Baseline Experimental Results on the Effect of Oil Temperature on Shrouded Meshed Spur Gear Windage Power Loss

Irebert Delgado (NASA) and Michael Hurrell (HX5 Sierra)

Proceedings of the ASME 2017 IDETC/CIE
Cleveland, Ohio, USA, Aug. 6-9, 2017
Windage power loss (WPL)

- Drag on gear tooth in transmitting load.
- Viscous drag on gear faces
- Air/Oil impingement on tooth surface (inertia effects)
- Significant at greater than 10,000 ft./min. (51 m/s)
- Gearbox efficiency losses
- Reduced rotorcraft performance (i.e. payload, range)

Ref:
Shrouded Spur Gear WPL Work

 - single spur gears, air
 - reduction in WPL with axial and radial shrouding
 - single and meshed spur gears, shrouding, air/oil
 - decrease in WPL with increasing oil temp., increase in WPL with increasing oil flow
- (2011) Combined Analysis & Experimental Validation
 - single spur gear analyses, shrouding
 - Hill: “CFD Analysis of Gear Windage Losses…."
 - Handschuh: “Initial Expts. of High-Speed Drive Sys. Windage Losses”
 - 7x to 12x increase in WPL for meshed spur gears compared to single spur gears
 - Explore WPL sensitivity to oil flow rate and oil temperature
Focus of this work

- Obtain WPL experimental on meshed spur gears
 - Oil inlet temperatures: 100°F (38°C), 125°F (52°C), 160°F (71°C), 180°F (82°C)
 - Constant oil pressure
 - 4 shroud configurations

- Compare with literature
 - Single vs Meshed
 - Unshrouded vs Shrouded

- Identify WPL trends, if any

- Outline additional research
Gear Information

<table>
<thead>
<tr>
<th>Gear Parameter</th>
<th>Drive-side</th>
<th>Driven-side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of teeth</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>Pitch / module, 1/in. (mm)</td>
<td>4 (6.35)</td>
<td></td>
</tr>
<tr>
<td>Face Width in. (mm)</td>
<td>1.12 (28.4)</td>
<td>1.12 (28.4)</td>
</tr>
<tr>
<td>Pitch Diameter, in. (mm)</td>
<td>11.0 (279.4)</td>
<td>13.0 (330.2)</td>
</tr>
<tr>
<td>Pressure Angle, deg.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Outside Diameter, in. (mm)</td>
<td>11.49 (291.85)</td>
<td>13.49 (342.65)</td>
</tr>
<tr>
<td>Material</td>
<td>Steel-SAE 5150H</td>
<td></td>
</tr>
</tbody>
</table>
Shroud Information

<table>
<thead>
<tr>
<th>Shroud Config.</th>
<th>Axial Clearance</th>
<th>Radial Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per side [inches] (mm)</td>
<td>Drive [inches] (mm)</td>
</tr>
<tr>
<td>(U) Unshrouded w/o clam-shell housing</td>
<td>2.25 (57.15)</td>
<td>2.5 (63.5)</td>
</tr>
<tr>
<td>(CS) Unshrouded w/ clam-shell housing</td>
<td>1.5 (38.1)</td>
<td>0.82 (20.83)</td>
</tr>
<tr>
<td>(C36) shrouded</td>
<td>1.2 (30.5)</td>
<td>0.66 (16.76)</td>
</tr>
<tr>
<td>(C1) shrouded</td>
<td>0.039 (1.00)</td>
<td>0.039 (1.00)</td>
</tr>
</tbody>
</table>
Continued - Shrouding

Axial Shroud
Clam-Shell Housing
Drive-Side, Upper-Half
Axial Slots
Radial Slots

Upper Drive-Side
Clam-Shell Housing
Upper Driven-Side
Oil-Drain Slot
Lower Drive-Side
Lower Driven-Side
NASA WPL Test Rig

- dc motor: 150 hp (112 kW)
- speed-up gearbox: 1:5.17 ratio
- Eddy-current brake: 73.8 ft.-lb. (100 N-m) at 2865 rpm (300 rad./sec.)
- torque-meter: 2,000 in-lbs (226 N-m)
- Into-mesh lubrication
- Measurements: shaft speed, gear fling-off temperature, gear mesh oil flow, oil inlet/exit temperature
WPL Test

- Spin-down at 10,000 rpm (1047 rad/s)
 (i.e. disengage drive motor, clutches, dynamometer)
 10,000 rpm (1047 rad/s) in 2000 rpm increments every 100 seconds
 Record speed vs time
 Repeat 2x for 3 cycles total.

