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AUTONOMOUS ASSEMBLY OF NANOSATELLITE

DEMONSTRATION MISSION

Jing Pei∗, Matt Walsh†, Carlos Roithmayr‡, Chris Karlgaard§, Mason Peck¶, and
Luke Murchison‖

Small spacecraft autonomous rendezvous and docking (ARD) is an essential tech-
nology for future space structure assembly missions. The On-orbit Autonomous
Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center
(LaRC) intends to demonstrate the technology to autonomously dock two nanosatel-
lites to form an integrated system. The team has developed a novel magnetic cap-
ture and latching mechanism that allows for docking of two CubeSats without
precise sensors and actuators. The proposed magnetic docking hardware not only
provides the means to latch the CubeSats, but it also significantly increases the
likelihood of successful docking in the presence of relative attitude and position
errors. The simplicity of the design allows it to be implemented on many CubeSat
rendezvous missions. Prior to demonstrating the docking subsystem capabilities
on orbit, the GN&C subsystem should have a robust design such that it is capable
of bringing the CubeSats from an arbitrary initial separation distance of as many as
a few thousand kilometers down to a few meters. The main OAAN Mission can be
separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field
Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper
discusses the preliminary GN&C design and simulation results for each phase of
the mission.

INTRODUCTION

CubeSat activities have become an important goal in NASA’s technology roadmap. The agency
recognizes the value of CubeSats as a platform for technology demonstrations and science missions.
Assembly of multiple CubeSats in space into large structures such as a space telescope or solar
panels could be tremendously beneficial for the science and engineering communities. Several
research groups1–5 are currently tackling the challenges associated with autonomous rendezvous and
docking of small scaled spacecraft on orbit. The On-orbit Autonomous Assembly of Nanosatellites
(OAAN) team at NASA Langley was formed in response to the Announcement of Opportunity
for the pilot Early Career Initiative from the Space Technology Exploration Directorate (STED)
at NASA Headquarters. The idea is to use magnets to perform the alignment and docking of two
CubeSats during the final phase of a docking maneuver that will make the docking process robust
in the presence of system uncertainties. Current ground demonstration6 is ongoing to verify the
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key system functionalities within the constraints of the 3 Degrees of Freedom (DOF) (2 translation
DOF, 1 rotation DOF) environment.

The long-term vision of the OAAN mission is to dock multiple CubeSats that reside in similar
orbits but were sent up by multiple launch vehicles. However, from a simplicity and risk standpoint,
it is decided that the concept of operation (CONOPS) for the initial space demonstration will consist
of two 3U+ CubeSats. The CubeSats are most likely to be placed in a LEO (Low Earth Orbit) simi-
lar to that of the International Space Station (ISS) with a semi-major axis of 6775 km, eccentricity
of 0.00012, and inclination of 51.64 degrees. Depending on the launch provider constraints, the
CubeSats could be released from the PPOD (Poly Picosatellite Orbital Deployer) simultaneously or
up to 10 minutes apart. The relative separation velocity is assumed to be within 1 m/s in any di-
rection in the Clohessy-Wiltshire7 frame (R-bar or cross-track, V-bar or along-track, H-bar or orbit
normal). The objective of the GN&C algorithms is to rendezvous and dock the two CubeSats, while
bearing in mind desirable characteristics such as: modularity, robustness, and autonomy (minimal
intervention from the ground station). It should handle a wide range of initial separation condi-
tions and allow for the mission planners on the ground to speed or slow down the mission timeline
given the fuel budget onboard. Currently, it is assumed that the main mission (from deployment to
docking) will take no longer than 4 months.

Figure 1 is a timeline of the five distinct phases of the mission. After launch and deployment,
there is a 5-6 day checkout phase. During checkout, tests are performed to check the health of the
CubeSats to make sure all systems including avionics, sensors, actuators, and radios are in proper
condition. The Cubesats will continue to drift apart during this time due to the differences in the
orbital elements. After checkout, the Attitude Determination and Control System (ADCS) on each
CubeSat will be turned on to initiate the de-tumble process and to make sure the CubeSats achieve
the desired orientations. The de-tumble and re-orientation phase is anticipated to take anywhere
between 10-15 orbits. Once the CubeSats have achieved their desired orientations and establish
communication with the ground station, the far-field (long-range) rendezvous or drift recovery phase
begins.

