

Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets

W L Johnson¹, K W Heckle², and J E Fesmire³

¹Glenn Research Center, Cleveland, OH, 44135 USA

²Sierra Lobo, Cryogenics Test Laboratory, Kennedy Space Center, FL 32899 USA

³Cryogenics Test Laboratory, Kennedy Space Center, FL 32899 USA

July 10, 2017

Cryogenic Engineering Conference

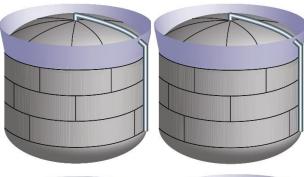
Improved Fundamental Understanding of Super Insulation (IFUSI)

Skirt Integration

Seams

MLI Blankets

- Traditional
 - SS-MLI
 - Hybrid


Tape, Pins & Attachments

Penetration Integration:

NASA-TP-2012-216315

Repeatability

Is this really an issue?

ATV 1 (Joules Verne) incident

- During launch, more power draw required than expected, was traced to blanket disengagement.
- Root causes came down to improper structural attachment
- AIAA-2010-6197

Nylon Tag Testing

- Nylon tags have long been used to hold MLI together
- Installed 56 pins into an existing 10 layer LB-MLI blanket
 - Individual pins have a really small heat load (~0.9 mW each)
 - Needed repeatable MLI coupon to do initial test and pinned test
 - Pin spacing ~ 3 inch
- Blanket Heat flux (KSC Cryostat 100):
 - A164 July 2012¹: 0.92 W/m²
 - A191 March 2015: 1.04 W/m²
 - Was also used in Hybrid MLI testing² (A174, A175, A181, A182)


Predicted disturbance:

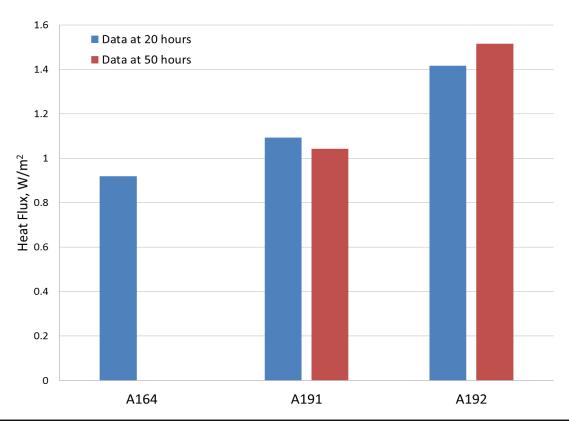
- Variable tag geometry
- 20 node conduction model (NIST nylon props):
 0.5 mW/tag
- Direct radiation through hole: 8 μW/tag

Cold side

Hot side

¹Johnson, W.L., Heckle, K.W., and Hurd, J. "Thermal coupon testing of Load-Bearing Multilayer Insulation", *AIP Conference Proceedings* 1573, pg. 725, 2014. ²Johnson, W.L., Fesmire, J.E., and Heckle, K.W., Demonstration of Hybrid Multilayer Insulation of Fixed Thickness Applications, *IOP Conf. Ser.: Mater. Sci. Eng.* 101 012015, 2015.

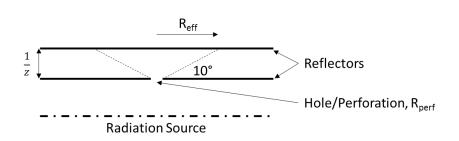
Test matrix



Test Series	# layers [n]	Thickness [x] (mm)	Layer Density [z] (layers/mm)*	Effective Area [A _e] (m ²)	CVP Tested (torr)	Warm Boundary Temperature (K)	# pins
A164	10	16.5	0.54	0.334	~10-6	~293	0
A191	10	15.2	0.59	0.331	~10-6	~293	0
A192	10	15.1	0.60	0.331	~10-6	~293	56

Test Series	CVP	WBT	Q	$\mathbf{k_e}$	q
(Data Time)	(Torr)	(K)	(W)	(mW/m/K)	(W/m^2)
A164	5x10 ⁻⁶	291.7	0.31	0.072	0.92
A191 (20 hrs)	$2x10^{-5}$	292.4	0.37	0.078	1.11
A191 (50 hrs)	$2x10^{-5}$	293.0	0.35	0.074	1.04
A192 (20 hrs)	$7x10^{-6}$	293.3	0.47	0.099	1.41
A192 (50 hrs)	7x10 ⁻⁶	292.4	0.51	0.106	1.51

Test Results Analysis



- Total heat to the blanket (with 56 tags): 0.51 W
 - 0.35 W through blanket
 - 0.16 W (+/- 0.025) residual (i.e. through tags)
- Predicted load: 45 mW
- Measured heat load is 3.5 x predicted heat load
- Similar to Arthur D. Little, Inc results from 1966³
 - Single 0.8 mm nylon pin through 10 layers MLI (1.0 mm diameter hole)
 - Predicted heat load of 0.3 mW
 - Measured change in heat load of ~ 3 mW, which was the experimental error
- Need revised model

³Black, I.A, Glaser, P.E., Reid, R.C., "Heat Loss Through Evacuated Multilayer Insulation Penetrated By a Low-Conductivity Pin", Bull. IIR, Annex 1966-2, 233-243 (Meeting Of Commission 2, Trondheim, Norway, Jun 22-24, 1966)

- Based on perforations model developed for MHTB large perforations,
 the radiation through a perforation is not limited to direct radiation⁴
- Instead the effective radiation area is defined by a 10 deg angle
- Using layer density as the spacing for LB-MLI, this can be extrapolated to a tag hole.

$$heta=10~deg=0.175~rad$$

$$r_{eff}=rac{1}{z\cos\theta}+r_{perf}$$

$$A_{eff}=\pi r_{eff}^2$$

$$\dot{Q} = A_{eff} \varepsilon_{layer} \sigma \left(T_h^4 - T_c^4 \right) + \int \frac{A}{dx} \int k dT$$

- Revised model estimates 3.6 mW per tag on recent testing (~30% more than actual)
- Revised model estimates 3.6 mW heat load for tag & hole in ADL test

⁴Fox, E.C., Keifel, E.R., and McIntosh, G.L., et.al. "Multipurpose Hydrogen Test Bed System Definition and Insulated Tank Development", Martin Marietta Astronautics, NASA CR-194355, July 1993.

- Completed testing on an MLI blanket with multiple small penetrations.
- Results show that heat load much more than conduction only.
- Analytical approach with combined radiation and conduction shows uncertainty less than 30%.
 - Change in vacuum level may account for difference

Test Series	Hole Radius (mm)	# layers	Layer Density (lay/mm)	Q _{hole} (mW)	Q _{pin} (mW)	$egin{aligned} \mathbf{Q}_{total} \ (\mathbf{mW}) \end{aligned}$	Q _{meas} (mW)
A192	0.5	10	0.6	3.1	0.52	3.6	2.0-2.8
Black [9]	0.5	10	1.3	3.3	0.3	3.6	~3