- Oil In:
 100°F (38°C), 125°F (52°C), 160°F (71°C), 180°F (82°C)

- Shroud Config
 U, CS, C36, C1
WPL Calculation

- \(\text{WPL} = P_{\text{total}} - P_{\text{gear mesh}} - P_{\text{driveline losses}} \)
- \(P_{\text{total}} = \left(\tau_{\text{system}} [\text{ft-lbf}] \times N[\text{rpm}] \right) \div 5252 \)
 \(\tau_{\text{system}} = I_{\text{system}} \times \alpha_{\text{system}} \)
 \(I_{\text{system}} \) (equivalent inertia for meshed spur gears)
 \(\alpha_{\text{system}} \) via experiment
- \(P_{\text{gear mesh}} \) (estimated via NASA TP 1622, minimal, 1%)
- \(P_{\text{driveline losses}} = \left(\tau_{\text{driveline}} [\text{ft-lbf}] \times N[\text{rpm}] \right) \div 5252 \)
 \(\tau_{\text{driveline}} = I_{\text{driveline}} \times \alpha_{\text{driveline}} \)
 \(I_{\text{driveline}} \) (curved rail method by Genta)
 \(\alpha_{\text{driveline}} \) via experiment
WPL variation with increased oil temp.

- WPL unchanged with increased oil inlet temperature
- Oil flow increased with temperature: 0.73 gpm (2.76 lpm), 0.90 gpm (3.41 lpm), 0.97 gpm (3.67 lpm), 1.05 gpm (3.97 lpm)
- Indicative of WPL sensitivity to oil flow
- WPL unchanged for CS, C36, C1 configs.
WPL variation w/shroud configuration

- Increase in WPL of ~10x (single vs. meshed)
- More than double
- Possible WPL insensitivity to shrouding (i.e. C36 vs C1) at surface speeds tested
Brg. temp. variation: U configuration
Brg. temp. variation: C1 configuration
Gear fling-off (GFO) temp. variation

- GFO highest with C1 config.
- 40-50°F (20-30°C) difference at 28,000 ft./min. (142 m/s)
- Nearly identical GFO temps. for C36, CS, and U configurations
- Close clearance shrouds may increase local heating to gear
Summary Points

• **At controlled oil pressure at tested oil inlet temperatures:**
 - WPL data were identical for the U and CS shroud configurations.
 - WPL data were identical for the C36 and C1 shroud configurations
 - WPL data (C36 & C1) less than (U & CS) shroud configurations.
 - Potential insensitivity of WPL to shrouding (C36 vs C1) for surface speeds tested.

• **Shroud effectiveness may be reduced** if oil temperatures and oil flows are not controlled.

• **Shrouding appears to limit conductive and convective heat transfer** to the surrounding structure
 - could potentially be used to limit localized heating to the vicinity of the rotating gears.
 - Increased heating to gear (i.e. GFO results) needs to be accounted for.

• **Estimates of power savings for optimal rotorcraft shrouding** should always be stated, or qualified, for a given temperature and lube flow rate. The study presented herein highlights the importance of these parameters on the effectiveness of a given shroud configuration in reducing gearbox windage losses.
Acknowledgements

- NASA Revolutionary Vertical Lift Technology Project
- Robert F. Handschuh
- Sig Lauge

HX5 Sierra, Technical Test Support
APPENDIX
• Helicopter Performance Chart
• Ref: FAA Helicopter Flying Handbook, Chapter 7.
• Torque required for cruise or level flight, Figure 7.3