On High-Order Upwind Methods for Advection

AIAA-CFD Conference, June 5, 2017

H. T. Huynh

NASA Glenn Research Center, Cleveland, Ohio huynh@grc.nasa.gov

Supported by NASA's
Transformational Tools and Technologies Project

Motivation

- Second-order methods are currently popular; for turbulent and unsteady flows, they are generally unreliable or impractical.
- Worldwide effort to improve accuracy and efficiency for such flow problems by employing high-order methods:

1) The numerous papers at this conference.
2) International Workshop on High-Order CFD Methods
3) The TILDA project (Towards Industrial LES and DNS for Aeronautics) supported by the European Union.

- High-order methods need further development and improvement. The current work is along this direction.

Setup

- Goal: solve the Navier-Stokes equations numerically. Numerical methods toward this goal are typically first derived and analyzed for the advection equation.
- Van Leer (1977) introduced five schemes for advection in "Towards the ultimate conservative difference scheme, IV".
- Scheme I: least accurate but became most popular; widely known as the MUSCL scheme.
- Schemes III (piecewise linear, discontinuous) and V (piecewise parabolic, continuous): most accurate but least popular. They are the main focus of current work.

Setup

- (Van Leer and Nomura 2005): "When trying to extend these schemes beyond advection, viz., to a nonlinear hyperbolic system like the Euler equations, the first author ran into insuperable difficulties because the exact shift operator no longer applies, and he abandoned the idea".
- Scheme III was extended to systems of equations in (Huynh 2006). The approach was further analyzed and applied to hyperbolic-relaxation equations by Suzuki, Khieu, Van Leer (2007-2009). High-order extension was carried out by Lo (2011) and Huynh (2013).
- Scheme V is being extended to systems of equations by Roe, Eymann, and Fan (2013-present) and called the active flux scheme.

Main Findings of Current Work

- Equivalence result: Schemes III and V are shown to be equivalent in the sense that they yield identical solutions.
- This equivalence is counter intuitive.
- This finding also shows a key connection between the approaches of discontinuous (scheme III) and continuous (scheme V) polynomial approximations.
- High-order extension: introduce a projection-interpolation framework that simultaneously extends schemes III and V.

Outline

- Review MUSCL approach and schemes III and V.
- A new result: the equivalence of these two schemes.
- Introduce a projection-interpolation framework that simultaneously extends schemes III and V to arbitrary-order.
- Von Neumann (or Fourier) stability and accuracy analysis.
- Conclusions and discussion.

Advection Equation

$$
u_{t}+a u_{x}=0, \quad a \geq 0
$$

Initial condition : at $t=0, u(x)=u_{0}(x)$
Exact solution : $u(x, t)=u_{0}(x-a t)$

time $t=0$

time $t>0$

Advection Equation

- Simplifies the derivation and description of CFD methods.
- Facilitates linear stability and accuracy analysis.
- Schemes derived for advection must then be extended to systems of equations, which is often not an easy task.

Discretization

The data u_{j}^{n} represents the average value of u in the cell $\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$ at time t^{n}

First-Order Upwind Method for Advection: Shift Operator and Projection

(a) Data

(b) First-order solution (red)

$$
\begin{gathered}
\sigma=a \frac{\Delta t}{\Delta x} \\
u_{j}^{n+1}=\sigma u_{j-1}+(1-\sigma) u_{j}
\end{gathered}
$$

High-Order Extension: Legendre Polynomials

On $I=[-1,1]$, by orthgonalizing the monomials $\xi^{k}, k=0,1,2, \ldots$, via Gram-Schmidt process, we obtain the Legendre polynomials

$$
L_{0}=1, \quad L_{1}=\xi, \quad L_{2}=\frac{1}{2}\left(3 \xi^{2}-1\right), \quad L_{3}=\frac{1}{2}\left(5 \xi^{3}-3 \xi\right), \ldots
$$

Projection using Legendre Polynomials

On $I=[-1,1]$, approximate u by $\sum_{k=0}^{p} u_{j, k} L_{k}$ where

$$
\begin{aligned}
u_{j, 0} & =\int_{-1}^{1} L_{0}(\xi) u(\xi) d \xi /\left\|L_{0}\right\|^{2}=\frac{1}{2} \int_{-1}^{1} 1 u(\xi) d \xi \\
u_{j, 1} & =\int_{-1}^{1} L_{1}(\xi) u(\xi) d \xi /\left\|L_{1}\right\|^{2} \\
& \ldots \\
u_{j, k}= & \int_{-1}^{1} L_{k}(\xi) u(\xi) d \xi /\left\|L_{k}\right\|^{2}
\end{aligned}
$$

