Mission Design and Optimal Asteroid Deflection for Planetary Defense

Bruno V. Sarli / CUA Jeremy M. Knittel / GSFC Jacob A. Englander / GSFC Brent W. Barbee / GSFC

NAVIGATION & MISSION DESIGN BRANCH

www.nasa.gov

Outline

- Optimal solutions for PD
- Problem Structure and Modeling
- Correctors
- The 2017 PDC scenario
- Peak Solutions for 2017 PDC
- Mission Constraints
- Mission Trade Study Options
- Mission Design Solutions

Optimal solutions for PD

- Simulation time and precision are key factors for PD missions
 - Asteroid post impact orbit (change in the order of cm/s)
 - Mission design trade (thousand optimizations)
- Previous research:
 - Analytical approximations on the close encounter conditions; or
 - Heavy n-body propagation of the asteroid's orbit
- This method: incorporates the trajectory design of the spacecraft with a simple set of two-body propagations to define the asteroid's post-deflection path. This provides a fast and cheap approximation with medium accuracy, suitable for preliminary mission design.
 - Kinetic impactor
 - Nuclear deflection

Target orbit	Calculation	Speed	
Real ephemerids (fully propagated model)	No analytical approximations	Fast	

Problem Structure and Modeling

Correctors

- A Kepler propagation of the asteroid's orbit is NOT representative for PD
 - Lambert fit on the asteroid's velocity at the point of deflection
- The new time of the SOI crossing is unknown
 - Single shoot search combine with a bisection to find the deflected orbit crossing time
- Radius of the perigee of the corrected orbit is different from the ephemerids
 - Lambert fit on Earth's velocity at the SOI crossing

The 2017 PDC Scenario

- The 2017 PDC
 - Hypothetical asteroid impact scenario developed by NASA CNEOS
- The impact scenario:
 - An asteroid has been discovered on March 6, 2017.
 - First estimate of an Earthly impact is about 1 out of 40,000.
 - After an observation campaign the impact probability rose to 1%.
 - Latter confirmation of a Earth impact on July 21, 2027.
- Physical characteristics:
 - Asteroid is assumed to have 385 m in diameter with a density of the 2.6 g/cm³ (mass is 7.768804e¹⁰ kg)

Peak Solutions for 2017 PDC

Mission Constraints

Constraint	Value	Reason
Launch date	after Aug. 1, 2019	2 years after the asteroid's probability of Earth
		impact rises to 10% .
Launch declination	± 28.5	Declination bounds for the Kennedy launch
		complex.
Asteroid encounter phase angle	≤ 120	Upper limit to have enough of the asteroid
		illuminated for the spacecraft's terminal
		guidance system.
Sun minimum distance	0.7 A.U.	Lower limit for the spacecraft design to handle
		the more aggressive thermal and radiation
		environments.
Sun maximum distance	3.5 A.U.	Upper limit to design a large spacecraft
		(complicated) enough to handle power
		generation and Earth communications at
		greater distances.
Earth Angle at asteroid encounter	≥ 3	Lower limit for the Deep Space Network to
		guarantee a viable RF link with the spacecraft.

Mission Trade Study Options

Mission Design Solutions

