

Investigation of a Tricarbide Grooved Ring Fuel Element for a Nuclear Thermal Rocket

Brian Taylor

Dr. Bill Emrich

Dr. Dennis Tucker

Marvin Barnes

NASA MSFC

Nicolas Donders

Kettering University

Kettering University

Kelsa Benensky

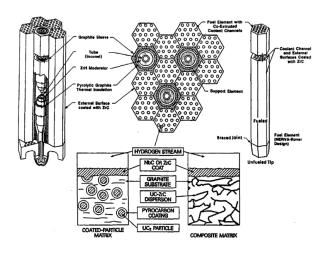
University of Tennessee

7/11/2017

Outline

- Background
- Introduction
- Modeling
 - Neutronics
 - Fluid/Thermal
- Fabrication Experiments
 - material selection
 - Process
- Material Characterization
- Path Forward

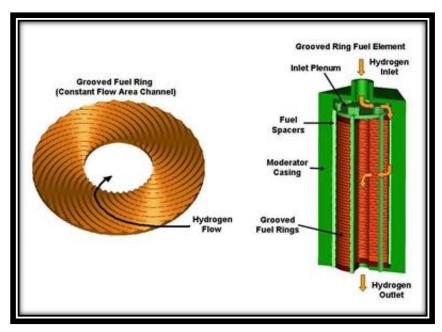
Background


• Nuclear Propulsion

- Nuclear Thermal is far more efficient than chemical engines
 - Nuclear power allows for high Isp while maintaining high thrust
 - Propulsion system efficiency, mass, and thrust have a large impact upon mission logistics and cost

• Traditional Reactor Elements

- Hexagonal rods with straight axial flow passages
 - Cermet or graphite based
- Particle Beds attempted
 - Much larger surface area
 - thermal instabilities/hot spots



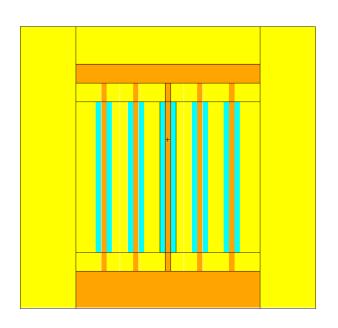
Grooved Ring Fuel Element

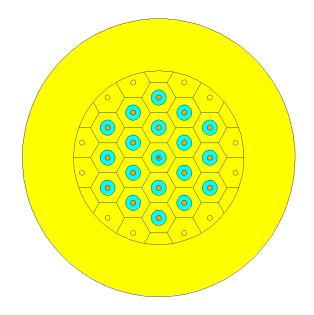
New fuel element concept

- Stacked grooved disks designed to increase surface area and heat transfer to propellant
 - Leading to higher thrust/weight engines
 - Propellant flows from outer to inner diameter of disks which heat the propellant
 - Stack of disks makes an element
 - Cluster of elements in a reactor
- Carbide materials (e.g. UC, NbC, ZrC)
 - Mixture has higher melting point than traditional fuel forms
 - Result: hotter propellant and greater thrust/efficiency

NEUTRONICS MODELING

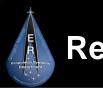
Purpose


- Develop a concept reactor layout for a set thrust goal
 - Power and distribution
- Analyze impact of material selection upon nuclear reactions
- Study relative material quantities
- Determine uranium enrichment and quantities required
 - Relate to theoretical density



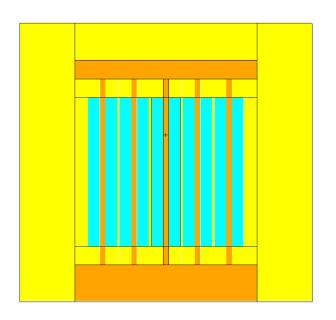
Reactor Design

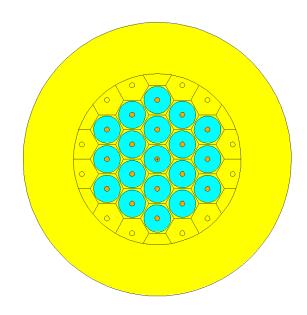
NTR Reactor Configuration Using (U-Zr-Nb)C Fuel 25K Thrust -- 8 kW/cm³ -- Optimal Fuel to Moderator Ratio = 0.261



