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Abstract

A new cohesive zone traction-separation law, which includes the effects of fiber bridg-
ing, has been developed, implemented with a finite element (FE) model, and applied
to simulate the delamination between the facesheet and core of a composite hon-
eycomb sandwich panel. The proposed traction-separation law includes a standard
initial cohesive component, which accounts for the initial interfacial stiffness and
energy release rate, along with a new component to account for the fiber bridging
contribution to the delamination process. Single Cantilever Beam tests on alu-
minum honeycomb sandwich panels with carbon fiber reinforced polymer facesheets
were used to characterize and evaluate the new formulation and its finite element
implementation. These tests, designed to evaluate the mode I toughness of the
facesheet to core interface, exhibited significant fiber bridging and large crack pro-
cess zones, giving rise to a concave downward / concave upward pre-peak shape
in the load-displacement curve. Unlike standard cohesive formulations, the pro-
posed formulation captures this observed shape, and its results have been shown to
be in excellent quantitative agreement with experimental load-displacement results
and apparent critical energy release rate results, representative of a payload fairing
structure, as well as local strain fields measured with digital image correlation.

1 Introduction

Payload fairings are large shell structures mounted atop launch vehicles that pro-
tect the payload from aerodynamic and acoustic loads during launch. They must
separate cleanly from the vehicle after launch, without the possibility of re-contact.
The baseline design of the payload fairing for NASA’s Space Launch Systems (SLS)
heavy lift vehicle involves separable petals composed of aluminum honeycomb sand-
wich panels with carbon fiber reinforced polymer facesheets. Pre-existing flaws from
manufacturing defects or damage during handling, assembly, payload encapsulation,
vehicle integration and launch can jeopardize the expected life and performance of
honeycomb structures like the SLS fairing. While damage detected through non-
destructive evaluation prior to launch will be repaired, the presence of undetected
damage, as well as damage occurring during launch, cannot be ruled out. Therefore,
damage tolerance is a key component of the SLS fairing design.
Low-speed impacts, such as tool drops or unintended contact with ground sup-
port equipment, are the most prevalent cause of post-manufacturing damage. For
honeycomb sandwich structures, low-speed impacts result in core crushing, delam-
ination/disbonds, and matrix cracking [1, 2]. Subsequent loading can lead to kink
band formation (fiber microbuckling), indentation (core crushing growth), and de-
lamination/disbond growth [1–4]. Compression after impact (CAI) tests are a typ-
ical method for quantifying the effect of such damage on composite honeycomb
sandwich panels. CAI tests produce a reduced design-to strength allowable for the
honeycomb panel composite facesheets, providing damage tolerance for strength-
driven designs [5,6]. However, the acreage payload fairing panel design is buckling-
dominated, with local stresses at the buckling failure loads being several times lower
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than the strength allowable [7–9]. As such, understanding the failure mechanisms
associated with damage and buckling is critical for providing damage tolerance to
large composite honeycomb sandwich structures like the SLS fairing.
The present work focuses on the delamination/disbond failure mechanism in dam-
aged composite honeycomb panels. Disbond growth may occur in large composite
honeycomb sandwich panels prior to, or in conjunction with, panel buckling [10].
To include this mechanism in finite element panel buckling simulations, a charac-
terized cohesive zone model is needed that can accurately model the facesheet to
core interfacial behavior. Towards this end, the growth of disbonds between the
facesheets and the aluminum honeycomb core is investigated herein via Single Can-
tilever Beam (SCB) tests and employing a new cohesive zone model that accounts
for the extensive bridging observed during the SCB testing.
Numerically, delamination is commonly described by cohesive zone models (CZMs),
which relate the traction across the crack to the corresponding separation. There are
various formulations for cohesive laws, including bilinear [11, 12], tri-linear [13–18],
quadratic [19], square root [20], exponential [21,22] and general power laws [23,24].
The traction-separation law is generally implemented in zero thickness element for-
mulations, which lack many conventional continuum element properties such as
lateral contraction. The resulting spring-like formulation is well-suited for the high
element aspect ratios encountered in thin cohesive layer problems. Consistent engi-
neering solutions are obtained when the length of the process zone is several times
the characteristic element length and the crack is thus “smeared” over multiple el-
ements [25].
Alternatively delamination has been modeled in a finite thickness framework, e.g.
[26–29]. It has recently been demonstrated that the numerical challenges posed by
the involved aspect ratios can be alleviated by employing solid-shell element formu-
lations [30, 31]. However, in the presence of fiber bridging, traction is transferred
even at very large separations, which leads to non-zero stress at unreasonably high
strains in the continuum damage mechanics framework.
Fiber bridging has been investigated in a CZM framework multiple times with var-
ious foci. In [13–15] Li et al. propose a tri-linear model in which the model pa-
rameters are related to matrix cracking and fiber bridging and apply the cohesive
relationship to a composite with random fiber orientation. A similar approach is
followed by Dávila et al. [16] for the modeling of a compact tension specimen where
the fibers are aligned in load direction and by for instance Heidari-Rarani et al. or
Airoldi and Dávila [17, 32] who use the approach for fibers which are initially per-
pendicular to the loading direction of the Double Cantilever Beam (DCB) specimen,
i.e., in crack growth direction.
Xie et al. [33] propose a constitutive law in which the traction-separation law is
bilinear, but the critical energy release rate (CERR), which is proportional to the
area under the curve, is dependent on the crack length. This is done in order to
address the apparent increase of CERR over the crack length observed in specimens
that exhibit fiber bridging. However, this method is not applicable if the crack onset
point is not a priori known. Wong et al. [34] compare cohesive laws with exponential
and tri-linear softening having relatively long tails. They find exponential softening
to give more modeling flexibility.
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An alternative way to evaluate the CERR without explicitly monitoring the crack
front is offered through extensions of Rice’s J integral [35]. This has for instance
been shown for mode I delamination by Sørensen and Jacobsen [20, 36], where a
specific shape for the cohesive law up to a free parameter is still assumed. However,
as demonstrated by Leone et al. [37], the J integral can also be used to directly
determine the cohesive law and CERR directly from experimental data for the DCB
(mode I) and End Notched Flexure (mode II) specimen, without applying assump-
tions on the cohesive law. The method has recently been applied in conjunction
with digital image correlation (DIC) measurements by Leone et al. for the design
of composite joints [38]. The approach has been further refined to reliably predict
the CERR of mixed mode bending specimens by Sarrado et al. [39], again relying
on DIC measurements as DIC allows for very accurate monitoring of the normal
and tangential openings as well as the leg rotations. Since detailed DIC data were
obtained for the present work, transferring the method to SCB specimen could be
a logical continuation for future work.
Furthermore, a dependence of the amount of fiber bridging on the strain rate was
observed by Cantwell et al. [40] who investigated a sandwich panel subjected to three
point bending. Since the CERR was found to be primarily driven by the amount
of fiber bridging therein, the mean values of the CERR also varied considerably.
Higher strain rates were associated with lower CERR and less fiber bridging and
vice versa.
Another challenge is posed by the relatively high load-displacement scatter observed
when substantial amounts of fiber bridging are observed [33,41]. This has been nu-
merically addressed by stochastic cohesive zone modeling where the parameters of
the cohesive law are varied. For instance Shanmugam et al. [41] use the latin hy-
percube method to obtain randomized parameters for the formulation proposed by
Feih [23], which is a cohesive zone formulation of the fiber pull-out described by
Hsueh [42]. While the cumulative load distribution function of the observed ex-
perimental loads could be approximated well, the authors note that the cumulative
distribution functions of the (apparent) CERR and, to an even larger extent, the
crack length curve, could not be matched very well.
In the previously discussed cases of layered composites, the fiber bridging is mostly
stochastic. A notable exception are stitched composites, which are designed to take
advantage of fiber bridging. Furthermore, the bridging length is well-defined and
known a priori. Tan et al. [43] modeled this material system by spring-like elements
with non-linear constitutive behavior that were added at the nodes of the cohesive
elements. Several phases of the response, such as interfacial debonding and fric-
tional pull-out, were identified and are reflected in the constitutive law. In the case
of stitched composites, load drops are linked to the stitching length, whereas load
drops in non-stitched composites are neither consistent from load drop to load drop
nor from specimen to specimen. The load drops correspond to bridging fibers that
eventually fail [33, 34,44], an inherently stochastic process.
Canal et al. [45] investigate fiber bridging by means of the embedded cells approach.
This has the advantage of just considering one local, small-scale failure mechanism
multiple times rather than a number of large-scale mechanisms at once. One of the
main findings of the authors is that the apparent fracture toughness of the interface
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depends almost linearly on the strength of the traction-separation law employed
between bridging bundles but hardly on the chosen toughness.
Mostly, the levers of DCB or SCB specimen are considered perfectly elastic. How-
ever, Goutianos and Sørensen [46] point out, that the lever of a DCB setup could
also exhibit large scale plasticity, and show that the effect can be resolved through
a J-integral-based approach with acceptable error.
All of these approaches have in common that the cohesive formulation assumes a
maximum stress value, i.e. the strength, at very small separations compared to the
failure separation. This property, in conjunction with the fact that the area under
the curve is given by the CERR, typically leads to a fairly short process zone in
most applications [25]. By shifting the strength of a two-parameter model to very
low values, or by choosing a low CERR of the high strength part of a trilinear law, it
is possible to extend the process zone length [13,14]. However, even in this case, the
tractions at larger separations tend to be low. It has been observed many times that
the CERR associated with bridged delamination can be considerably higher than the
fracture toughness associated with unbridged delamination [17, 47, 48]. This raises
the question, if a cohesive law, which assumes the highest traction at a relatively
high separation, may be suitable for delamination in the presence of severe fiber
bridging.
Towards this end, a cohesive law, which separately treats the initial low-separation
cracking/splitting and the high separation bridging and snapping, is proposed. The
best agreement with test data was achieved when the high separation (bridging)
part strength was considerably higher than the low-separation initial component.

