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Overview



• Sabatier Reaction: CO2 + 4H2  2H2O + 

CH4

• Water product electrolyzed for oxygen for 

crew

• Methane (CH4) vented resulting in net 

loss of hydrogen limits oxygen recovery 

to ~50%
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• O2 recovery architecture incorporating Plasma Pyrolysis technology for methane post-

processing

• H2 recovered from CH4 and sent to Sabatier to recover additional O2 from 

CO2

• 47% with SOA O2 recovery

• Potentially >86% total O2 recovery with PPA
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• Developed by UMPQUA Research Co. 

• Methane converted to hydrogen and 

acetylene by partial pyrolysis in microwave 

generated plasma

• Targeted PPA Reaction:

2CH4 ↔ 3H2 + C2H2
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Plasma Pyrolysis Assembly (PPA)
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• Hydrogen Components, Inc. Metal Hydride Canister

• LaNi4.6Sn0.4 metal hydride

• Designed for hydrogen storage 
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Metal Hydride Hardware

Hydrogen Components, Inc. Metal Hydride Canister



• MRSHP was the product of a Phase III Small 

Business Innovation Research (SBIR) 

development by UMPQUA Research Company

• Molecular Sieve 13X to carry out H2 separation

• Thermal/vacuum desorption with heat provided 

by microwave power
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UMPQUA Microwave Regenerative Sorbent-

based Hydrogen Purifier (MRSHP)

MRSHP



• “Dry” Configuration

• Separator integrated with 2nd Gen. PPA

• PPA operated from ultra-high purity H2 and CH4 bottles

• 1 Crew Member processing rate

• 4:1 tatio of H2:CH4

• 52 torr reactor pressure

• 550 W microwave power

• Evaluated H2 product and process effluent

• No water in separator feed stream
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“Dry” Test Configuration
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• “Wet” configuration

• Precision Combustion, Inc. Sabatier Development Unit (SDU) 

upstream of PPA

• SDU operated to produce 350 SmLPM CH4 with minimal unreacted 

CO2

• Water vapor dewpoint of ~31°C

• PPA operated identically to Dry configuration

• PPA products contained all previously indicated compounds along 

with CO and H2O
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“Wet” Test Configuration
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Test Parameters:

• Flow: from zero to 300 SmLPM

• Pressure: ~ 1 atm

• Temperature: 2 °C, room temp., 120 °C

Results:

• No effective capacity for H2 at the conditions tested

• Canisters are normally charged at 200 psig (13.6x the test pressure)

• Likely that low pressure reduces driving force and reaction kinetics
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Metal Hydride – Method and Results



Test Parameters:

• Flow: One Crew Member 

rate

• Pressure: ~720 torr

• Temperature: room temp.  

• Dry runs with PPA fed from 

high purity gas bottles

• Wet runs with PPA fed from 

PCI SDU
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MRSHP - Methods

Microwave Desorption # Microwave Power Level 

(Watts)

Duration 

(Hours:Minutes)

1-Post Dry Adsorption 110 24:42

2-Post Dry Adsorption 135 16:2

3-Post Dry Adsorption Varied Long

1-Post Wet Adsorption 130 15:45

2-Post Wet Adsorption 130 15:00

3-Post Wet Adsorption 130 06:28

4-Post Wet Adsorption 130 06:45

5-Post Wet Adsorption 130 06:45

Desorption conditions following each adsorption cycle



• Third MRSHP Dry 

Adsorption Run, 

representative of all 

three dry runs
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MRSHP - Results



• Combined acetylene 

adsorption breakthrough 

curves for Wet adsorption runs
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MRSHP - Results



• Wet adsorption run #4 

contrasting ethylene and 

acetylene breakthrough 

curves
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MRSHP - Results



• 13X sorbent discoloration 

near microwave antennas 

noted during bed 

disassembly

• Figures A and B are the 

view down the bed as it 

was unpacked

• Figure C shows the 

cross section of two 

discolored sorbent 

beads
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MRSHP – Results from Bed Disassembly
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Proposed PPA System Architecture
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• Proposed PPA system architecture utilizing electrochemical separation

• Sorbent system would require desiccant and compressor



• Four hydrogen separation technologies (two Sustainable Innovations (SI) 

electrochemical cell stacks, the metal hydride, and the MRSHP) have been tested at 

MSFC since 2015

• Electrochemical cell stacks meet system requirements while simplifying system 

architecture and minimizing mass, power, and volume

• A fully integrated test with the PPA, OGA, and CRA, including a hydrogen recycle 

loop, is planned for 2017
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Conclusion
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