Beryllium

Hydrogen

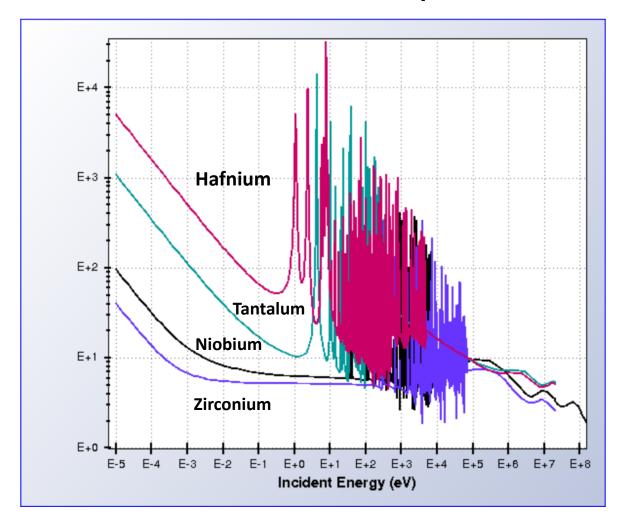

Fuel



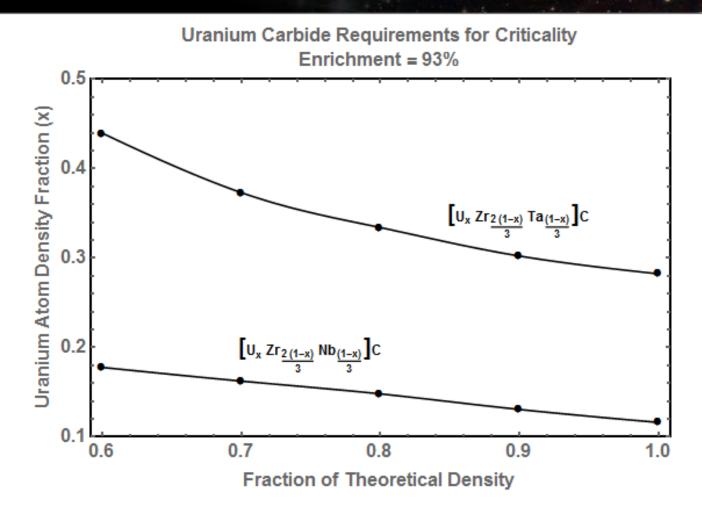
Reactor Design

NTR Reactor Configuration Using (U-Zr-Ta)C Fuel 25K Thrust -- 8 kW/cm3 -- Optimal Fuel to Moderator Ratio = 2.95

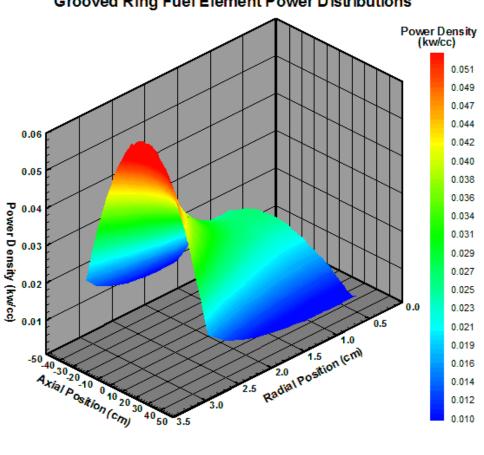
Beryllium


Hydrogen

Fuel



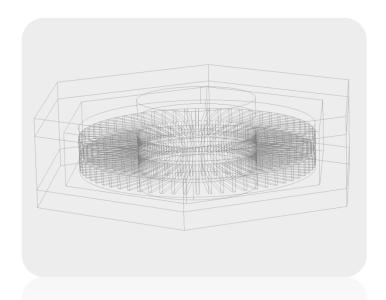
Uranium Carbide Material Neutron Absorption Cross-Sections

