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Motivation

 Second-order methods are currently popular; for turbulent and 
unsteady flows, they are generally unreliable or impractical.

 Worldwide effort to improve accuracy and efficiency for such 
flow problems by employing high-order methods:

1) The numerous papers at this conference. 

2) International Workshop on High-Order CFD Methods 

3) The TILDA project (Towards Industrial LES and DNS for 
Aeronautics) supported by the European Union.

 High-order methods need further development and 
improvement. The current work is along this direction.
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Setup

 Goal:  solve the Navier-Stokes equations numerically. 

Numerical methods toward this goal are typically first 

derived and analyzed for the advection equation.

 Van Leer (1977) introduced five schemes for advection in 

“Towards the ultimate conservative difference scheme, IV”.

 Scheme I: least accurate but became most popular; widely 

known as the MUSCL scheme.

 Schemes III (piecewise linear, discontinuous) and V 

(piecewise parabolic, continuous): most accurate but least 

popular. They are the main focus of current work.
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Setup

 (Van Leer and Nomura 2005): “When trying to extend 

these schemes beyond advection, viz., to a nonlinear 

hyperbolic system like the Euler equations, the first author 

ran into insuperable difficulties because the exact shift 

operator no longer applies, and he abandoned the idea”.

 Scheme III was extended to systems of equations in 

(Huynh 2006). The approach was further analyzed and 

applied to hyperbolic-relaxation equations by Suzuki, 

Khieu, Van Leer (2007-2009). High-order extension was 

carried out by Lo (2011) and Huynh (2013).

 Scheme V is being extended to systems of equations by 

Roe, Eymann, and Fan (2013-present) and called the 

active flux scheme.



5

Main Findings of Current Work

 Equivalence result: Schemes III and V are shown to be 

equivalent in the sense that they yield identical solutions.

o This equivalence is counter intuitive. 

o This finding also shows a key connection between the 

approaches of discontinuous (scheme III) and 

continuous (scheme V) polynomial approximations. 

 High-order extension: introduce a projection-interpolation 

framework that simultaneously extends schemes III and V. 
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Outline

 Review MUSCL approach and schemes III and V.

 A new result: the equivalence of these two 

schemes.

 Introduce a projection-interpolation framework 

that simultaneously extends schemes III and V to 

arbitrary-order. 

 Von Neumann (or Fourier) stability and accuracy 

analysis.

 Conclusions and discussion.
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Advection Equation
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Advection Equation

 Simplifies the derivation and description of CFD 

methods.

 Facilitates linear stability and accuracy analysis.

 Schemes derived for advection must then be 

extended to systems of equations, which is often 

not an easy task. 
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Discretization
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First-Order Upwind Method for Advection:

Shift Operator and Projection
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High-Order Extension: Legendre Polynomials
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Projection using Legendre Polynomials
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Van Leer’s Scheme III Employing Shift and Projection
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Van Leer’s Scheme III
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Scheme III
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Projection to Arbitrary Order 
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Van Leer’s Scheme V
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Scheme V
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Equivalence of Schemes III and V
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Equivalence of Schemes III and V
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Equivalence of Schemes III and V
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Projection-Interpolation Schemes      
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Projection-Interpolation Schemes      
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Projection-Interpolation Schemes      

3or   cell,per  data of pieces 3 K

2P 0 1 IP 2I1 0 IP



25

Family of            Schemes      
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Family of             Schemes      
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Fourier Stability and Accuracy Analysis
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Fourier Analysis: Plots of Absolute Values of Eigenvalues
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Fourier Analysis: Plots of Absolute Values of Eigenvalues
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K = 4

Fourier Analysis: Plots of Absolute Values of Eigenvalues



Projection-Interpolation Schemes

• Derived for advection equation

• With K degrees of freedom per cell, the scheme is 

accurate to order 2𝐾 − 1 (i.e., it is super accurate or 

super convergent)

• CFL condition is 1 as opposed to ~1/𝐾2 for explicit 

RK-DG.

• Extension to systems of equations in multiple 

dimensions remains an open problem.
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Conclusions

 Reviewed MUSCL approach for the advection equation.

 Presented a key new result: the equivalence of schemes III 

and V. 

 The above result shows a key connection between 

continuous and discontinuous approaches.

 Introduced a projection-interpolation framework that 

simultaneously extends these schemes into a single family 

of high-order methods. 

 Discussed Von Neumann (or Fourier) stability and 

accuracy analysis.

• Further research on these methods is needed.
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Thank you 

for your attention.
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Examples for the Equivalence,
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Examples for the Equivalence,
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