2 Cohesive law accounting for fiber bridging

2.1 Motivation, failure mechanism, and qualitative cohesive law

In the current work, it is assumed that the total normal cohesive traction Tc can be
additively split into two regimes that are each represented by a separate cohesive
law. Thus, the total traction reads

Tc(δn) = Tm(δn) + Tb(δn) (1)

The traction Tm indicates the cohesive component, which is related to the initial
stiffness, strength, and CERR of the interface. The index m is chosen because the
interface properties are mostly related to the matrix/adhesive strength and CERR.
δn denotes the normal separation. This regime can be modeled with established
formulations, e.g. [11]. In this work, a constant penalty stiffness prior to damage
onset and exponential softening subsequent to damage onset is chosen as proposed in
e.g. [21, 22], see Figure 1. Tm represents the mechanism shown in Figure 2 Stage I.
The bridging part of the cohesive law Tb accounts for the stages II-IV in Figure
2. It reflects the fact that bridging fiber bundles/lamina only transfer a significant
traction once they are sufficiently aligned with the loading direction. The process
zone of length lPZ , which is in this work defined as the zone where damage has
occurred, but total decohesion has not yet occurred, is shown in Figure 2. The range
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Figure 1: Overview of the proposed contributions to the total constitutive law.
A summary of all used parameters is given in Table 2 and several characteristic
numerical values of the law are given in Table 3.

of possible positions of the crack tip, depending on the criterion, range between amax
and amin and lPZ = amax − amin holds.

Figure 2: The four stages of interfacial failure in a honeycomb sandwich panel
exhibiting fiber bridging. Stage I: unbridged interface crack is forming. Stage II:
the unbridged crack propagates and fiber bridging initiates. Stage III: propagation
of unbridged crack is slowed while bridging fully develops. Stage IV: the bridging
zone is fully formed and both crack types propagate self-similarly.

The initial cohesive component, which is related to interface fracture, is governed
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by

Tm(δn) =


δn/δ

0
mT

max
m , for δn < δ0

m

Tmaxm e−α
(
δn/δ

0
m − 1

)
, for δ0

m ≤ δn ≤ δ
f
b

0, for δfb < δn

(2)

where Tmaxm is the maximum normal matrix/interface traction, δ0
m is the separation

at which damage initiation starts in the matrix, and α is directly evaluated through
the CERR as

α =
1

GIc,m
Tmaxm δ0

m

− 2

3

(3)

The specific constant pre-peak penalty stiffness / exponential softening formulation
used here is based on [21, 22], where the formulation was proposed for modeling of
mode II delamination behavior. After considering several existing cohesive laws to
represent the unbridged behavior, it was found that the smooth post-peak behavior
yielded good results in this work.
The modeling of the bridging component is more challenging. The existing ap-
proaches are usually based on either a tri-linear [13, 16, 18], a square root [20] or
an exponential [49] cohesive law. In these cases the laws have a very sharp peak
and a subsequent steep drop, which leads to monotonically decreasing tractions in
the wake of the crack tip. However, this was not observed in the current study.
The maximum principal strain pattern of the fully developed SCB cohesive bridg-
ing zone obtained via DIC is shown in Figure 3. This corresponds to stage IV in
Figure 2. The regularly spaced vertical high strain regions are associated with the
honeycomb cell walls. It can be seen that there is a strain intensification around the
crack tip. In the wake of the crack tip the strain values decrease in the zone where
the initial interface crack has already occurred but the fiber rotation has not yet
occurred. Further back along the wake of the crack, the fibers have already rotated
and are sufficiently aligned in loading direction. Thus, the strain increases again to
at least the initial crack tip level or possibly higher. A short distance further away
from the second bridging-related peak the strains tend to 0, indicating a traction-
free surface. The two aforementioned zones are separated by a transition zone with
relatively low strain. The observed behavior in this honeycomb core sandwich ap-
plication is distinct from observations made in solid laminate experiments, cf. [49].
There is a third region with distinct tensile strain, labeled region R in Figure 3.
The strain in this region does not extend all the way to the facesheet, but occurs in
the center of the sandwich core. It is still unclear what causes the strain pattern.
Possible explanations include the oblique crack grwoth, that was observed during
this particular experiment or thumbnail-shaped crack growth, which is commonly
reported in the case of solid laminates [50–52].
In order to address the observed bridging behavior numerically, a new cohesive law

shape which accounts for the observed bridging behavior is proposed and denoted
by the index b. It reflects the observation that fibers in the bridging zone in the hon-
eycomb panel specimens tend to undergo a rotation and stretching process after a
macroscopic interfacial crack has developed. Once the fibers are sufficiently aligned
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Figure 3: Maximum principal strain pattern of the SCB obtained through DIC.

with the load direction, traction is transferred by these fibers across the crack. The
transferred traction increases until the filament debonds further and ultimately sep-
arates. This part of the cohesive behavior is referred to as the bridging cohesive
component which leads to the traction Tb.
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2.2 Proposed bridging cohesive component - with nonzero stiffness
in the origin

A cohesive relationship that satisfies the described behavior of the bridging part, in
the case of monotonic loading, is

Tb(δn) =



0, for δn < 0

Cb


 δn

δpb︸︷︷︸
(a)

