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Background

e Nuclear Propulsion
— Nuclear Thermal is far more efficient than chemical engines

e Nuclear power allows for high Isp while maintaining high thrust

e Propulsion system efficiency, mass, and thrust have a large impact upon mission
logistics and cost

e Traditional Reactor Elements
— Hexagonal rods with straight axial flow passages
e Cermet or graphite based

— Particle Beds attempted
e Much larger surface area
e thermal instabilities/hot spots
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(il Grooved Ring Fuel Element

* New fuel element concept

— Stacked grooved disks designed to
increase surface area and heat
transfer to propellant

e Leading to higher thrust/weight ki s
Inlet Plonum Srog
eng ines Grooved Fuel Ring b Vvt

{Constant Flow Area Channel)

S S,

e Propellant flows from outer to inner
diameter of disks which heat the
propellant

e Stack of disks makes an element
e Cluster of elements in a reactor

e Carbide materials (e.g. UC, NbC, s

ZrC) -

e Mixture has higher melting point than
traditional fuel forms

— Result: hotter propellant and greater
thrust/efficiency
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NEUTRONICS MODELING
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;\ Neutronics Modeling

e Purpose
— Develop a concept reactor layout for a set thrust goal

e Power and distribution
— Analyze impact of material selection upon nuclear reactions
— Study relative material quantities
— Determine uranium enrichment and quantities required

e Relate to theoretical density
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(i Reactor Design

NTR Reactor Configuration Using (U-Zr-Nb)C Fuel
25K Thrust -- 8 kW/cm?3 -- Optimal Fuel to Moderator Ratio = 0.261

Beryllium Hydrogen Fuel
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(i Reactor Design

NTR Reactor Configuration Using (U-Zr-Ta)C Fuel
25K Thrust -- 8 kW/cm3 -- Optimal Fuel to Moderator Ratio = 2.95

Beryllium Hydrogen Fuel
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a Neutronics Modeling
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Uranium Carbide Material Neutron Absorption Cross-Sections
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(il Neutronics Modeling

Uranium Carbide Requirements for Criticality
Enrichment =93%
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« Grooves and porosity decrease overall density
requiring additional UC for reactivity

NASA MSFC/Brian Taylor




Grooved Ring Fuel Element Power Distributions
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e Power peaking

profile of a grooved
ring fuel element

— Modest power peaking

seen so far



THERMAL FLUID MODEL



Thermal Fluid Model

e Shortened element modeled (2 rings)
— Comsol

e Beryllium structure with zirconium carbide rings
— Properties of mixtures not yet developed for model

e Boundary conditions varied to determine
appropriate pressure delta to heat the flow for a
given power/volume of 8 kW/cm?3
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(i\ Temperature

o

Syptama
et
Moo 4

« 4 psi seems to drive the flow at the right flow rate to heat it to
near 3000 K for 8 kW/cm3

« Cold spots exist due to cooling from the top cover of the
rings, but would be reduced in a full stack with mixing and
additional heated propellant
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* Velocity of H, through the element is fairly slow along the outer
radius and through the grooves but inceases in the central
cavity while mixing but remaining laminar
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FABRICATION EXPERIMENTS
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(il Selection of Materials

e Material Selection

— Need high melting temperature and low neutron cross section (except
uranium)

— NbC and ZrC chosen
e Lower neutron cross section than HC or TC

— Uranium Carbide Surrogate

e Substitute for uranium

— Avoid regulatory hurdles

¢ Vanadium Carbide chosen

— Similar crystal structure
Incident Energy (eV)
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(il Process
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e Grind materials to uniform particle size

e Spark Plasma Sintering
— Powder compressed at high pressure in die
— High current passed through die

e Control dwell, rise and cooling times as well as
temperatures

— Trying to reach high theoretical density

e Porosity reduces reactivity and could lead to
hydrogen reactions with the uranium

e Goal

— Achieve a uniform distribution in a solid
solution, ultimately with low porosity

— Best to date: 98% theoretical density

e Grooves
— Test grooves cut with saw
— Looking for best way to cut grooves

e Attempting to try to use a water jet
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\ DCS Variables Chart

Screening Runs of “As Received” [V, 150215 s57NDg 593]°C

Date Sintering Temperature DweII_Time Cooling _Rate Pressure | Density %Theor_etical

[*C] [min] [*C/min] [Mpa] [g/cc] Density
1/27/2017 1500 10 100 50 5.65 80.77%
1/31/2017 1500 10 100 50 5.75 82.20%
2/1/2017 1600 10 100 50 5.86 83.77%
2/2/2017 1600 20 100 50 6.05 86.48%
2/2/2017 1600 20 200 50 6.52 93.20%
2/3/2017 1500 20 50 50 6.46 92.34%
2/13/2017 1600 20 20 50 6.20 88.62%
2/24/2017 1600 20 200 50 6.65 95.06%
3/17/2017 1600 20 200 50 6.60 94.35%
3/20/2017 1700 20 200 50 6.80 97.21%
3/21/2017 1550 30 200 50 6.83 97.64%
3/22/2017 1600 20 200 50 6.87 98.21%
3/27/2017 1600 20 200 60 6.85 97.92%

« Direct Current Sintering Variables and the resulting density of sample
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Table 1: X-Ra

Material %

4/21/2017

23.47

26.59

25.62

25.48

34.74

35.56

31.71

1.32

0.92

1.21

1.85

1.93

2.62

Early samples showed less than
optimal distribution
* Clumps of elements in different

\% Zr
66.41 6.71
0.24 67.92
0.31 68.95
0.38 68.81

22.79
0.25 22.75
0.39 26.76

regions
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3.41

3.94

4.20

4.12

40.63

39.51

38.52




EDS Layered Image 2
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« Sifting materials has improved distribution
« Micro milling has only recently begun but is expected to improve
distribution
« Visual inspection seems to show improved distribution, but
samples have fractured for unknown reasons
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CARBIDE MATERIAL
CHARACTERIZATION
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;\ Thermal Diffusivity Measurements
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e The team is attempting to measure thermal diffusivity to fill in
gaps in the literature

— Disintegration of the first samples occurred for unknown reasons

e Reasons are unknown, but it should be noted that samples survived much higher
temperatures in CFEET

e Future measurement attempts are planned
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e Samples tested in Compact
Fuel Element Environmental
Test (CFEET) system at MSFC

— 50 kW induction power supply and
two-color pyrometers for
temperature measurements up to
3000° C

— Designed to flow hydrogen across
subscale fuel materials for testing
at high temperatures for up to ten
hours.
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Hot Hydrogen Environment Testing

e CFEET Results

— 15t sample maintained structural
integrity for 30 minutes at 2000 K

— 2nd set of three samples were run at
2250 K for 30 minutes

e X-ray diffraction (XRD) analysis appears to 2
show the tricarbides moving toward a solid “ \
solution

e Unidentified peaks need further analysis to
verify if they are due to the formation of
free carbon, ZrC2, or other lower melting
temperature compounds
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i\ Conclusions

e Results of this work are promising

e Fabrication has come a long way in showing a viable means for
producing these tricarbide rings

— High densities reached
— Micro milling expected to lead to better distribution

— Appears to be moving toward a solid solution after an extended period in a
hot hydrogen environment

e Thermal diffusivity measurements are expected from future
samples

e Tricarbide samples have held up in a hot hydrogen environment

— Future hotter tests are planned

e The use of tricarbide fuels and this geometry have potential and
warrant further investigation
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