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Scope of the work:

Tones were encountered in larger-scale, multi-

stream nozzle tests in the Aeoacoustics 

Propulsion Laboratory (AAPL).

An approximately half-scale model of a 2-stream 

nozzle was built to study the tones and find 

possible remedy. 

This paper presents results from the model-scale 

experiment. 

Results of a numerical study on duct acoustic 

modes corresponding to the tones are also 

presented.
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NPRc NPRb NTRc NTRb Notes

1.595 1.620 1.819 1.254 howling@7kHz&35kH+

1.551 1.597 1.797 1.249 howling@7kHz&35kH+

1.510 1.576 1.776 1.244 howling@7kHz&35kH+

1.434 1.534 1.735 1.234 howling@7kHz&35kH+

1.354 1.488 1.688 1.222 howling@7kHz&35kH+

2 2 1.776 1.25 howling@7kHz--no	high

2 1.8 1.776 1.25 howling@7kHz--no	high

2 1.5 1.776 1.25 rough	stuff	at	f>35kHz

2 1.064 1.776 1.25 smooth
1.8 2.1 1.777 1.25 howling@7kHz&35kH+

1.8 1.8 1.777 1.25 howling@7kHz--no	high

1.8 1.6 1.777 1.25 howling@7kHz&35kH+

1.8 1.4 1.777 1.25 rough	stuff	at	f>35kHz

1.8 1.2 1.777 1.25

1.8 1.06 1.777 1.25

1.6 1.06 1.777 1.25 smooth

1.6 1.2 1.777 1.25 smooth

1.6 1.4 1.777 1.25 rough	stuff	at	f>35kHz
1.6 1.6 1.777 1.25 howling@7kHz&35kH+

1.6 1.8 1.777 1.25 howling@7kHz&35kH+

Tone problem faced in the AAPL with a 2-stream nozzle

AIAA Aeroacoustics Conference, Denver, CO,  Jun 5-9,  2017,  Zaman/GRC

NASA Glenn Research Center 



5

Remedies tried
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0.46-scale model of two-stream nozzle  
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Sound pressure level spectra (=90°)

--Broadband peak is due to TE shedding (frequency of peak increases with Mj); 

Strouhal number based on lip thickness is about 0.2.

--There are sharp tones at lower Mj.

M
J

f S
t lip

/U
J

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.015-lip

0.030-lip

0.050-lip

f (kHz)

S
P

L
,
d

B
(s

ta
g

g
e
re

d
)

25 50 75

40

60

80

100

120

140

1.017

Mj= 1.116

1.064

0.971

0.881

0.786
0.698

0.615

0.513

0.430

0.356

0.256

0.030 lip case BB peak freq data for all three inner nozzles

AIAA Aeroacoustics Conference, Denver, CO,  Jun 5-9,  2017,  Zaman/GRC

NASA Glenn Research Center 



8

Sound pressure level spectra in low Mj range 

--Frequency of tone varies with Mj in steps.
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Four cases corresponding to the four stages are explored

with parametric variation

Parameters varied:

Lip thickness of inner nozzle

Inlet length (L = 0.75, 2, 4.75)

Flared and constricted inlets

Lip-to-lip distance
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Effect of changed lip-to-lip distance
Changed by unscrewing inner nozzle

--Tone frequencies remained basically unchanged. 
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Tone frequency vs. Mj for different inlet lengths

--With parameter variations noted in last slide frequencies were basically unaffected. 

-- Here data shown for inlet length variation and also with outer flow blocked.

-- Same four stages occurred in all cases.
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SPL spectra with caps on inner struts

--caps with width w = 0.65 (full span 0.8) took the tones out !! 

-- w = 0.3 or 0.1 were just as effective. 
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SPL spectra with full-span caps on inner struts

--Tones came back at higher Mj.
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SPL spectra with full-span caps on inner struts

--Two stages of tones occurred in Mj range of 0.4–0.85. 

-- Amplitudes were the largest in the middle of each stage.
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Schlieren pictures of flow-field for full-caps on inner struts

--Tones excite the shear layer.

--Shedding from the inner nozzle lip can also be discerned upon inspection.

Mj =0.45, f=4.13 kHz

(shedding at 45 kHz)

Mj =0.67, f=6 kHz

(shedding at 65 kHz)
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-- Obviously, shedding from the struts couples with duct resonances 

to generate the tones.

-- Experimental data did not shed any light on the nature of the duct 

modes. 

-- In order to study this, numerical simulation was done using a code, 

‘COMSOL Multiphysics’, for the given geometry of the nozzle 

and struts.
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Numerical simulation

-- No flow.

-- Asymmetric perturbation 

imparted near TE of one of

the four struts.

-- Solves for acoustic pressure

field within the domain.

-- With perturbation at a given

frequency maximum pressure

and maximum velocity in the 

domain are monitored. 

This way a spectrum of the

Response function is 

constructed.
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Numerical simulation

-- Peaks at 4.46, 7.76 and 12.37 kHz are captured reasonably well ! 

-- Peak at 9.76 kHz is not but there is a hint of energy around that frequency.
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‘Mode shapes’ at monitored plane just downstream of struts

-- ‘Fundamental’ involves positive and negative pressure regions in alternate intra-

strut spaces, at a given instant. 

-- First harmonic involves pairs of positive and negative pressure regions within a 

intra-strut space. 

-- 12.52 kHz involves a complex azimuthal/radial distribution.

4.53 kHz 8.05 kHz 12.52 kHz
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Pressure and velocity distribution for fundamental (4.525 kHz)

in entire domain

-- Complex standing waves are set up 

around the struts. 

-- High pressure regions (anti-nodes) 

occur against the duct inner wall in 

between pairs of struts. 

-- Even though only one strut is driven, 

synchronized motion occurs from 

all four struts.

-- Struts themselves are regions of 

velocity anti-nodes.
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Conclusions:

-- The source of the tones is traced to vortex shedding from the struts. 

-- Perturbation from shedding couples with acoustic modes of the nozzle/strut, 

leading to step-like variation of tone frequency with Mach number. 

-- Standing waves form around struts. The fundamental involves alternating 

positive and negative pressure regions in intra-strut spaces. The pattern is 

anti-symmetric about a diametral plane. With increasing frequency the 

shape of the standing wave become more complex.

-- A leading edge treatment of the struts in the inner nozzle eliminates the tones. 

This is due to a disruption of two-dimensionality of the flow that in turn 

disrupts organized vortex shedding.

-- It is possible a similar remedy may work in other situations, e.g., in wind-tunnel 

tests where tones are generated by coupling of vortex shedding from some 

component with tunnel acoustic modes.
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Straight inlet

No cap

Mj f (kHz) ft/Uin

0.168 4.5 0.30

0.260 7.75 0.33

0.345 9.5 0.31

0.427 12.38 0.32

Straight inlet

Full caps on 4 inner struts

Mj f (kHz) fh/Uin

0.45 4.13 0.22

0.75 6.45 0.21

Strouhal number based on local velocity and strut thickness 

t= 0.125

c= 0.65

h= 0.265

-- Shedding Strouhal number depends soemwhat on geometry of strut  

-- It is apparent Karman shedding is the instigator for the observed tones