+
δ0
b

δpb︸︷︷︸
(b)


q

−

 δn
δpb︸︷︷︸
(c)


q+r

−

 δ0
b

δpb︸︷︷︸
(d)


q , for 0 ≤ δn ≤ δfb

0, for δfb < δn

(4)

where q and r are positive numbers, δn is the separation, and Cb, δ
0
b , and δpb (all

greater 0) are model parameters. δfb is the separation at total failure and is not an
independent parameter itself, but can be calculated from δ0

b and δpb , as described in
A. In Eq. (4) part (a) dominates the pre-peak section of the traction curve, whereas
part (c) dominates the post-peak section of the curve. Equation (4) part (b) accounts
for an initial non-zero slope and part (d) ensures that a zero separation is associated
with a zero traction. As δ0

n tends to 0, the value of δpb tends to the failure separation.
However, for reasonable parameter choices, δpb is approximately the separation at
the traction peak of the combined cohesive law Tc. In the present investigation q = 3
and r = 1 were found to provide close agreement with experimental observations.
All numerical results are therefore based on this choice for the exponents. The
influence of various specific parameter choices on the traction-separation curves, as
well as the SCB load-displacement behavior are plotted and discussed in Section 6.
The traction-separation response resulting from the described mechanisms is plotted
in Figure 1. It is noteworthy that the traction values are two orders of magnitude
lower than the established literature values for solid laminate carbon fiber reinforced
composite (CFRP) delamination (Tmax ≈ 60MPa). The lower magnitude is due to
the fact that, in this work, honeycomb sandwiches are investigated and a continuum
representation for the honeycomb structure is chosen. The relatively high stresses at
the walls of the honeycomb in the physical specimens are smeared out over the entire
cross section of the cell in the continuum model, and comparatively low tractions
are the result.
Irrespective of the specific choice of Tb, the CERR of the bridging component can
generally be calculated through

GIc,b =

∫ δfb

0
Tb(δn) dδn (5)

The total CERR is thus
GIc = GIc,m +GIc,b (6)
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2.3 Proposed alternative bridging cohesive component - with zero
stiffness in the origin

The formulation proposed in Section 2.2 has the advantage of having a positive
stiffness in the origin, i.e.

lim
δn→0+

∂Tb
∂δn

> 0 (7)

This means that Tc = Tb with Tm = 0 is well-defined and that Tb can be investigated
separately, i.e. without an additional component Tm. However, the mathematical
form is somewhat impractical. Especially term (b) of Eq. (4) makes it rather difficult
to find general solutions for e.g. the separation at failure, or the separation at the
highest traction for general parameters q and r. Therefore, a simplified version of
the bridging cohesive component T̂b with δ0

b = 0 is proposed, which simplifies the
calculation of these quantities substantially, as shown in Section 2.4. The proposed
form for T̂b is

T̂b(δn) =


0, for δn < 0

Ĉb

(δn
δ̂fb

)q̂
−

(
δn

δ̂fb

)q̂+r̂ , for 0 ≤ δn ≤ δ̂fb

0, for δ̂fb < δn

(8)

T̂b depends only on the separation at total decohesion δ̂fb , the scaling parameter Ĉb
and the exponents q̂ and r̂. As shown in Figure 1, the parameters can be chosen
such that Tb and T̂b yield nearly identical results except for the immediate vicinity
of the origin. The parameters, which were obtained by least square optimization in
Matlab, are given in Table 2. T̂b has no stiffness in the origin

lim
δn→0+

∂T̂b
∂δn

= 0 (9)

for q̂ > 1 and r̂ > 0, and should therefore only be used without a nonzero Tm
component.

2.4 Parameter identification

The parameters of the cohesive law in Table 2 are for the most part not directly
physical in the sense that they can be obtained from experimental data without
further calculations. However, the shape of the cohesive law can be linked directly
to experimental data. Figure 4 shows a number of chosen separation values, which
can be directly related to the traction-separation plot in Figure 1. Characteristic
points include 1.) the separation at which the combined cohesive traction assumes
the lowest value between the two traction peaks (delta 1), 2.) the separation at
which the cohesive traction peak is reached (delta 2) 3.) and the separation which
is associated with a completely failed interface (delta 4). These values can be used
to determine the values δ0

b , δ
p
b for Tb, i.e. the parameters which control the general

shape of the cohesive bridging component (q and r assumed constant) up to a
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scaling constant Cb. Analogously δ̂fb , q̂, and r̂ can be derived for T̂b and the scaling

parameter Ĉb remains. Furthermore, there are a number of quantities which are not

Figure 4: DIC principal strain plot with characteristic separations.

Table 1: Analytical expressions which relate characteristic quantities like the stiff-
ness in the origin or the fracture toughness to parameters of the cohesive law.

Tb T̂b

separation at highest traction ≈ δpb δ̂fb

(
q̂

q̂ + r̂

)1/r̂

highest traction value see A Ĉb

((
q̂

q̂ + r̂

)q̂/r̂
−
(

q̂

q̂ + r̂

)(q̂+r̂)/r̂
)

failure separation see A δ̂fb
stiffness in the origin Cbq

(δ0b )
(q−1)

(δpb )
q 0

CERR see A
Ĉbδ̂

f
b r̂

(q̂ + 1)(q̂ + r̂ + 1)

Table 2: Cohesive parameters used in Figure 1.

initial/matrix component bridging component

[MPa] [J/m
2
] [mm] [MPa] [mm] [mm] [-] [-]

Tmaxm = 0.2 GIc = 250 δ0m = 0.005
Cb = 0.95 δ0b = 0.36 δpb = 3.0 (q = 3) (r = 1)

Ĉb = 1.378 - δ̂fb = 3.904 q̂ = 2.111 r̂ = 2.516

directly input parameters, but derived values, calculated e.g. through Table 1. The
benefits of the alternative bridging component become quite apparent in this table.
On the one hand, all the characteristic quantities related to T̂b depend linearly on
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Ĉb and/or δ̂fb and a factor which depends on the power parameters q̂ and r̂. On the
other hand, the characteristic quantities related to Tb are more complex, depend on
the modeling parameters δ0

b and δpb in a non-linear way and the evaluation can be
rather complicated for arbitrary powers q and r, see A. As described in some detail

Table 3: Characteristic quantities associated with the used cohesive laws. Cohe-
sive input parameters are shown without parenthesis and derived parameters are in
parenthesis.

Tm Tb T̂b Tc / T̂c

separation at lowest
- - - (0.66)

inter-peak traction [mm]
separation at highest traction [mm] 0.005 2.85 2.85 (2.8)

highest traction value [MPa] 0.2 (0.388) (0.388) (0.409)
failure separation [mm] (3.9) (3.906) 3.904 (3.906) / 3.904

stiffness in the origin [MPa/mm] (40) (0.0137) (0) (40.0137) / (40.0)

CERR [J/m
2
] 250 (774) (778) (1024) / (1028)

in Section 6, the load-displacement curve at displacement values which significantly
exceed the displacement associated with the peak-load are only a function of the
total CERR. Thus, this part of the load-displacement curve can be used to determine
the scaling parameters such that the correct CERR is achieved. The only remaining
question is then how the total CERR GIc = GIc,m+GIc,b should be split up between

the two components. In the present study the authors chose the parameters Cb, Ĉb
(and thus implicitly GIc,b) as well as Tmaxm and GIc,m such that the strain patterns
of the FE calculations qualitatively agree with the strain distribution in the DIC
measurements. This, for instance, resulted in a bridging cohesive strength which
was almost twice as high as Tmaxm and a ratio of GIc,b/GIc = 774/1024 ≈ 0.756.

