Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure

Zachary W. Greenwood, Morgan B. Abney, and Terry Wall NASA - Marshall Space Flight Center

> Lee A. Miller Jacobs Engineering

Richard R. Wheeler, Jr. **Umpqua Research Company**

Overview

- Background
- Hardware
- Test Setup
- Methods
- Results
- System Architecture Discussion
- Conclusion
- Acknowledgements

O₂ Recovery on ISS

- Sabatier Reaction: $CO_2 + 4H_2 \rightarrow 2H_2O +$ CH_{4}
- Water product electrolyzed for oxygen for crew
- Methane (CH₄) vented resulting in net loss of hydrogen limits oxygen recovery to ~50%

Sabatier Plus Post-Processing

- processing
 - **CO**₂
 - 47% with SOA O₂ recovery
 - Potentially >86% total O₂ recovery with PPA

• O₂ recovery architecture incorporating Plasma Pyrolysis technology for methane post-

H₂ recovered from CH₄ and sent to Sabatier to recover additional O₂ from

Plasma Pyrolysis Assembly (PPA)

- Developed by UMPQUA Research Co. •
- Methane converted to hydrogen and • acetylene by partial pyrolysis in microwave generated plasma
- Targeted PPA Reaction:

 $2CH_4 \leftrightarrow 3H_2 + C_2H_2$

 H_2/CH_4 Plasma

Plasma Pyrolysis Assembly

Metal Hydride Hardware

- Hydrogen Components, Inc. Metal Hydride Canister
- LaNi_{4.6}Sn_{0.4} metal hydride
- Designed for hydrogen storage

Hydrogen Components, Inc. Metal Hydride Canister

UMPQUA Microwave Regenerative Sorbentbased Hydrogen Purifier (MRSHP)

- MRSHP was the product of a Phase III Small **Business Innovation Research (SBIR)** development by UMPQUA Research Company
- Molecular Sieve 13X to carry out H₂ separation
- Thermal/vacuum desorption with heat provided by microwave power

MRSHP

PPA

 $H_2, C_2H_2, CH_4, etc.$

- "Dry" Configuration
 - Separator integrated with 2nd Gen. PPA
 - PPA operated from ultra-high purity H₂ and CH₄ bottles
 - 1 Crew Member processing rate
 - 4:1 tatio of $H_2:CH_4$
 - 52 torr reactor pressure
 - 550 W microwave power
 - Evaluated H₂ product and process effluent
- No water in separator feed stream

 H_2

 CH_4

"Dry" Test Configuration

Separator

H₂ for MRSHP C2H2, CH4, etc. for Metal Hydride

"Wet" Test Configuration

- CO_2
- Water vapor dewpoint of ~31°C
- with CO and H₂O

 H_2

Precision Combustion, Inc. Sabatier Development Unit (SDU)

SDU operated to produce 350 SmLPM CH₄ with minimal unreacted

PPA operated identically to Dry configuration

PPA products contained all previously indicated compounds along

Test Parameters:

- Flow: from zero to 300 SmLPM
- Pressure: ~ 1 atm
- Temperature: 2 °C, room temp., 120 °C

Results:

- No effective capacity for H₂ at the conditions tested
 - Canisters are normally charged at 200 psig (13.6x the test pressure)
 - Likely that low pressure reduces driving force and reaction kinetics

Metal Hydride – Method and Results

Test Parameters:

- Flow: One Crew Member rate
- Pressure: ~720 torr
- Temperature: room temp.
- Dry runs with PPA fed from high purity gas bottles
- Wet runs with PPA fed from PCI SDU

Desorption conditions following each adsorption cycle		
Microwave Desorption #	Microwave Power Level (Watts)	Duration (Hours:Minutes)
1-Post Dry Adsorption	110	24:42
2-Post Dry Adsorption	135	16:2
3-Post Dry Adsorption	Varied	Long
1-Post Wet Adsorption	130	15:45
2-Post Wet Adsorption	130	15:00
3-Post Wet Adsorption	130	06:28
4-Post Wet Adsorption	130	06:45
5-Post Wet Adsorption	130	06:45

MRSHP - Methods

MRSHP - Results

Third MRSHP Dry Adsorption Run, representative of all three dry runs

MRSHP - Results

 Combined acetylene adsorption breakthrough curves for Wet adsorption runs

MRSHP - Results

• Wet adsorption run #4 contrasting ethylene and acetylene breakthrough curves

MRSHP – Results from Bed Disassembly

- 13X sorbent discoloration near microwave antennas noted during bed disassembly
 - Figures A and B are the view down the bed as it was unpacked
 - Figure C shows the cross section of two discolored sorbent beads

Proposed PPA System Architecture

- - Sorbent system would require desiccant and compressor

CHARLESTON, SOUTH CAROLINA

Proposed PPA system architecture utilizing electrochemical separation

Conclusion

- Four hydrogen separation technologies (two Sustainable Innovations (SI) MSFC since 2015
- architecture and minimizing mass, power, and volume
- loop, is planned for 2017

electrochemical cell stacks, the metal hydride, and the MRSHP) have been tested at

Electrochemical cell stacks meet system requirements while simplifying system

A fully integrated test with the PPA, OGA, and CRA, including a hydrogen recycle

Acknowledgements

Thank You...

- NASA's Advanced Exploration Systems Life Support Systems Project
- Kenny Bodkin for maintaining test facility hardware
- Tom Williams for maintaining test facility software