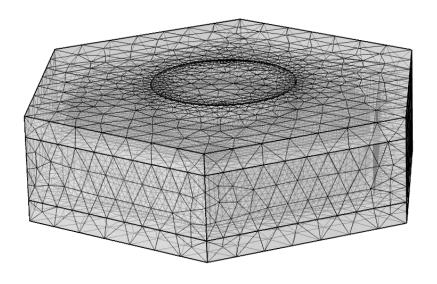


 Grooves and porosity decrease overall density requiring additional UC for reactivity

Grooved Ring Fuel Element Power Distributions

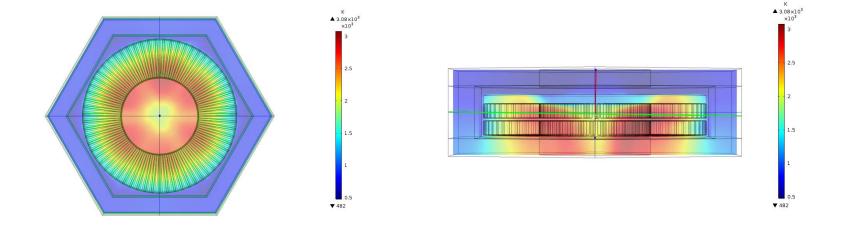
- Power peaking profile of a grooved ring fuel element
 - Modest power peaking seen so far

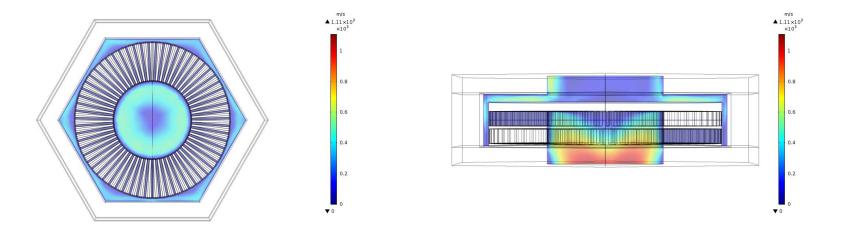

THERMAL FLUID MODEL



Thermal Fluid Model

- Shortened element modeled (2 rings)
 - Comsol
- Beryllium structure with zirconium carbide rings
 - Properties of mixtures not yet developed for model
- Boundary conditions varied to determine appropriate pressure delta to heat the flow for a given power/volume of 8 kW/cm³

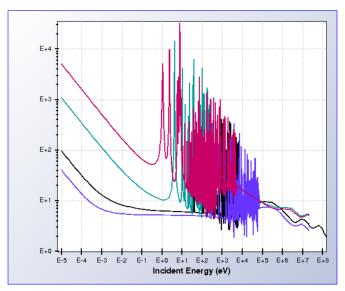



Temperature

- 4 psi seems to drive the flow at the right flow rate to heat it to near 3000 K for 8 kW/cm³
- Cold spots exist due to cooling from the top cover of the rings, but would be reduced in a full stack with mixing and additional heated propellant

 Velocity of H₂ through the element is fairly slow along the outer radius and through the grooves but inceases in the central cavity while mixing but remaining laminar

FABRICATION EXPERIMENTS



Selection of Materials

Material Selection

- Need high melting temperature and low neutron cross section (except uranium)
- NbC and ZrC chosen
 - Lower neutron cross section than HC or TC
- Uranium Carbide Surrogate
 - Substitute for uranium
 - Avoid regulatory hurdles
 - Vanadium Carbide chosen
 - Similar crystal structure

- **Grind materials to uniform particle size**
- Spark Plasma Sintering
 - Powder compressed at high pressure in die
 - High current passed through die
 - Control dwell, rise and cooling times as well as temperatures
 - Trying to reach high theoretical density
 - Porosity reduces reactivity and could lead to hydrogen reactions with the uranium

Goal

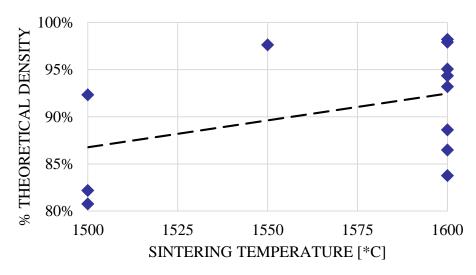
- Achieve a uniform distribution in a solid solution, ultimately with low porosity
- Best to date: 98% theoretical density