3 Experiment

3.1 Materials and manufacturing

A 609.6 mm by 609.6 mm honeycomb sandwich panel was manufactured from
IM7/8552-1 prepreg tape and 49.66 kg/m3 Hexcel 5052 aluminum honeycomb core
with a 0.0178 mm foil gauge, 3.175 mm cell size, and a 25.4 mm height. Eight-ply
facesheets were hand-laid with a [45/90/−45/0]s stacking sequence, with FM-300K
film adhesive between the facesheets and core. To introduce the initial disbond be-
tween the core and the one facesheet, a 101.6 mm wide strip of Teflon was placed
between the facesheet and the film adhesive at the middle of the panel along the
entire 609.6 mm length in one direction. The panel was then bagged and co-cured
in an autoclave following a standard pressure/temperature profile.
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3.2 Single Cantilever Beam test

Currently no ASTM standard exists for measuring interfacial (facesheet-core in-
terface) CERR of composite sandwich panels, as this is an active area of research
[53, 54]. One conclusion that can be drawn from the available literature is that the
Single Cantilever Beam (SCB) currently provides the most viable means for mea-
suring the interfacial CERR for composite sandwich panels. In this context the
interface refers to a general area where the honeycomb core touches the facesheet
and is bonded by an adhesive. This adhesive wicks up a portion of the honeycomb
cells. ASTM Standard D 5528 [55] provides experimental procedures for measuring
the interlaminar CERR for solid laminates using Double Cantilever Beam (DCB)
and SCB specimens. SCB specimens were cut, in accordance with width and length
dimensions provided in ASTM Standard D 5528 [55] for solid laminates, from the
609.6 mm by 609.6 mm honeycomb sandwich panel. A schematic of the specimens
is shown with general load introduction in Figure 5, and a photograph of a specimen
with load introduction through a loading block is shown in Figure 6. The specimens
were 203.2 mm by 25.4 mm with a 27.94 mm height, which is comprised of the 25.4
mm core and the top and bottom facesheets (each with a thickness of 1.25 mm).
The specimens were cut such that each specimen contained a Teflon insert of 50.8
mm length between one facesheet and the core, which prevented bonding in that
region. The bottom facesheet was clamped to prevent motion in all directions, pro-
viding a simple yet effective means of securing the specimen. The top facesheet was
loaded through a pinned aluminum block, which was bonded to the end of the top
facesheet above the disbond region, see Figure 6. The block dimensions were 25.4
mm by 25.4 mm by 15.9 mm. The pin hole was centered in the block. As shown
in Figure 6, on both sides of the specimen, the exposed honeycomb cells near the
top facesheet were filled with drywall compound to aid in crack identification. One
surface was then painted with a speckle pattern, and this side of the specimen was
monitored with DIC. On the opposite side, the crack length was monitored with a
travelling optical telescope.
The SCB testing was performed on a load frame under quasi-static displacement
control at a rate of 0.42 mm/s up to 44.48 N and after this at a decreased rate of
0.021 mm/s. Samples were subjected to a single precracking load/unload cycle to
ensure a sharp crack tip for the subsequent loading. During the precracking cycle
the samples were loaded up to a line load displacement of approximately 25.4 mm,
which resulted in crack growth of greater than 25.4 mm and a substantial load drop.
Results of three tests on specimens designated as SCB1, SCB2, SCB3 are reported
in Section 6.
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Figure 5: Schematic of the Single Cantilever Beam (SCB) setup.

Figure 6: Photograph of a SCB specimen after testing.

4 Finite element implementation

The cohesive law described in Section 2 has been implemented in a 2D, zero thick-
ness, traction-separation user element formulation as described, for instance, by
Park and Paulino in [24].
The governing weak form is given as∫

Ω
δε : σ dV +

∫
Γc

δδ · Tc dS =

∫
Γ
δu · Text dS (10)

where Ω refers to the volume of the domain, Γc denotes the potential (initially in-
ternal) fracture surface and Γ denotes the external domain boundary. The strain is
defined as ε = ∇symu. By using the elasticity tensor C, the stress σ is obtained
through σ = C : ε and Text is the external traction.
Using the differential operator B, which links global displacements to local separa-
tions, the internal cohesive force vector fcoh is given by

fcoh =

∫
Γc

BTTcdS (11)

which then gives rise to the element stiffness matrix

Kcoh =
∂fcoh
∂u

=

∫
Γc

BT ∂Tc
∂δ
B dS (12)

In Eq. (12) δ is a vector of the form δ = (δn, δs)
T consisting of a normal and a shear

component. However, in this work, only the normal component, δn, is used for the
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calculation of cohesive tractions and only normal tractions, Tc = (Tn, Ts) = (Tc, 0)
result. Furthermore, in this study only monotonic loading is considered. Therefore,
no unloading condition has yet been defined.

5 Finite element model

The loading and boundary conditions imposed on the finite element model of the
SCB specimen are shown in Figure 7. Nominal dimensions are given. Only the lower
half of the load introduction fixture has to be modeled since the aluminum block
is very rigid and the force is introduced at its center. The support on the right
side is introduced since there is no shear component in the cohesive law. While
shear stresses should be negligible at the interface of a mode I delamination test,
the support is still necessary in order to prevent horizontal rigid body translations
of the top facesheet. All necessary material parameters are given in Table 4.

Figure 7: Schematic of the finite element model.

Table 4: Material parameters of the SCB.

facesheet load introduction block
[MPa] [−] [MPa] [−]

E = 86593.9 ν = 0.311 E = 72000 ν = 0.3

core
[MPa] [MPa] [−] [−] [MPa] [MPa]

E‖ = 517.1 E⊥ = 0.1467 ν⊥‖ = 0.33 ν⊥ = 0.0001 G⊥‖ = 151.68 G⊥ = 0.03669

The quasi-isotropic facesheet has been modeled as isotropic. Isotropic material
parameters were chosen to provide the correct lever compliance of the facesheet at a
discretization of three elements in thickness direction, and an insert clearance of 0.1
mm was chosen. Since the stiffness of the laminate is orders of magnitude higher in
any direction than the core stiffness and it is a 2D simulation, this choice does not
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influence the results. The core was modeled as anisotropic due to the great disparity
in Young’s moduli in through-thickness and in-plane directions. For the facesheets,
core and load introduction block Abaqus CPS4R reduced integration plane stress
elements were used. The cohesive layer was modeled with cohesive user elements. A
mesh refinement study was conducted in longitudinal direction to ensure sufficiently
refined crack propagation results.

6 Results and discussion

The results and discussion section is split into four main parts. First, in Section
6.1 the performance of various existing cohesive zone formulations is compared to
the experimental SCB load-displacement curves. Second, a comparison between the
bridging component of the proposed cohesive law and the load-displacement curves
of precracked specimens is made in Section 6.2. Third, both components of the
proposed cohesive law are compared to the combined precracking and precracked
load cycle in Section 6.3. Finally, the results of a sensitivity study with respect to
mode mixity and other factors is presented.

6.1 Load-displacement results - existing formulations

First, a comparison of predictions by established cohesive formulations to experi-
ments is presented. A bilinear approach as proposed in [11], an exponential soft-
ening approach according to [22], and a polynomial Park–Paulino–Roesler (PPR)
approach as described in [24] are considered. The results are plotted in Figures
8-9. In order to avoid redundancy, only the parameter study of the bilinear law is
discussed in detail in Figure 8, while only the best fit of the other formulations is
presented in Figure 9.
Focusing on the bilinear traction-separation law [11], when the cohesive parameters
were fitted to the experimental data, emphasis was placed on matching

1. the post-peak load-displacement curve

2. the peak load of the numerical predictions

3. the initial slope from the imposed precracking cycle

Concerning 1.) The load-displacement behavior at displacements much greater
than at the peak load displacement is only governed by the value of the CERR, GIc,
which is determined to be GIc ≈ 1050 KJ/m2 in the current application. Bilinear
cohesive laws are generally considered 2 parameter laws [56]. This leaves only one
meaningful model parameter in the case of the bilinear cohesive law, which is the
maximum traction. The maximum traction, Tmax was varied systematically and
the result is reported in Figure 8. The appropriate Tmax-value, such that the nu-
merically predicted peak load agrees with the experimental peak load, is Tmax = 0.5
MPa. Thus, requirement 2.) is fulfilled. The slope of the cohesive law before the
maximum traction is mostly considered to be a nonphysical penalty stiffness [57].
However, there are several approaches of relating the penalty stiffness to material
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(a) SCB load-displacement curves (b) traction-separation curves

Figure 8: Parameter study of the bilinear cohesive formulation (COH2D4) for vari-
ous Tmax values. GIc = 1050 KJ/m2 in all cases.