Figure 1. On Orbit Docking Concept of Operation

The far-field rendezvous or drift recovery phase is defined as the time during which the CubeSats
do not have direct communication with each other and rely solely on the ground station for updates.
Based on the specification for the radio, the threshold distance for relative position communication
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is determined to be approximately 2 km. It is highly unlikely that the CubeSats will be within this
distance after checkout. The lack of direct communication of relative state information requires the
Follower CubeSat to communicate with the ground station first to obtain the states of the Leader
CubeSat. The sequence of events in the drift recovery phase are as follows: 1) The Leader and
Follower (Chief and Deputy) turn on their onboard GPS at the same epoch for 0.5 to 1 orbit to
estimate the respective ECI (Earth Centered Inertial) position and velocity using GPS and onboard
Extended Kalman Filter (EKF). 2) The CubeSats communicate their estimated states to the ground
station through the RockBlock.8 3) The ground station uploads to the Follower the estimated mean
differential orbital ephemeris and the Follower determines a desired ∆V (velocity increment) com-
mand. Alternatively, the ∆V computation could be done by the ground station and upload to the
Follower. 4) Due to power constraints, once the ∆V command has been carried out by the Follower,
both CubeSats turn off their GPS receivers and begin coasting. 5) Steps 1-4 are repeated until the
Follower comes within 2 km of the Leader in the V-bar direction with minimal excess relative ve-
locity and separation in the R-bar and H-bar directions. The drift recovery algorithm closely mimics
that of the CanX 4 and 5 missions9, 10 that successfully demonstrated rendezvous of two 3U Cube-
Sats from more than 2000 km V-bar separation followed by precise formation flying. Following the
proven CanX approach for the drift recovery phase significantly lowers the overall mission risks.

The proximity operations or close range rendezvous phase is defined as the time during which the
CubeSats are within CDGPS (Carrier-Phase Differential Global Position System) radio range and
the relative position states can be communicated back and forth continuously. Similar to the CanX
formation flight mission, OAAN will utilize CDGPS11 to determine the relative position of the two
CubeSats by measuring the phase difference of the GPS carrier wave at two locations. It is proven
that CDGPS can provide relative position measurement within a few centimeter accuracy. During
the close-proximity operations phase, the Follower will perform high precision formation flying for
10 or so orbits. Upon successful completion, the Follower will be put on a catch-up trajectory such
that it slowly maneuvers towards the Leader until the V-bar separation is less than 10 meters. A
second series of formation flying experiments will be performed to verify the system performance
prior to docking. Once that is successfully achieved, the ground station provides the Follower with
approval for final docking. Figure 2 shows the adopted axis systems during the proximity operations
and docking phases of the mission.

Figure 2. On-Orbit Docking Concept of Operation
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During the docking phase, both the Leader and Follower will have their ±Z body axes directed
along the local V-bar direction such that their docking interfaces are pointed towards each other.
This operation is required because relative attitude information is assumed to be unavailable. The
star tracker on both CubeSats is aligned with zenith for the best view of the stars. The translational
controller will bring the Follower towards the Leader at a few cm/s. Once the CubeSats are within
the basin of attraction12 of the magnetic docking subsystem, feedback control on each CubeSat is
turned off, allowing for passive elimination of residual relative position and attitude errors. The
CubeSats will then align and complete the docking process.

It is worth noting that since the primary objective of the mission is to demonstrate the novel
docking mechanism, the approach with the lowest risk would be to eject the CubeSats from the
same PPOD deployer and separate them after they have been fully commissioned, similar to the
CPOD mission.1 Doing so would ensure that the CubeSats start out within CDGPS range and
eliminate the need for a far-field rendezvous phase. This would significantly reduce the complexity
and duration of the overall mission. However, there are not many launch providers that provide a
6U deployer, hence the far-field rendezvous phase is required to make the mission fully robust.

This paper is organized as into the following sections: The System Overview section provides an
overview of the system dynamics. The Launch and Drift section describes the launch and check-
out phase of the mission. The Drift Recovery section discusses the GN&C design of the far field
rendezvous phase in which the CubeSats are outside of CDGPS range. Robustness of the GN&C
design along with preliminary simulation results are shown. The Proximity Operations section
addresses the proposed formation flying experiments. Finally, the Docking section describes the
docking GN&C design and highlight the importance of the proposed magnetic docking mechanism
for final docking.

SYSTEM OVERVIEW

Propulsion

For translational control, four cold gas thrusters are arranged such that they provide pure transla-
tional motion as shown in Fig 3. The thrusters are strategically placed at the corners of an imaginary
tetrahedron (middle U of the 3U CubeSat) with the thrust vectors directed towards the centroid of
the CubeSat. During the on-orbit operation, the center of mass (CM) is designed not to vary by
more than 1 cm from the centroid. As a result, disturbance torque from the thrusters should be kept
to a minimum. The estimated available ∆V is approximately 16 m/s. Detailed modeling of the
propulsion subsystem performance is not included in the current simulation studies.

