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Introduction:  Oxygen fugacity plays an important 

role in determining the detailed physical and chemical 

aspects of planets and their building blocks.  Basic 

chemical properties such as the amount of oxidized Fe 

in a mantle (as FeO), the nature of alloying elements in 

the core (S, C, H, O, Si), and the solubility of various 

volatile elements in the silicate and metallic portions of 

embryos and planets can influence physical properties 

such as the size of the core, the liquidus and solidus of 

the mantle and core, and the speciation of volatile 

compounds contributing to atmospheres.  This paper 

will provide an overview of the range of fO2 variation 

observed in primitive and differentiated materials that 

may have participated in accretion (cosmic dust, Star-

dust and meteorites), a comparison to observations of 

planetary fO2 (Mercury, Mars and Earth), and a discus-

sion of  timing of variation of fO2 within both early and 

later accreted materials.  This overview is meant to 

promote discussion and interaction between students of 

these two stages of planet formation to identify areas 

where more work is needed. 

 

The record in primitive materials: A wide range 

of fO2 is recorded in primitive materials ranging from 

the most reduced enstatite chondrites and CAIs both 

recording fO2 near IW-7, to the most oxidized IDPs 

and dust particles that record fO2 near or just above the 

IW buffer [1].  Between these two end members are a 

nearly continuous range of fO2 recorded in ordinary, R, 

and carbonaceous chondrites, Stardust particles, and 

chondrules (references in [1]; Figure 1).   

 

The record in planets: All planets experienced re-

ducing conditions that allowed a core to form, but do 

not necessarily retain that early reduced nature, as crus-

tal and magmatic products on Mars and Earth are gen-

erally more oxidized than the conditions during core 

formation [2].  Mercury seems well defined between 

IW-7 and IW-4, the most reduced planet in our inner 

solar system [3].  Mars has a significant range of fO2 

from IW to FMQ+1 [4].  Earth shows the largest varia-

tion in fO2 - nearly 10 log fO2 units - from near IW 

buffer to as high as the HM buffer [5,6].  The causes of 

variation in planetary materials is discussed further 

below. 

 

Processes that change fO2: Nebular processes, 

such as chemical gradients or variation in volatile spe-

ciation may cause early variations in fO2 in materials 

[7].  Physical transport of materials from one part of 

the nebula to another may also cause redox variation 

[8].  Such early records can be modified by heating 

(thermal metamorphism) or fluid alteration (aqueous 

alteration on parent bodies) [9,10].   

Pressure variation does not produce fO2 variation in 

most cases, but if graphite or diamond is present, the C 

phases and co-existing gas can cause large fO2 varia-

tion with small pressure changes compared to standard 

metal-oxide equilibria (e.g., ureilites and R-chondrites; 

[11,12]).  High pressure equilibria in planetary interi-

ors have potential to change fO2, whether the equilibria 

involve solids [13,14] or liquids [15,16], but much 

work remains to understand multi-component rather 

than simple two or three component systems (e.g., Fe-S 

or Fe-S-C) or reduced peridotitic melts rather than 

evolved oxidized MgO-poor melts. 

 

Timing: Variations in elemental valence of V and 

Ti have been observed in chondritic materials, and 

attributed to both oxidation and reduction processes.  

Transient behavior has been proposed for many of 

these, and such observations have been made in carbo-

naceous, ordinary, and enstatite chondrites indicating a 

widespread phenomenon [17-19].  A connection be-

tween oxygen isotopes, oxygen fugacity, and dust:gas 

ratios in the solar nebula has been proposed and argued 

based on measurements in CR chondrites, and con-

strained within the first several Ma of solar system [7].   

Variations in fO2 have also been proposed for the 

later planet formation stage, but there is not consensus.  

Some argue for early reducing and later oxidized, as 

championed by early accretion models for Earth [20] 

and utilized more recently [21,22].  Early oxidized 

followed by later reduction was proposed by [23], and 

shown to be a possible consequence of deep metal-

silicate equilibria [15,24].  However, the latter study 

also highlighted uncertainties in high pressure proper-

ties of silicate melts that allow for little to no change in 

fO2 resulting from deep metal-silicate equilibria 

[15,24]. 

 

Outstanding questions: There are plenty of out-

standing questions and avenues for future research to 

help understand the chemical and physical environ-

ments and the causes of fO2 variation. 

First, how oxidized was the early nebula – some 

matrix material has high Fe3+ [25], but it is unclear 

what environment or how high fO2 was to generate this 



material.  Second, the role of pressure in Fe redox 

equilibria – both Fe-FeO in embryos and planets, and 

later FeO-Fe2O3 equilibria in planets – is poorly con-

strained, as is the controlling role of volatiles and vola-

tile speciation at pressure.  To what extent do dust and 

sub-meter sized materials become completely trans-

formed by higher temperature and pressure processes, 

thus erasing any nebular or primitive redox signature?  

Third, during oligarchic growth, the role of relative 

mass and volatiles in controlling redox equilibria needs 

to be better defined.  For example, if there is an impact 

between two bodies with a target:impactor mass ratio 

of  7:3, involving a reduced target and oxidized im-

pactor, what is the fO2 of the resulting body?  Does the 

more massive body “win”, or is the resulting body 

simply a mix of the two?  This is currently unknown. 

And fourth, what is the role of heliocentric distance? 

Was the inner solar system uniform from Mars in-

wards, or was there nonetheless variation?  [26]. 
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Figure 1: Range of oxygen fugacity (fO2 relative to the 

IW buffer) recorded in various primitive materials and 

chondrites.  Total range of all materials is nearly 10 

orders of magnitude, which makes fO2 an important 

intensive parameter for understanding the early solar 

system.  Figure from [1]. 