parameters, cf. Turon et al. [25] and references therein. Since the area under the
traction-separation curve is given by the CERR, the bilinear law is completely de-
fined.
As expected, the variation of the penalty stiffness within reasonable bounds had no
effect on the load-displacement curve. All parameters are reported in Table B1.The
fulfilment of requirement 3.) is thus not linked to the penalty stiffness, but rather to
the proper model geometry, elastic material parameters and boundary conditions.
As the numerical predictions were in good agreement with the uncracked part of the
experimental curve (initial part of the precracking cycle, green dashed curve) for all
parameters, requirement 3.) has been met.
When overpredicted, the peak loads of the numerical prediction tend to be at smaller
separations than the experimental results. This tendency decreases as the maximum
traction is decreased. At the correct peak load value, the corresponding displace-
ment is still slightly smaller than the experimentally observed value. If the peak
load is significantly underpredicted, the peak load displacement is overpredicted for
the bilinear cohesive law (Figure 8(a)).
The formulation with exponential softening behaves qualitatively similar to the bi-
linear formulation, as shown in Figure 9(b). Due to the upward concave shape of
the post-peak traction-separation curve, the appropriate peak load value is found at
a greater maximum traction compared to the bilinear formulation. In the bilinear,
as well as in the exponential case, the Tmax-value that provides the best fit transfers
tractions from the facesheet to the core up to approximately 4 mm of separation.

The PPR model has a concave downward pre-peak / concave upward post-peak
traction-separation curve shape, see Figure 9(b). The peak load is met at a maxi-
mum traction of 0.53MPa which is between the best fit values of the exponential
and bilinear law. This is plausible, as the convex post-peak curve is slightly less
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(a) SCB load-displacement curves (b) traction-separation curves

Figure 9: A comparison of the best fits obtained with the Abaqus COH2D4 bilinear,
COH2D4 exponential and PPR model according to [24] to experimental data. GIc =
1050 KJ/m2 in all cases. The precracking and reloading cycle have been merged at
point P.

pronounced than in the exponential case. The concave downward pre-peak shape of
the traction-separation shifts the maximum load to larger displacements compared
to the other laws. It also leads to a similar separation at total failure as the expo-
nential formulation, despite slightly lower post-peak convexity. The formulation was
examined in order to determine if a pre-peak behavior other than the traditional
very high penalty stiffness provides a better fit to the experimental data. However,
there is no substantial effect on the load-displacement curves, and the observations
that were made for the bilinear and exponential law also hold for the PPR law.
While the goal of calibrating the cohesive zone input parameters to match the ini-
tial slope and the peak value was accomplished, the existing cohesive formulations
show considerable deviations from the experimental data for significant parts of the
curve, especially in the transition regime between the starting of the initial failure
mechanisms and the fully formed fiber bridging zone. Furthermore, the slope of the
numerical pre-peak predictions obtained with these methods are concave downward,
whereas the experimental pre-peak results are concave downward / concave upward
in the pre-peak part of the curve. In conclusion, all the investigated existing for-
mulations are in very good mutual agreement, but not in good agreement with the
experimental results.
All parameters for the respective best fits are provided in Table B2 in B. Due to
the honeycomb structure of the core, the homogenized tractions in the z-direction
are relatively low while, due to fiber bridging, the CERR values tend to be even
higher than in solid laminate composites. The combination of low strength and
high CERR leads to a pronounced dependence of the peak load on the strength,
which is not observed in other studies [25], where reducing the cohesive strength is
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even identified as a strategy to enable the use of coarser cohesive meshes without
changing the structural load response. The reason for the observed behavior is the
relatively high length of the process zone lPZ which typically estimated as

lPE = ME
GIc

(Tmax)2 (13)

cf. [16, 58], where E is the appropriate Young’s modulus and M is a parameter
that varies between 0.21 and 1.0, depending on the specific model. In most CFRP
applications, Tmax and GIc vary between e.g. 60 MPa and GIc = 352 J/m2 [25] and
2.326 MPa at GIc = 100...180 J/m2 [16]. This means that in the current application,
the numerator of Eq. (13) is considerably lower (Tmax = 0.409...0.675 MPa) and the
denominator is much higher (GIc ≈ 1000 J/m2). Hence, the process zone must be
relatively long, linear elastic fracture mechanics assumptions are violated and the
peak load, as well as the load-displacement curve in general, depends much more
strongly on the cohesive strength values than usually reported.

6.2 Load-displacement results - bridging component

In this section, a parametric study of the bridging contribution, Tb, of the proposed
cohesive law is presented. The additive nature of the proposed cohesive law is quite
suitable for a separate examination of the bridging component in absence of the
initial cohesive component. To this end, Tm is set to 0 in this section, see Eq. (1),
and the three independent parameters, as described in Section 2, are varied. The
influence of each parameter is shown for the SCB load-displacement curves as well
as for the traction-separation law in Figures 10-12.
A higher/lower value of δ0

b increases/decreases the failure strain and the maxi-
mum traction. An increase/decrease in δpb leads to substantially higher/lower ul-
timate failure separations and lower/higher peak loads and tractions. Lastly, an
increase/decrease of Cb stretches the entire traction-separation curve vertically and
increases/decreases strength and toughness linearly. Clearly, these three parameters
provide a good deal of flexibility to the model for fitting to experimental data.

The numerical results obtained when only accounting for the bridging compo-
nent Tb of the proposed cohesive law can also be compared to the load-displacement
curves obtained from precracked specimens. This comparison is justified if the
matrix-related fracture energy Gm is much smaller than the bridging-related frac-
ture energy Gb. This can be expected to be the case for precracked specimens once a
certain crack opening has been exceeded and the fibers have rotated and can transfer
traction across the interface. Conversely, this assumption is not expected to hold for
non-precracked specimens, and during the rotation process, when the contribution
of Tm is still significant.
Figures 10, 11 and 12 illustrate the effects of varying parameters δ0

b , δ
p
b , and Cb, re-

spectively, on the bridging cohesive model’s prediction of the SCB load-displacement
behavior and the traction-separation behavior at the facesheet/core interface.
Since there is some scatter in the experimental results, it is next demonstrated
that the proposed bridging part of the cohesive model can match the response of
each SCB specimen, after the precracking load cylcle. As shown in Figure 13, the
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(a) SCB load-displacement curves (b) traction-separation curves

Figure 10: Effect of the variation of δ0
b . The vertical green, blue and red lines mark

the values of the varied parameter δ0
b while the magenta line indicates the parameter

δpb , which is held constant in this figure.

(a) SCB load-displacement curves (b) traction-separation curves

Figure 11: Effect of the variation of δpb . The vertical green, blue and red lines mark
the values of the varied parameter δpb while the magenta line indicates the parameter
δ0
b , which is held constant in this figure.

proposed cohesive law is able to provide a very good fit to each of the three SCB
experimental result load-displacement curves. The required parameters are shown
in Table 5. While there is some scatter in the experiments, the level of scatter is
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(a) SCB load-displacement curves (b) traction-separation curves

Figure 12: Effect of the variation of Cb.

Table 5: Parameters used in Figure 13.

SCB no. Cb δ0b δpb q r
[MPa] [mm] [mm] [-] [-]

1 1.65 0.2 2.3 3 1
2 1.2 0.36 3.75 3 1
3 0.905 0.36 3.0 3 1

fairly low compared to other fiber bridging investigations [33,41].
It is of particular interest that the obtained numerical load-displacement curves

are convex in the pre-peak regime, as are the experimental curves, unlike the load-
displacement curves of the existing formulations shown in Section 6.1. The post-peak
curve is also captured very well in a mean sense. The local load drops present in
the experimental curve result from breaking bridging fiber bundles and obviously
cannot be captured by cohesive elements with uniform properties. However, this
is not an issue since the failing is assumed to be stochastic, varying from test to
test, and thus the simulated curves represent only the mean values. At this point
no additional analysis or design insight is expected from the resolution of the load
drops in a stochastic sense. There is some slight deviation between the experimental
and simulated curves during the initial 5 mm of displacement, which is attributed
to the fact that the initial cohesive component is neglected. As will be shown in
Section 6.3, this can be addressed by adding the initial cohesive component to the
formulation.
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Figure 13: Comparison of numerical results obtained with only the bridging part of
the new cohesive formulation and experimental results of precracked specimen.