GPS/CDGPS

Due to size constraints, cost, and simplicity considerations, CDGPS was chosen as the relative
navigation sensor, and only relative position measurements are available between the Leader and
Follower CubeSat. Visual navigation methods, such as using lasers and cameras were out of the
project scope. CDGPS13, 14 allows for a few cm relative positioning accuracy when a RTK (real
time kinematic) solution or a “lock” has been achieved between two units, and it has been used
successfully for precise CubeSat formation flight missions such as the CanX missions in 2014.9

Therefore, in theory, the accuracy of the CDGPS should be adequate for a docking mission as well.
The Swift Navigation Piksi11 is the commercial CDGPS hardware solution that was selected for
OAAN. The Piksi units require one external antenna that faces away from the Earth to point toward
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Figure 3. Thruster Layout

the GPS satellites. A pair of units is required to achieve a relative navigation solution. Once a RTK
solution has been achieved between the two units, it will output a relative position and velocity
vector between the two phase centers of the Piksi GPS antenna in the local North-East-Down (NED)
or the Earth Centered Earth Fixed (ECEF) frame. In addition, the single-point (SPP) GPS solutions
of the Piksi units will be used for absolute navigation during the far-field rendezvous phase when
relative communication is not possible.

ADCS

The Attitude Determination and Control System (ADCS) is provided by Blue Canyon Technolo-
gies (BCT). The XACT15 unit is a fully assembled commercial off-the-shelf product with flight
heritage. The XACT provides precise three-axis attitude control using reaction wheels, magnetic
torque rods, and integrated control algorithms. For attitude determination, it contains a star tracker,
sun sensor, magnetometer, and on-board EKF. The star tracker is used during fine pointing mode
operations. Note: simulation results presented in the paper are based on an assumption of perfect
attitude determination and control.

Magnetic Docking Subsystem

Considerations of simplicity and docking success would naturally lead one to use a single large
permanent magnet for a docking subsystem. The magnetic docking mechanism makes the system
more robust to residual relative errors in the attitude and position loops. Practical constraints such
as volume, mass, and the impact a strong electromagnetic field on other subsystems provide a hard
limit on the size of the magnet. From an attitude control perspective, a single magnetic dipole
on board the CubeSat is problematic because a disturbance torque will be generated due to its
interaction with the magnetic field of the Earth16 shown in Eq. 1

τd = M ×B (1)

whereM is the net magnetic dipole moment of the docking subsystem andB is the Earth’s magnetic
field. A 0.5 inch cuboid magnet would generate a disturbance torque that is greater than the available
control torque from both the reaction wheels and the magnetic torque rods. Due to this constraint,
the docking subsystem is required to have a nominal net dipole moment of zero. This requirement
can be accomplished with a pair of magnets per docking subsystem with the dipoles having opposite
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directions in the Z axis of the body frame. Figure 4 shows a schematic of the docking subsystem.
The capture range associated with this design is smaller compared to the single dipole design due
to the existence of unstable equilibrium conditions12 in which the two docking subsystems would
repel each other.

Figure 4. Magnetic Docking Subsystem Schematic

In addition to the zero net magnetic dipole requirement, the ADCS also requires that the magnetic
docking subsystem shall not generate a changing magnetic field at the location of the magnetometer
that is significant when compared to the geomagnetic field vector of the earth. For one degree of
pointing accuracy, the magnetic field induced at the magnetometer location should be less than 0.7
µT. This further provides an upper bound on the strength of the magnetic dipoles. Equation 2 is used
to estimate the magnetic field (B) induced at a certain distance (r) by a magnetic dipole moment of
strength (~m).

B =
µo
4π

[
3

(~m · r̂)r̂ − ~m

|r|3

]
(2)

Environment

Because the Earth is not symmetric and its mass is not uniformly distributed, a spherical harmonic
model is typically used for the gravity field.17 A zonal harmonic18 gravity model was used to capture
the effects of Earth’s oblateness or bulge at the equatorial plane. The first seven zonal coefficients
in the harmonic series are used in the simulation. They are shown in Table 1. Atmospheric drag is
not modeled because the CubeSats are in very similar orbits and experience approximately the same
aerodynamic effects. Hence, the differential aerodynamic forces are negligible. The same principle
applies for solar radiation pressure. Gravity gradient torque is not included.