Van Leer's Scheme III Employing Shift and Projection

(a) Data

(b) Linear solution

Van Leer's Scheme III

$$
\begin{aligned}
& u_{\substack{ }}^{P_{j-1}} \\
& u_{j, k}^{n+1}=\binom{\int_{-1}^{-1+2 \sigma} P_{j-1}(\xi-\sigma+1) L_{k}(\xi) d \xi}{+\int_{-1+2 \sigma}^{1} P_{j}(\xi-\sigma) L_{k}(\xi) d \xi} /\left\|L_{k}\right\|^{2} \\
& P_{j}^{n+1}(\xi)=\sum_{k=0}^{p} u_{j, k}^{n+1} L_{k}(\xi)
\end{aligned}
$$

Scheme III

$$
\begin{aligned}
\binom{u_{j, 0}^{n+1}}{u_{j, 1}^{n+1}}= & \left(\begin{array}{cc}
\sigma & \sigma(1-\sigma) \\
-3 \sigma(1-\sigma) & -\sigma\left(3-6 \sigma+2 \sigma^{2}\right)
\end{array}\right)\binom{u_{j-1,0}}{u_{j-1,1}}+ \\
& \left(\begin{array}{cc}
1-\sigma & -\sigma(1-\sigma) \\
3 \sigma(1-\sigma) & (1-\sigma)\left(1-2 \sigma-2 \sigma^{2}\right)
\end{array}\right)\binom{u_{j, 0}}{u_{j, 1}}
\end{aligned}
$$

Set

$$
U_{j}=\binom{u_{j, 0}}{u_{j, 1}},
$$

Then

$$
U_{j}^{n+1}=C_{-1} U_{j-1}+C_{0} U_{j}
$$

Projection to Arbitrary Order

Scheme III can be considered as a precursor of the DG method.

Van Leer's Scheme V

The cell average values $u_{j, 0}$ and interface values $u_{j+1 / 2}$ are stored.
In each cell j, the values $u_{j-1 / 2}, u_{j, 0}$, and $u_{j+1 / 2}$ define a parabola.

(a) Parabolic Data

(b) Parabolic solution (red)

Scheme V

$$
\begin{gathered}
\binom{u_{j, 0}^{n+1}}{u_{j+1 / 2}^{n+1}}= \\
\left(\begin{array}{cc}
\sigma^{2}(3-2 \sigma) & \sigma(1-\sigma) \\
0 & \sigma(-2+3 \sigma)
\end{array}\right)\left(\begin{array}{cc}
0 & -\sigma^{2}(1-\sigma) \\
0 & 0
\end{array}\right)\left(\begin{array}{l}
u_{j-1,0} \\
u_{j-2,0} \\
u_{j-1 / 2}
\end{array}\right)+ \\
\left(\begin{array}{cc}
(1-\sigma)^{2}(1+2 \sigma) & -\sigma(1-\sigma)^{2} \\
6 \sigma(1-\sigma) & (1-\sigma)(1-3 \sigma)
\end{array}\right)\binom{u_{j, 0}}{u_{j+1 / 2}} \\
U_{j}^{n+1}=C_{-2} U_{j-2}+C_{-1} U_{j-1}+C_{0} U_{j}
\end{gathered}
$$

Equivalence of Schemes III and V

* Assume that the cell average values $u_{j, 0}$ and interface values $u_{j+1 / 2}$ for scheme V are known.
* Also assume that the CFL number σ is fixed.
* For scheme III, set

$$
u_{j, 1}=(1-\sigma)\left(u_{j+1 / 2}-u_{j, 0}\right)+\sigma\left(u_{j, 0}-u_{j-1 / 2}\right)
$$

* Then the cell average solutions at time t^{n+1} of schemes III and V are identical:

$$
u_{j, 0}^{\mathrm{III}}=u_{j, 0}^{\mathrm{V}}=u_{j, 0}
$$

* In addition,

$$
u_{j, 1}^{n+1}=(1-\sigma)\left(u_{j+1 / 2}^{n+1}-u_{j, 0}^{n+1}\right)+\sigma\left(u_{j, 0}^{n+1}-u_{j-1 / 2}^{n+1}\right)
$$

Equivalence of Schemes III and V

Equivalence of Schemes III and V

* Assume that the cell average values $u_{j, 0}$ and interface values $u_{j+1 / 2}$ for scheme V are known.
* Also assume that the CFL number σ is fixed.
* For scheme III, set

$$
u_{j, 1}=(1-\sigma)\left(u_{j+1 / 2}-u_{j, 0}\right)+\sigma\left(u_{j, 0}-u_{j-1 / 2}\right)
$$