6.3 Load-displacement results - combined law

The following discussion of the results of the combined cohesive law is limited to
correlation with specimen SCB 2. The specimen was experimentally precracked by
applying a loading point displacement of approximately 15 mm. Subsequently the
specimens was unloaded to zero traction and reloaded. As shown in Figure 14, there
is no significant in-plane damage accumulation during the unloading and reloading.
This can be concluded from the fact that, on reloading, the curve goes through point
P again (see Figure 8(a)), which is the maximum loading point during the precrack-
ing procedure. However, the unloading and loading curves are not identical. This is
caused by the bridging fiber bundles, which lose the majority of their traction even
after a very slight reduction in loading point displacement.
Since the loading/unloading case distinction is not considered in this work, mono-
tonic loading is assumed in the numerical model. Therefore, the numerical curve
should follow the precracking curve up to point P and subsequently follow the reload-
ing curve. The results obtained using the combined cohesive law (Eq. (1)-(4), Figure
1) with the parameter set listed in Table 2 are shown in Figure 14.
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Figure 14: Comparison of a simulation using the cohesive law depicted in Figure
1 to experimental data. The experimental precracking curve has been merges with
the reloading curve in point P.

By selecting the appropriate parameters, the combined law is in very good agree-
ment with the precracking cycle prior to point P, as well as with the subsequent
loading cycle for displacements greater than 15 mm. The initial matrix cracking
and the subsequent forming of a bridging zone, indicated by the concave downward
/ concave upward load-displacement curve transition, is also clearly captured.
The simulated strain contour plots are compared to experimental DIC-strain mea-
surements in Figure 15. The x-direction edge length of the elements in Figure 15 is
approximately 1 mm. In Figure 15 a), the specimen is shown before the initiation of
damage, during the precracking cycle. The initial high strain between the facesheet
and the core in this figure is caused by the Teflon insert. This is indicated by the
fact that the core is still practically strain-free. As the loading point displacement
is increased, the initial interfacial disbond forms, see Figure 15 b). The subsequent
forming of the bridging cohesive zone, with the substantial bridging zone, is shown
in Figure 15 c). In Figure 15 d) both the numerical and the experimental strain
plots indicate two zones of strain concentration. One is interface-related, at rela-
tively small separations, and the other is bridging-related, at a separation of several
mm. At this point, the bridging zone is fully developed. A further increase in
loading point displacement leads to a self-similar propagation of the crack. This is
indicated by Figures 15 d) and 15 e), which look very similar, except that the crack
has propagated one cell length to the right. The 4 stages in Figure 15 correspond
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to the 4 stages identified in Figure 2.
To assess the computational performance of the proposed combined cohesive law,

Figure 15: Comparison of the experimental SCB 2 results (left) and the numerical
predictions (right) for the 4 stages of crack growth.

a comparison has to be made to the performance of existing formulations exam-
ined in Section 6.1. The wall-clock time, average iterations per converged increment
(AIPCI) and number of unconverged iterations are compared in Table 6. All calcula-
tions were conducted with the arc length method and identical solution and control
parameters. The parameters were chosen such that a displacement of 60 mm would
be accomplished in approximately 120 increments in order to obtain sufficiently de-
tailed force-displacement plots. The wall-clock time is measured from the starting of
the job in Abaqus 6.14 interactive mode until the completion and hence includes all
the time required for initialization and finalization of the calculation. The employed
computer system is a Dell Precision M4800 with Intel Core i7-4810MQ and 32GB
RAM, and only one thread was used simultaneously. Table 6 clearly shows that the
cohesive formulation proposed in this paper has the best numerical performance of

NASA/TM—2017-219470 23



Table 6: Comparison of numerical efforts.

Formulation # converged wall-clock AIPCI # unconverged
increments time increments

[-] [s] [-] [-]

new formulation 123 43.3 2.650 0
COH2D4 bilinear 126 140.3 7.103 33

COH2D4 exponential 126 138.7 7.140 32
PPR 126 60.6 3.794 1

the investigated formulations, although the shape of the cohesive law is more com-
plex than the other investigated laws. This emphasizes that the additional modeling
complexity does not lead to an increased computational effort and that the proposed
formulation is at least as suitable as established formulations for systems with many
degrees of freedom, such as large structures. The second most efficient formulation is
the PPR formulation. The PPR formulation is only slightly less convergent than the
proposed formulation, requiring approximately 40% more wall-clock time and 2.4%
more total converged increments. The difference in wall-clock time is mostly caused
by a slightly higher AIPCI. There is a notable difference between the two aforemen-
tioned formulations and the two considered Abaqus COH2D4 element formulations,
which require more than twice as much wall-clock time, a much higher number of
unconverged iterations, and a higher AIPCI. The data presented in Figures 9 and

Figure 16: Relative deviation of predicted load (Sim.) and measured load (Exp.)
for various formulations.

14 is recompiled in order to yield the relative deviation between the predicted and
measured load values at a given displacement, see Figure 16. The relative load devi-
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ation of the newly proposed formulation is generally below 10% whereas the relative
deviation of the reference formulations tends to be substantially higher. For the
previously stated reasons, the difference decreases, as the crack length increases.

6.4 Mode mixity and geometric nonlinearity

The general treatment of the mode mixity - especially between mode I and II (cf.
Davidson et al. [59], and Park and Paulino [60] and Sørensen and Kirkegaard [61]) -
and specifically the mode mixity of delamination characterization tests, cf. Reeder
and Rews [62], receive substantial attention in the scientific community. While
a number of mixed-mode formulations are available, it has recently been pointed
out, that many formulations, potential-based as well as non-potential-based, exhibit
difficulties in accurately capturing the crack propagation condition [59]. The crack
in a symmetric DCB which is loaded by pure bending moments propagates under
pure mode I [20]. However, this is generally not the case for SCB specimens, as the
neutral axis is not aligned with the crack plane [63]. This holds for most specimen
geometries intended for the interface testing of sandwich panels like the Three-
Point-Bend Sandwich / Single Leg Bend specimen [40, 59], Tilted Sandwich Beam,
Modified Cracked Sandwich Beam [64] etc. A further complication is that the mode
mixity tends to change as the crack grows. Generally, cracks start with a relatively
high mode I contribution and the relative mode II contribution increases, as the
crack propagates [40, 59]. However, if relatively pure mode loading is intended, the
geometry can be chosen explicitly such that the interface coincides with the neutral
axis, as Davidson et al. have recently shown [63].
In order to determine the effects of mode mixity, the artificial boundary condition
on the right side of the top specimen, and nonlinear geometry specifically in the
current investigation, an extensive simulation campaign has been conducted. This
was accomplished by simulating all permutations of the traits

1. Tc = (Tn, Ts) vs. Tc = (Tn, 0)

2. small deformations vs. finite deformations

3. plane stress vs. plane strain

4. artificial boundary condition at the top right vs. no artificial boundary con-
dition at the top right (in the case of Tc = (Tn, Ts))

For all possible permutations of the four traits, the load-displacement curve was
virtually unaffected by whether Tc had a cohesive shear component or not. There-
fore, setting the shear component to 0 is permissible in the current investigation.
However, if the formulation is to be used in general applications, an extension to
mixed-mode capabilities is mandatory. Furthermore, for the cases which had a cohe-
sive shear component, the load-displacement curves with and without the artificial
support were identical. Thus, introducing the support is permissible. Plane strain
assumptions increase the predicted load by about 5% compared to plane stress as-
sumptions at a given displacement. Preliminary investigations of 3D geometries
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suggest that plane stress assumptions may be more appropriate for the consid-
ered specimen and thus all reported simulations were conducted under plane stress
boundary conditions. Including the effects of geometric nonlinearity increased the
predicted load by about 5% at a given displacement for the established formulations.
As the effect is relatively small, the current analysis is limited to small displacement
assumptions.