Table 1. Zonal Harmonic Gravity Terms

J2 1.08263566655× 10−3

J3 −2.53247369133× 10−6

J4 −1.61997430578× 10−6

J5 −2.27905126082× 10−7

J6 5.40616789940× 10−7

J7 −3.50522925632× 10−7

J8 −2.04016767010× 10−7
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LAUNCH AND DRIFT

The CubeSats are assumed to be deployed from the same launch vehicle at a typical 400 km
altitude near-circular Low Earth Orbit (LEO). Table 2 shows the orbital elements associated with
the ISS orbit. Right Ascension of the Ascending Node (RAAN), Ω, and Argument of Periapse, ω,
are not shown in the table because they vary slowly over time due to J2 effects.

Table 2. ISS Orbital Elements

Orbital Elements Values

Semi-major axis, a 6900 km
Inclination, i 51.64 deg

Eccentricity, e 0.0002

It is unlikely that a simultaneous separation of the CubeSats would take place as there are not
many 6U+ PPOD deployers available to launch providers. With other factors in mind, there could
be a 5 to 10 minute gap between separations. In addition, due to factors such as launch vehicle orien-
tation or release mechanisms, etc. there will be some initial relative velocity between the CubeSats.
It is well known from the classic Clohessy-Wiltshire (CW) equations that relative velocities in the
R-bar or H-bar would result in oscillations about zero in the respective directions. However, relative
velocities in the V-bar direction will cause a secular drift in the along-track direction. Generally,
the checkout period for a CubeSat is around 5 to 6 days before it is considered fully commissioned.
Depending on the initial relative velocity in the V-bar direction, after the commission period the
CubeSats could be separated by thousands of kilometers. In the case of the CanX-4 and 5 mis-
sion,9, 10 the relative separation distance grew to 2300 km from deployment to the initiation of the
drift recovery phase.

Figure 5. Example Drift Monte Carlo Results: ∆T = 5 min

Monte Carlo simulations were performed to obtain an approximate bound for the range of initial
conditions at the beginning of the drift recovery phase. Figure 5 shows the results from one such

7



Monte Carlo run. Here the gap in the separation time was assumed to be 5 minutes (equivalent
to some initial differences in true anomaly ∆ν) and the relative separation velocity was dispersed
between 0 to 1 m/s in any direction. Depending on the relative V-bar velocity at the separation, the
final CW distances could either grow or shrink over the 5 to 6 day drift period. Figure 6 is a plot
of the relative distances in the CW frame for one of the more extreme cases in which the separation
gap is 5 minutes and the relative separation velocity is −0.3 m/s in the V-bar direction.

Figure 6. Initial Drift Example: Relative Position CW frame

In this case, at the end of the 5-day checkout period, the CubeSats will be separated by over 2600
km and continue to drift apart due to differences in the orbital elements. Table 3 shows the mean
differential orbital elements at the end of the checkout period.

Table 3. Example: Differential Mean Orbital Elements after 5 Day Checkout

Differential Orbital Elements Values

Semi-major axis, ∆a −530 m
Inclination, ∆i −4.315× 10−6 deg

Eccentricity, ∆e 0.000038
Longtitude of the Ascending Node, ∆Ω −0.023856 deg

DRIFT RECOVERY

The objective of the far-field rendezvous or drift-recovery phase is to move the Follower CubeSat
from outside of CDGPS range given some initial conditions from the end of the checkout phase to
inside CDGPS range, where it is directly behind the Leader in the CW frame. The cost function is to
minimize any residual out-of-plane motion (R-bar and H-bar) as the Follower slowly approaches the
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2-km threshold distance in the V-bar direction while simultaneously minimizing the ∆V consump-
tion. In terms of mean orbital elements, at the beginning of the drift recovery phase the CubeSats are
drifting apart due to differences in their orbital elements, and at the end of the phase the CubeSats
should have nearly identical orbital elements except for a small difference in the true anomaly, ν.

The algorithm for the drift recovery phase closely mimics that used for the CanX-4 and CanX-
5 formation flying mission which takes advantage of the natural orbital perturbations to conserve
∆V . A more detailed description of the CanX mission and a full derivation of the method can
be found in Ref. [9, 10]. The drift recovery phase can be further broken into three distinct sub-
phases. The objectives of Sub-phase 1 is to eliminate any initial drift rates and put the Follower on a
desired return trajectory. The mission designer can specify a desired catch-up rate in the along-track
direction by controlling the drift rate of the relative argument of latitude, δλ̇, while simultaneously
matching the Ω of the two orbits in the out-of-plane direction. Equation 3 is a first order Taylor
Series expansion of δλ̇ with respect to each relative orbital elements (semi-major axis, eccentricity,
and inclination). The eccentricity and inclination terms both have negligible impacts on the catchup
rate, thus only semi-major axis is use to adjust δλ̇.

