5            | 1.764              | 1.102 | 0.376 |
| 27           | 0.9            | 1.764              | 1.357 | 0.678 |



#### Mean Velocity





#### **Axial Turbulence Intensity**





#### **Radial Turbulence Intensity**





#### Radial Profiles – u' & v'





#### Mean Temperature





#### **RMS** Temperature





#### Radial Profiles – T'





## Radial Profiles – $q_{x}^{T}$ , $q_{y}^{T}$





### Contours of $<\rho$ uu> and $q_x$



 $q_x/(\rho U_j \Delta T_j) = \langle \rho uT \rangle$ 



## Contours of $<\rho$ uv> and q<sub>v</sub>







 $q_y/(\rho U_j \Delta T_j) = \langle \rho v T \rangle$ 



## **Turbulent Heat Flux**

• Turbulent heat flux model

$$c_p \overline{\rho u_j' T'} = -c_p \frac{\mu_t}{P r_t} \frac{\partial T}{\partial x_j}$$

- Radial component
  - RANS & LES agree surprising well
  - Mean temperature gradient is in radial direction
- Axial component
  - LES predicts heat flux larger than radial component
  - RANS model predicts almost no heat flux
  - No temperature gradient in this direction
- LES heat flux agrees with experiments in the literature
  - Magnitude
    - Fabris (1979): <uT> & <vT> similar in magnitude
    - Tavoularis & Corrsin (1981): <uT> larger than <vT>
  - Alignment (angle between temp. gradient and heat flux vector)
    - Current LES: 57°
    - Tavoularis & Corrsin (1981): 63°
- Gradient diffusion model is not appropriate for this flow
- Heat flux behavior is analogous to momentum flux



## Effect on the Energy Equation



Energy Equation

$$\frac{\partial}{\partial t} \left( \overline{\rho} \hat{e}_t \right) + \frac{\partial}{\partial x_j} \left( \overline{\rho} \hat{u}_j \hat{e}_t + \hat{u}_j \overline{p} \right) - \frac{\partial}{\partial x_j} \left[ \hat{u}_i \overline{\tau}_{ij} - \hat{u}_i \left( \overline{\rho} u_i' u_j' \right) \right] + \frac{\partial}{\partial x_j} \left( \overline{q}_j + c_p \overline{\rho} u_j' \overline{T'} \right) = 0$$

 Quantify the contribution of the missing axial component

$$\left\|\frac{\partial q_x^T}{\partial x}\right\| = \frac{\left|\frac{\partial q_x^T}{\partial x}\right|}{\sqrt{\left(\frac{\partial q_x^T}{\partial x}\right)^2 + \left(\frac{\partial q_r^T}{\partial r}\right)^2}}$$

# Radial Profiles – $\|\frac{\partial q_x^T}{\partial x}\|$





## **Turbulent Prandtl Number**



- Treated as a constant but varies, 0.5 < Pr<sub>t</sub> < 1.0
- Pr<sub>t</sub> = 0.7 is standard value for jets
- Variable Pr<sub>t</sub> models often cited as a a solution to these types of problems
- Yoder's (2016) recent results showed no advantage for jets
- Can be computed from the LES

$$\epsilon_m = -\frac{\overline{\rho u'v'}}{\overline{\rho}\frac{\partial \overline{u}}{\partial y}} \qquad \qquad \epsilon_T = -\frac{\overline{\rho v'T'}}{\overline{\rho}\frac{\partial \overline{T}}{\partial y}}$$
$$Pr_t = \frac{\epsilon_m}{\epsilon_T}$$

## Radial Profiles – Pr<sub>t</sub>





## **Summary and Conclusion**



- LES and RANS methods were used to compute heated jet flows
  - RANS under-predicts spreading rate and inviscid core length (expected result)
  - LES agrees well with experimental data
- Turbulent heat flux
  - LES results consistent with literature
  - RANS model fails to replicate physics
  - Gradient diffusion assumption not appropriate for jets
- Turbulent Prandtl number
  - Little variation within the jet mixing layer
  - Pr<sub>t</sub> = 0.7 is consistent with literature