6.5 Engineering estimate of the apparent energy release rate

It has been frequently observed, that fiber bridging leads to an increase in energy
release rate, cf. [40], [47] and references therein, and that the CERR increases over
the crack length [65,66]. However, the CERR should, by definition, be an interface
property and not depend on the crack length. In order to address this discrepancy,
we distinguish between a constant constitutive CERR, which is a material parameter
and defined as the area under the traction-separation curve, Eq. (14),

GIc,const =

∫ δfb

0
Tc dδn (14)

and the experimentally observed apparent CERR, as defined by the load point
displacement, load, and crack length at a given lever arm stiffness

GIc,ASTM =
3Pu

2b(a0 + ∆a)
(15)

which is apparently not constant as it is subject to the R-curve effect etc.
In order to directly compare the R-curves that correspond to FE calculations to the
R-curves calculated from experiments based on Eq. (15), a crack criterion for the
FE calculation is needed. It is seldomly discussed how the apparent CERR can be
directly extracted from an FE calculation since the constitutive CERR can easily
be calculated as the area under the traction-separation curve. There are multiple
possibilities for determining the crack length ∆a. For instance:

1. Opening threshold; i.e. a relative displacement of the upper and lower surface

2. Strength reduction threshold

3. Dissipated energy threshold

4. Damage onset, or respectively, the traction peak

5. Compliance-based estimates

In the presence of a short process zone, the five stated options provide very similar
results. The crack length enters GIc,ASTM in the denominator as a0 + ∆a (see
Eq. (15)). However, the actually measured value is a0 + ∆a + â, where â is the
difference between the “correct” ∆a value and the ∆a that the chosen crack criterion
/ experimental technique provides. ∆a+â should fall in the range of amin < ∆a+â <
amax as defined in Figure 2. Recalling that lPZ = amax − amin directly leads to the
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conclusion, that the range of â must increase as the length of the process zone lPZ
increases, and the range of observed difference in the resulting GIc,ASTM increases
accordingly. Any difference should dissipate as the crack grows since

lim
(∆a/â)→∞

a0 + ∆a

a0 + ∆a+ â
= 1 (16)

However, since fiber bridging, in combination with a honeycomb core, leads to rela-
tively high CERR at relatively low homogenized strength, the process zone length,
lPZ , can be relatively long, even when common cohesive laws are considered. This
can invalidate Eq. (16), for instance, if lPZ , and thus the possible range of â,
is of the same order of magnitude as the specimen length. The investigation of
consistent, feasible crack criteria is even more important, when an unconventional
cohesive law is to be validated. Therefore, a consistent and direct definition of the
crack length, in a numerical context, becomes necessary in order to compare the ex-
perimental results. In the CZM literature, the crack tip position is most commonly
considered to correspond to the first point in the wake of the crack that exhibits
damage [16]. However, usually this crack length is not used for numerical apparent
CERR calculations. In the present study, this criterion yielded results that qualita-
tively differed from experiments and that were highly sensitive with respect to the
cohesive strength.
Indirect compliance-based methods as proposed in [32,67] are not feasible for crack
length determination in this context. For these methods, an assumption about the
cohesive law shape [67], or even about the R-curve directly [32], has to be made.
Determining which shape is most appropriate for the considered application is the
subject of the present investigation. Assuming the shape upfront would therefore
lead to a circular argument.
The five aforementioned options were studied, and the most consistent results were
achieved with option 3, i.e. a dissipated energy threshold criterion. For convenience,
the parameters θIc and θIc,m,

θIc =
GI,crack tip

GIc
θIc,m =

GI,crack tip

GIc,m
(17)

which indicate the fraction of the CERR at which the crack tip position is assumed,
are introduced. A certain dissipated energy level, θ, is chosen, and the corresponding
opening, δθ, is calculated as

θIcGIc =

∫ δθ

0
Tb(δn) dδn θIc,mGIc,m =

∫ δθ

0
Tb(δn) dδn (18)

The longitudinal position at which the specific opening value δθ is met is extracted
from the FE output, and the apparent CERR, according to Eq. (15), is calculated
along with the associated load and displacement values. This criterion provided the
most consistent results for a wide range of strength values and cohesive law shapes
and is therefore considered a robust engineering estimate of the apparent engery
release rate. While the measured value is an opening value, i.e. a relative displace-
ment of the upper lever and the core, it is not an opening threshold criterion in the
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sense of item 1 of the previously given list, since the δθ value is not a constant, but
is unique for every cohesive law.
Figure 17 shows a comparison of the experimentally obtained R-curves and the nu-
merical counterparts extracted according to the described method for θIc,m = 0.5
of GIc,m, θIc,m = 0.55, and θIc,m = 0.667, respectively. For reference, θIc,m = 0.5
corresponds to 50% of GIc,m, i.e. 0.5 · 200 J/m2/1030 J/m2 = 9.71% of GIc. All
numerical and experimental curves are in good qualitative agreement. The initial
increase, angular peak and slight post-peak decrease are all well-captured. The best
quantitative agreement is achieved between a) the θIc,m = 0.55 criterion and the DIC
1% max. principal strain curves and b) the θIc,m = 0.667 criterion and the DIC 4%
max. principal strain curves. The travelling telescope GIc values are approximately
3 − 5% lower in the post-peak region. This is likely due to oblique crack growth.
However, the qualitative agreement is still good. It is of note that the apparent frac-
ture toughness is more than 10% higher than the constitutive fracture toughness at
45 mm crack length. The GIc-peak occurs when the bridging zone is fully formed
shortly before the fully developed zone begins to propagate self-similarly, see Figures
15 d)-e). Figures 18-20 provide the same R-curve comparisons to the test data as

Figure 17: Comparison of experimental and numerical R-curves obtained with the
new cohesive formulation.

Figure 17, but now for the existing cohesive formulations examined in Section 6.1.
Qualitatively, these figures are mutually similar but clearly distinct from Figure 17.
The angular shaped pre-peak/post-peak transition can generally not be captured.
Only the bilinear formulation (Fig. 18) has an angular shaped transition in the case
of Tmax = 2.0 MPa. However, due to the relatively high strength, the peak is at
approximately half the crack length that was observed in the experiment. The pa-
rameters that matched the peak load (bold blue lines) underestimate the apparent
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CERR obtained through the DIC measurements for all criteria and formulations.
The travelling telescope values are underestimated when the θIc = 0.1 crack length
criterion is used. When the θIc = 0.2 crack length criterion is employed, the peak
values are matched better, but the pre-peak values are severely overestimated.
The bilinear and exponential formulations also show some deviation from the con-
stitutive CERR (1050 J/m2) over the entire considered crack length, although not
as pronounced as in the case of the newly proposed formulation. No substantial
discrepancy between constitutive and apparent CERR is observed in the case of the
PPR formulation beyond 30 mm crack length. This indicates that the experimental
apparent CERR values are underpredicted, as the apparent experimental CERR are
generally higher than the constitutive CERR, once the crack is fully developed.
The experimental R-curve shape and the R-curve shapes of the new formulation do
not directly correspond to one of the three cases of R-curves identified by Spearing
and Evans [66]. Out of the three identified cases, the current results appear most like
the “perfectly plastic” cases, except that the R-curve is more peaked in the regime
of the greatest load. It is of note, that if a maximum initial stress (equivalent
damage onset) criterion is used, all formulations fall between the “strain softening”
and “linear elastic” case outlined in [66]. The R-curve bears some resemblance to
the long pre-cut notch case identified by Jacobsen and Sørensen [68], including the
“overshoot”.