λ̇ =
∂δλ̇

∂a

∣∣∣∣∣
xl

δa+
∂δλ̇

∂e

∣∣∣∣∣
xl

δe+
∂δλ̇

∂i

∣∣∣∣∣
xl

δi (3)

Given the initial along-track separation in terms of δλ, the designer can specify a δa such that the
Follower would get within some V-bar separation distance of the Leader given some desired time,
T sec. In the out-of-plane direction, the precession in Ω between the two orbits due to J2 must also
be eliminated. This can be addressed by Eq. 4 and 5 in which the the designer can specify a target
inclination for the Follower in order to match Ω with that of the Leader in T sec.

Ω̇ = −3

2
J2

(
Re

a(1− e2

)2√ µ

a3
cosiF (4)

Here J2 is the dominating zonal harmonic gravity term, Re is the radius of the Earth, and µ is the
universal gravitational constant. Ω̇ can be replaced as the finite difference between the Leader and
Follower’s Ω.

Ω̇ = −ΩL − ΩF

T
(5)

Sub-phase 2 begins when the Follower is within some pre-determined V-bar separation distance
from the Leader. Prior to reaching the 2-km V-bar target for close-proximity operations, the catchup
rate must be reduced incrementally by specifying the desired ∆a as a function of V-bar separation.
This is referred to as the deceleration phase and significantly reduces the chance of the Follower
overshooting the 2-km V-bar target distance. During this phase, groups of multiple thrusts could
take place per orbit to eliminate any residual differences in e, ω, and i. Sub-phase 3 begins when the
Follower is within approximately 15 km of the 2-km target distance with little out-of-plane motion.
Here a ∆a is specified such that the Follower slowly coasts toward the target at the rate of a few
cm/s.

Throughout the entire drift recovery phase, the impulsive thrusts required to cause desired changes
in the orbital elements can be computed based on the Gauss Variational Equations19 (Eq. 6 to 10).
Here ∆Vr, ∆Vt, and ∆Vz are the ∆V applied in the Follower’s orbital radial, tangential, and nor-
mal directions respectively. The pseudo-inverse solution to these sets of equations provides the ∆V
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required to achieve desired changes in the orbital elements.

ȧ =
2a2√

µa(1− e2)
[e sin f∆Vr +

p

r
∆Vt] (6)

ė =

√
a(1− e2)

µ
[sin f∆Vr +

r(2 cos f + e(1 + cos2M))

p
∆Vt] (7)

i̇ =

√
a(1− e2)

µ

r cosλ

p
∆Vz (8)

Ω̇ =

√
a(1− e2)

µ

sinλ

p sin i
∆Vz (9)

ω̇ =

√
a(1− e2)

µ

[
− cos f

e
∆Vr +

r(2 + e cosM)sinf

pe
∆Vt −

r sinλ

p tan i
∆Vz

]
(10)

Since OAAN is a low-cost and high-risk technology demonstration, the Piksi units onboard the
CubeSats serve as the sole absolute and relative navigation sensors. When outside the 2-km range
of the Piksi antennas, the Piksi single point solution (SPP) GPS data will be used by the EKF to
estimate the CubeSat’s absolute position and velocity in the ECI (Earth Centered Inertial) frame.
Due to power constraints, the GPS and EKF on each CubeSat can only be turned on periodically to
estimate the positional states. The estimated states will be sent to the ground station, transform to
the orbital elements and pass through a FIR (Finite Impulse Response) filter to obtain an average.
The mean differential orbital elements will be communicated back up to the Follower CubeSat.
Table 4 compares the performance of the Piski in SPP mode vs. real time kinematic (RTK) mode.
The SPP is the standalone, absolute GPS position solution using only a single receiver. The RTK
solution is the differential GPS solution.11 It is apparent that the RTK solution is roughly 2 orders
of magnitude more accurate than SPP. However, the SSP solution should be adequate for the drift
recovery phase where the objective is to get the Follower within 2 km of the Leader.

Table 4. Piksi: SPP vs. RTK

Parameters SPP RTK

Number of Receivers 1 (Rover) 2 (Rover and Base)
Position Type Absolute, ECEF Relative

Position Accuracy (Horizontal) 3-5 meters 0.01 - 0.03 meters
Position Accuracy (Vertical) 12-15 meters 0.03 - 0.06 meters

In the preliminary implementation of the EKF,20 the update rate of the filter is assumed to be 5
seconds. In between the epochs, a first-order Euler integration scheme (step size of 5 × 10−5 sec)
is used to propagate the system dynamics. Due to the limited computational resources, a J2 gravity
model is used in the propagation of the orbital dynamics. This is deemed to be a good tradeoff
between having a higher order model that captures the essential plant dynamics with computational
efficiency. Details such as EKF initialization14 and latencies associated with the periodic commu-
nications between the CubeSats with the ground station via RockBlock8 are not included in the
current analysis.
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Typical measurement GPS covariance values are used in the preliminary EKF design. Both posi-
tion and velocity measurements are assumed to be available. Equation 11 shows the measurement
covariance matrix, Rd.