* Then the cell average solutions at time t^{n+1} of schemes III and V are identical:

$$
u_{j, 0}^{\mathrm{III}}=u_{j, 0}^{\mathrm{V}}=u_{j, 0}
$$

* In addition,

$$
u_{j, 1}^{n+1}=(1-\sigma)\left(u_{j+1 / 2}^{n+1}-u_{j, 0}^{n+1}\right)+\sigma\left(u_{j, 0}^{n+1}-u_{j-1 / 2}^{n+1}\right) .
$$

Projection-Interpolation Schemes

1 piece of data per cell, or $K=1$

$$
u_{j}^{n+1}=\sigma u_{j-1}+(1-\sigma) u_{j}
$$

Interpolation I_{0}

Projection-Interpolation Schemes

2 pieces of data per cell, or $K=2$

Projection P_{1}
Scheme III

$\mathrm{P}_{0} \mathrm{I}_{0}$
Scheme V

I_{1} or Cubic Interpolation

Projection-Interpolation Schemes

3 pieces of data per cell, or $K=3$
P_{2}
$\mathrm{P}_{1} \mathrm{I}_{0}$
$\mathrm{P}_{0} \mathrm{I}_{1}$

I_{2}

Family of $\mathrm{P} \mu \mathrm{I} v$ Schemes

* Projection part : Projecting the data onto P_{μ} results in $\mu+1$ quantities

$$
u_{j, k}^{n}=u_{j, k}, \quad k=0, \ldots, \mu
$$

where

$$
u_{j, k}=\frac{2 k+1}{2}\left(u, L_{k}\right) .
$$

* Interpolation part: At each interface $x_{j+1 / 2}$, the interpolation part consists of approximations to $\frac{d^{l} u}{d \xi^{l}}$ to degree v, i.e., the $v+1$ quantities

$$
u_{j+1 / 2, l}^{n}=u_{j+1 / 2, l}, \quad l=0, \ldots, v
$$

Family of $\mathrm{P} \mu \mathrm{I} v$ Schemes

* For each cell, we have $\mu+1$ projection quantities in the cell and $2(v+1)$ interpolation quantities at the two interfaces.
* These $2 v+\mu+3$ quantities for each cell define a polynomial of degree $2 v+\mu+2$.
* Shift the polynomial data a distance $a \Delta t$.
* Update the projection part and the interpolation part.

Fourier Stability and Accuracy Analysis

Define U_{j} with $K=\mu+v+2$ components by

$$
U_{j}=\left(u_{j, 0}, \ldots, u_{j, \mu}, u_{j+1 / 2,0} \ldots, u_{j+1 / 2, v}\right)
$$

The solution can be written as

$$
U_{j}^{n+1}=C_{-2} U_{j-2}+C_{-1} U_{j-1}+C_{0} U_{j} .
$$

Assume the data is a harmonic that satisfies

$$
U_{j-1}=e^{-i w} U_{j}
$$

Then,

$$
U_{j}^{n+1}=\left[e^{-2 i w} C_{-2}+e^{-i w} C_{-1}+C_{0}\right] U_{j}
$$

For the first - order upwind scheme,

$$
U_{j}^{n+1}=\left[e^{-i w} \sigma+(1-\sigma)\right] U_{j}
$$

Fourier Analysis: Plots of Absolute Values of Eigenvalues

Fourier Analysis: Plots of Absolute Values of Eigenvalues

Fourier Analysis: Plots of Absolute Values of Eigenvalues

Projection-Interpolation Schemes

- Derived for advection equation
- With K degrees of freedom per cell, the scheme is accurate to order $2 K-1$ (i.e., it is super accurate or super convergent)
- CFL condition is 1 as opposed to $\sim 1 / K^{2}$ for explicit RK-DG.
- Extension to systems of equations in multiple dimensions remains an open problem.

Conclusions

- Reviewed MUSCL approach for the advection equation.
- Presented a key new result: the equivalence of schemes III and V .
- The above result shows a key connection between continuous and discontinuous approaches.
- Introduced a projection-interpolation framework that simultaneously extends these schemes into a single family of high-order methods.
- Discussed Von Neumann (or Fourier) stability and accuracy analysis.
- Further research on these methods is needed.

Thank you

for your attention.

Examples for the Equivalence, $\sigma=0.2$

$$
u_{j, 1}=(1-\sigma)\left(u_{j+1 / 2}-u_{j, 0}\right)+\sigma\left(u_{j, 0}-u_{j-1 / 2}\right) \text { is close to }\left(u_{j+1 / 2}-u_{j, 0}\right)
$$

Examples for the Equivalence, $\sigma=0.8$

$$
u_{j, 1}=(1-\sigma)\left(u_{j+1 / 2}-u_{j, 0}\right)+\sigma\left(u_{j, 0}-u_{j-1 / 2}\right) \text { is close to }\left(u_{j+1 / 2}-u_{j, 0}\right)
$$