Figure 18: Comparison of experimental and numerical R-curves obtained with the
bilinear COH2D4 formulation.
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Figure 19: Comparison of experimental and numerical R-curves obtained with the
exponential COH2D4 formulation.

Figure 20: Comparison of experimental and numerical R-curves obtained with the
PPR cohesive formulation.

Figures 17-20 emphasize that the apparent CERR is significantly different from
the constitutive CERR for all considered formulations. Furthermore, the short pro-

NASA/TM—2017-219470 30



cess zone argument implicit in Eq. (16) can clearly not be made for the results
herein. The difference is most pronounced for the newly developed formulation.
This new formulation has the clear advantage that it provides two separate compo-
nents for matrix cracking/fiber disbond-related damage on the one hand, and fiber
bridging-related damage on the other hand. Employing a 10% and 20% of the total
CERR criterion only on the bridging component of the cohesive law was found to
be insufficient. Therefore, it was shown that both the matrix and bridging parts
are necessary for an accurate prediction of a consistent crack length. The proposed
procedure is shown to provide useful engineering estimates for the apparent fracture
toughnesses values of the FE calculations in the current example. An interesting
point for future research is how good the agreement between the proposed engineer-
ing estimates and more elaborate implicit methods, as proposed by Leone et al. [38]
and Sarrado et al. [39], is.

7 Conclusion

A novel cohesive formulation for delamination modeling, in which the interfacial
cracking and fiber bridging mechanisms are considered separately, has been pro-
posed and applied to facesheet-core debonding in aluminum honeycomb sandwich
panels. The proposed formulation consists of an initial matrix component as well
as a bridging component, which develops traction as the separation increases, rep-
resenting the traction transferred by bridging fibers after the rotation process. The
results obtained with the proposed formulation are in very good agreement with
experimental load-displacement curves obtained from SCB tests. Furthermore, the
newly proposed formulation captures the concave downward / concave upward pre-
peak shape of the load-displacement curve that is observed while the fiber bridging
is developing. Existing standard cohesive formulations are unable to capture this
phenomenon. Specimens exhibiting long process zones do not have a clear crack
tip with a traction-free surface in its wake due to the presence of substantial fiber
bridging. The experimental strain distribution in the wake of the crack front exhib-
ited two distinct zones of high strain. The two zones were captured by the newly
developed cohesive zone formulation, but not by the existing cohesive zone forma-
tions. A simple engineering approach for the estimation of the R-curve based on FE
data was presented and validated. Finally, it was shown that the new method has
excellent numerical performance.
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Appendix A

Additional analytical expressions related to Tb

Finding analytical expressions for the characteristic quantities listed in Table 1
can be quite impractical for Tb. This is caused by term (b) in Eq. (4), which even
for integer exponents q and r leads to a variable number of terms as prescribed by
Pascal’s triangle. Since δfb is a rather useful quantity for implementation purposes
it is given here for the specific exponents q = 3 and r = 1, which are considered
throughout this paper.

δfb = δpb/3 + ((((3 ∗ δ0
b

2 ∗ δpb )/2 + (δ0
b ∗ δ

p
b

2
)/2 + δpb

3
/27)2 − (δpb

2
/9 + δ0

b ∗ δ
p
b )3)(1/2)+

(δ0
b ∗ δ

p
b

2
)/2 + (3 ∗ δ0

b
2 ∗ δpb )/2 + δpb

3
/27)(1/3) + (δpb

2
/9 + δ0

b ∗ δ
p
b )/((((3 ∗ δ0

b
2 ∗ δpb )/2+

(δ0
b ∗ δ

p
b

2
)/2 + δpb

3
/27)2 − (δpb

2
/9 + δ0

b ∗ δ
p
b )3)(1/2) + (δ0

b ∗ δ
p
b

2
)/2 + (3 ∗ δ0

b
2 ∗ δpb )/2+

δδpb
3
/27)(1/3)

(A1)

Both Matlab and Mathematica performed well in providing analytical expressions
for all relevant characteristic quantities. However, the authors were not able to
simplify the results to a form which provides further insight into the problem and
the other characteristic quantities (highest traction value, fracture toughness) are
therefore not reported, but can easily be obtained for specific exponent choices with
said programs.
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Appendix B

Further cohesive parameters

Table B1: Cohesive parameters used in Figure 8.

Tmax GIc stiffness in the origin K0

[MPa] [KJ/m
2
] [MPa/mm]

COH2D4 bilinear #1 2.0 1045 75
COH2D4 bilinear #2 1.5 1045 70
COH2D4 bilinear #3 1.05 1045 40
COH2D4 bilinear #4 0.75 1045 75
COH2D4 bilinear #5 0.6 1045 75
COH2D4 bilinear #6 0.5 1045 75
COH2D4 bilinear #7 0.3 1045 75

Table B2: Best fit cohesive parameters for 3 established element formulations used
in Figures 9(a)-9(b).

common parameters model-specific parameters
Tmax GIc K0

[MPa] [KJ/m
2
] [MPa/mm]

COH2D4 bilinear #6 0.5 1045 75

α [-]
COH2D4 exponential 0.675 (1047) 67.5 5.0

α [-] β [-]
User element PPR 0.53 1050 (73.25) 3.0 3.0

NASA/TM—2017-219470 35





Appendix C

Symbols

C elasticity tensor [MPa]
Cb cohesive parameter [MPa]

Ĉb cohesive parameter of the alternative bridging compo-
nent

[MPa]

E Young’s modulus [MPa]
G shear modulus [MPa]
GIc mode I critical energy release rate [kJ/m2]
GIc,ASTM apparent mode I critical energy release rate deter-

mined according to ASTM D 5528
[kJ/m2]

GIc,b constitutive mode I critical energy release rate of the
bridging cohesive component

[kJ/m2]

GIc,const constitutive mode I critical energy release rate [kJ/m2]
GIc,m constitutive mode I critical energy release rate of the

initial interface cohesive component
[kJ/m2]

K0 cohesive penalty stiffness [MPa]
M process zone length parameter [-]
P load [N]
S surface [m2]
T total traction [MPa]
Tb bridging component of the cohesive traction [MPa]

T̂b alternative bridging component of the cohesive trac-
tion

[MPa]

Tc cohesive traction [MPa]
Text vector of external tractions [MPa]
Tm initial interface component of the cohesive traction [MPa]
Tmaxm initial interface component strength [MPa]
Tn normal cohesive traction component [MPa]
Ts tangential cohesive traction component [MPa]
V volume [m3]

a0 insert (initial) crack length [mm]
∆a crack growth length [mm]
â crack position uncertainty [mm]
amin smallest conceivable crack length [mm]
amax greatest conceivable crack length [mm]
fcoh cohesive traction vector [MPa]
lPZ process zone length [mm]
u loading point displacement [mm]
u displacement vector [mm]
q cohesive law exponent parameter [-]
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q̂ cohesive law exponent parameter of the alternative
bridging component

[-]

r cohesive law exponent parameter [-]
r̂ cohesive law exponent parameter of the alternative

bridging component
[-]

Γ domain boundary [m2]
Γc potential fracture surface [m2]
Ω domain [m3]

α cohesive parameter [-]
β cohesive parameter [-]
δ0
b cohesive parameter [mm]
δpb cohesive parameter [mm]

δfb failure strain [mm]

δ̂fb failure strain of the alternative bridging component [mm]
δ0
m cohesive parameter [mm]
δn normal separation [mm]
δs tangential separation [mm]
δθ crack identification opening [mm]
ε strain tensor [-]
ν Poisson ratio [-]
σ stress tensor [MPa]
θIc GIc-based crack identification parameter [-]
θIc,m GIc,m-based crack identification parameter [-]
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