Rd = diag([σ2x σ
2
y σ

2
z Σ2

x Σ2
y Σ2

z]) (11)

where σ is the GPS position covariance (10 m) and Σ is the GPS velocity covariance (0.125 m/s).
The process noise covariance Qd is assumed to be the RSS (root sum square) of the accelerometer
covariance (0.002 m/s2) with un-modeled dynamics, W (0.009 m/s2). The un-modeled dynamics
covariance, W accounts for the mismatch between the gravity model (J2) inside the propagator and
a high-fidelity gravity model (up to 300 coefficients).

Preliminary baseline results presented here are based on an assumption of perfect navigation
measurements and actuators. The terminal conditions at the end of the checkout phase shown in
Figure 6 and Table 3 are used as the initial conditions for the drift recovery simulation. Figure 7
shows the baseline return trajectory in terms of the absolute distance in the CW frame. After the
checkout phase (Day 5), the Follower is placed on a slightly lower orbit (∆a) such that it arrests any
initial drift rate and catches up to the Leader at a constant specified rate, δλ̇. Small corrections are
applied during each estimation and firing interval to correct for any disturbances. During days 23
to 38, small amounts of ∆V are applied to correct for mean differences in e and ω. Day 39 marks
the start of the deceleration sub-phase, in which the Follower gradually slows down incrementally
prior to approaching the 2-km target location. During this sub-phase, small orbital matching burns
were applied. The Follower reaches the 2-km V-bar target between Day 74 and 75. Figures 8 show
plots of the relative position and velocity in the CW frame.

Figure 7. Drift Recovery Phase Example: Absolute Relative Position CW frame

Figure 9 shows the corresponding plots of the differential orbital elements. During the initial
drift recovery phase, a desired inclination is specified for the Follower such that the difference in
Ω is eliminated by the start of the deceleration sub-phase on Day 39. The adopted CanX algorithm
appears to do a great job in slowly eliminating the differential orbital elements in a fuel efficient
manner. The total ∆V consumed for this baseline drift recovery run is approximately 3 m/s. The
designer could speed up the drift recovery phase by placing the Follower on an initial lower orbit at
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Figure 8. Drift Recovery Phase Example: Relative Position and Velocity CW frame

the cost of additional ∆V .

Table 5 shows the final position and velocity states in the CW frame at the end of the baseline drift
recovery phase. To access the robustness of the algorithm, a Monte Carlo simulation was performed
in which the initial separation velocity between the CubeSats was dispersed (1 m/s in any direction)
while assuming a 5 min separation gap. Figure 10 shows the final CW position and velocity along
with the 3-sigma bound represented by the green contours. Even without any manual parameter
tuning for each run, it is apparent that the baseline algorithm outlined above should be effective
in bringing the Follower to a V-bar separation distance of 2 km behind the Leader with minimal
residual out-of-plane velocities.

Table 5. Example: Final CW States at the end of Drift Recovery Phase

Parameters Values

Relative Position, m [−64 −1996 97]
Relative Velocity, m/s [0.37 0.17 −0.07]

Once the Follower CubeSat reaches the 2-km V-bar target location and establishes a RTK solution
with the Leader’s Piski. A full-state feedback controller can be used to eliminate any residual
differences in the orbital elements. Table 6 shows the final differential orbital elements after the full-
state feedback control has been applied. Note: full-state feedback continuous control is expensive
from a ∆V consumption standpoint. It is imperative for the designer to tune the parameters in
the drift recovery algorithm such that Follower reaches the 2-km target with minimal out-of-plane
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Figure 9. Drift Recovery Phase Example: Differential Orbital Elements

Figure 10. Drift Recovery Monte Carlo: Final Relative Position and Velocity CW frame

errors.
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Table 6. Example: Final Differential Orbital Elements at the end of Drift Recovery Phase

Differential Orbital Elements Values

Semi-major axis, ∆a 0 m
Inclination, ∆i 1.1e-6 deg

Eccentricity, ∆e 6×10−7

Longitude of the Ascending Node, ∆Ω 1.1×10−5 deg
Argument of Perigee, ∆ω 1×10−4 deg
Argument of Latitude, ∆λ 0.016971 deg

PROXIMITY OPERATIONS

The proximity operations or close-range rendezvous phase is defined as the time during which
the CubeSats are within CDGPS range and the relative position states can be communicated back
and forth without the ground station. The objective of the close-proximity operations phase is to
have the Follower perform a series of initial high precision formation flights for approximately 10
orbits. This would allow the ground station to develop further confidence in the performance of the
CDGPS, Navigation filters, and propulsion subsystem.

The formation-flying controller is a discrete LQR (Linear Quadratic Regulator) design about the
CW equations shown in Eq. 12 to 14, where x, y, z are the relative separation distances in the R-bar,
V-bar, and H-bar direction and ω is the frequency of the orbit. The proposed formation is a 2000
m along-track orbit, in which the Follower is commanded to stay perfectly behind the Leader at a
standoff distance of 2000m with minimal variations in the cross-track and H-bar directions. The
2km distance offers a good buffer in case an off-nominal event occurs such as a loss of relative
position communication. Another option would be to put the Follower on a passive walking safety
ellipse21 and perform nav-related tests during that period.

ẍ = 3ω2x+ 2ωẏ (12)

ÿ = −2ωẋ (13)

z̈ = −ω2z (14)

Once the ground station deems the formation flight experiment successful, a small ∆V based
on the Gauss Variational equations will be applied to the Follower such that it slowly catches up
to the Leader at a few cm/s. Once the Follower is within 10 meters of the Leader in the V-bar
direction, a second set of formation flying experiments is planned to re-assure the ground station
about the performances of the sensors, actuators, and GN&C algorithms prior to final docking.
Once the precise formation flying control is successfully demonstrated at a 10 m along track orbit,
the docking command is given to the Follower. This is deemed to be the most risky portion of the
mission as a loss of relative communication or similar failures would likely result in a collision
between the two CubeSats.

Figure 11 shows the absolute relative distance in the CW frame for the sample case (magnified
towards the end of the drift recovery phase shown in Fig. 7). Prior to day 78, the Follower slowly
approaches the Leader towards the end of the drift recovery phase at an approximate rate of 1000
meters per day. During days 76 and 77, the radios on both CubeSats will be turned on to attempt to
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acquire a CDGPS lock. Figure 12 shows the 3 components of the CW positions. As soon as the full
state feedback controller is activated, all the state errors are driven close to zero.

Figure 11. Close Proximity Operation Example: Absolute Rel Position CW frame

Table 7 contains the final CW positions and velocities at the end of the first formation flying
phase (20 orbits). Assuming perfect navigation solutions, it is apparent that the LQR controller is
fully capable of performing the stationkeeping task. In this baseline example, the ∆V consumed in
eliminating the residual differences in the orbital elements from the end of the drift recovery phase
to performing precise formation flying for 20 orbits is approximately 3.3 m/s.

Table 7. Example: Final CW States at the end of 1st Formation Flying Phase

Parameters Values

Relative Position, m [−0.03 −2000.1 0.31]
Relative Velocity, m/s [0.0005 −0.0063 −0.003]

DOCKING

The docking phase begins when the Follower is within 10 or so meters behind the Leader in the
V-bar. Once again, the pair will perform a series of formation flying experiments until the ground
station gives the approval to proceed with final docking. Figure 13 illustrates the desired orientations
of the Leader of Follower during docking. The Leader is oriented such that its +Z axis is aligned
with the local V-bar and the +X axis aligned with the R-bar such that the GPS antenna is pointing
away from the Earth. The Follower is rotated 180 deg about the +X axis with respect to the Leader.
The magnets inside the docking subsystem are aligned along the +Y axis to generate a larger domain
of attraction along the X direction (compared to Y) because CDGPS errors are the greatest in the
R-bar direction.

A low bandwidth full-state feedback docking controller about the linear Clohessy-Wiltshire equa-
tions7 (Eq. 12 to 14) was designed to bring the Follower towards the Leader at a few cm/s. There
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Figure 12. Close Proximity Operation Example: Rel Position CW frame

Figure 13. Docking Configuration Schematic

have been numerous studies that explore docking controller strategies.22–25 A nonlinear phase plane
controller also seemed to work well by giving the designer the option to choose the desired coast ve-
locity, position and velocity dead bands etc. in each channel with the magnetic docking subsystem
capture volume in mind. The two main objectives are: 1) keep the bandwidth low such that there is

16



roughly an order of magnitude of frequency separation with the attitude loop, 2) make sure that the
closed loop poles of the second-order system are well damped with ζ > 0.7. This would ensure that
the Follower approaches the magnetic basin of attraction with minimal residual linear velocity.

Since the relative orbital dynamics is linear during the docking phase, both an Extended Kalman
Filter (EKF) and a Kalman Filter (KF) are applicable. In the case of KF implementation, the plant
dynamics are the linear CW equations. In the case of the EKF, the nonlinear relative equations19

shown in Eq. 15 to Eq. 19 are used for the plant dynamics (assuming Keplerian orbits). Here
x, y, z are the relative separation distances (in-track, cross-track, H-bar) between the Leader and
Follower in the Hill frame. µx, µy, µz are the control acceleration inputs for the Follower. r, ω are
the radius and orbital angular velocity of the Leader. For small separation distances (<2 km), the
two formulations yield nearly identical results.

ẍ = 2ωż + ω̇z + ω2x− µy

[x2 + y2 + (r − z)2]3/2
+ µx (15)

ÿ = − µy

[x2 + y2 + (r − z)2]
+ µy (16)

z̈ = −2ωż + ω̇x+ ω2z − µ

r
− µ(r − z)

[x2 + y2 + (r − z)2]3/2
+ µz (17)

r̈ = rω2 − µ

r

2
(18)

ω̈ = −2ṙω

r
(19)

Termination conditions in the simulation are: 1) Successful docking, when the offset between
the centerlines of the docking interfaces (at an axial separation of 2cm) are within a circle of 1 cm
radius. 2) Unsuccessful docking, when the Follower overshoots the Leader or when the magnetic
docking subsystem generates large attitude motions in the CubeSats due to excessive misalignment
errors between the docking subsystems. Note: collision and contact dynamics are not modeled in
the simulation. Table 8 is a comprehensive list of dispersion parameters used for the Monte Carlo
simulations. The nominal values are shown in the second column, and the 1σ dispersions are shown
in the third column. The magnetic docking mechanism is intended to make the docking process
more robust to residual attitude and translation errors.

Figure 14 shows an example of a successful docking trajectory (relative position of the two dock-
ing interfaces) in the CW-frame. The Follower starts out at standoff distance of 10 meters in the
V-bar direction and slowly moves towards to Leader. Variations in the R-bar and H-bar channels are
due to orbital perturbations and system uncertainties. At around T = 880 sec, the Follower enters
the magnetic docking subsystem basin of attraction. Thereafter, residual errors in the out-of-plane
channels are removed, and the CubeSats dock. Figure 15 shows the final offset between the center-
line of the two docking interfaces at a V-bar (axial) separation of 2 cm. It is assume in this analysis
that if the relative centerline offset falls within a circle of radius of 1 cm at an axial separation of
2 cm, then successful docking is guaranteed. Figure 16 compares results from a Monte Carlo run
showing the final centerline offsets between with and without the magnetic docking subsystem. It
is apparent that without the aid of the magnetic docking subsystem (right plot), successful docking
is highly unlikely as majority of the dots fall well outside the 1cm unit circle criteria.
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Table 8. Dispersions Parameters

Parameter Nominal Uncertainty (1 σ)

Thruster misalignment angle, deg 10-20 5
Thruster mounting offset, m 0 0.0015

Thruster impulse magnitude, % 0 5
CDGPS bias (time varying), m 0 0.02

CDGPS noise, m 0 0.003
Accelometer noise, m/s2 0 0.002
Accelometer bias, m/s2 0 2.943 ×10−4

Gyro drift, rad/s 0 2.67 ×10−5

Magnetic knockdown factor, % -20 0
IMU misalignment, deg 0 1.5

Avionic delay, ms 25 0
CG offset, m 0 0.0033
Inertia Iyy, % 0 3

Figure 14. Nominal Successful Docking Trajectory

CONCLUSION

Autonomous rendezvous and docking of two CubeSats in space is a challenging GN&C problem.
The algorithm development and simulation results described in this paper provide solid groundwork
for a future CubeSat ARD mission. Increased simulation fidelity and STK (Satellite Tool Kit) will be
required later in the design cycle. For the baseline mission considered in this paper, approximately
8 m/s of ∆V is required to complete the mission from the beginning of the drift recovery phase to
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Figure 15. Nominal Successful Docking Example: Final Offset

Figure 16. Monte Carlo Results of Final Offset: with and without docking mechanism

final docking, which is well below the total ∆V budgeted for the Follower CubeSat of 16 m/s. This
number is certain to increase when inefficiencies of the RCS (Reaction Control System) design such
as thrust vector misalignment are considered. In the event of a hardware failure on the Follower,
such as a failed thruster or reaction wheel, the dexterity of the GN&C algorithm allows the CubeSats
to switch roles and the Leader would be considered as the new Follower. As a concurrent effort, the
OAAN team is currently verifying the performance of key system functionalities on the flat floor
facility at NASA Langley Research Center.
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