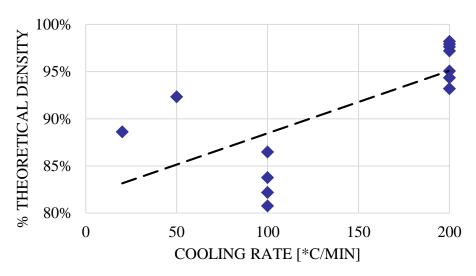
Grooves

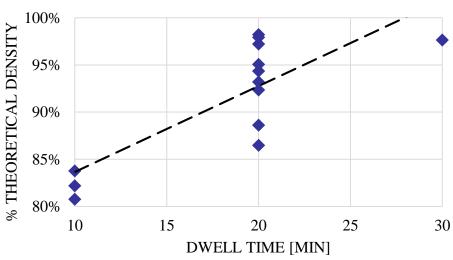
- Test grooves cut with saw
- Looking for best way to cut grooves
 - Attempting to try to use a water jet

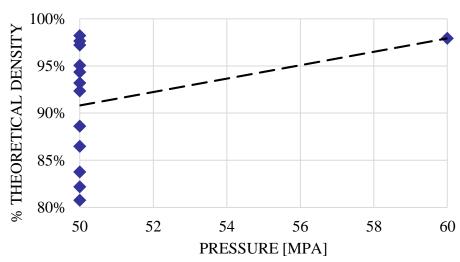
DCS Variables Chart

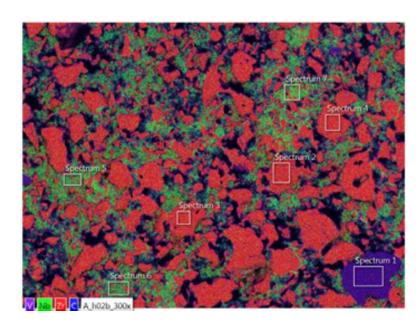
Screening Runs of "As Received" $[V_{0.120}Zr_{0.587}Nb_{0.293}]\cdot C$


			- 0.120 0.307 0.233-				
Date	Sintering Temperature [*C]	Dwell Time [min]	Cooling Rate [*C/min]	Pressure [Mpa]	Density [g/cc]	% Theoretical Density	
1/27/2017	1500	10	100	50	5.65	80.77%	
1/31/2017	1500	10	100	50	5.75	82.20%	
2/1/2017	1600	10	100	50	5.86	83.77%	
2/2/2017	1600	20	100	50	6.05	86.48%	
2/2/2017	1600	20	200	50	6.52	93.20%	
2/3/2017	1500	20	50	50	6.46	92.34%	
2/13/2017	1600	20	20	50	6.20	88.62%	
2/24/2017	1600	20	200	50	6.65	95.06%	
3/17/2017	1600	20	200	50	6.60	94.35%	
3/20/2017	1700	20	200	50	6.80	97.21%	
3/21/2017	1550	30	200	50	6.83	97.64%	
3/22/2017	1600	20	200	50	6.87	98.21%	
3/27/2017	1600	20	200	60	6.85	97.92%	


Direct Current Sintering Variables and the resulting density of sample

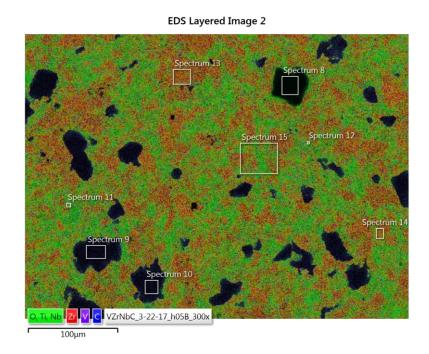



% Theoretical Density Plots



Fabrication Experiments – Results to Date

Table 1: X-Ray Spectroscopy Analysis of Figure 16								
Material %	С	0	V	Zr	Nb			
Spectrum 1	23.47		66.41	6.71	3.41			
Spectrum 2	26.59	1.32	0.24	67.92	3.94			
Spectrum 3	25.62	0.92	0.31	68.95	4.20			
Spectrum 4	25.48	1.21	0.38	68.81	4.12			
Spectrum 5	34.74	1.85		22.79	40.63			
Spectrum 6	35.56	1.93	0.25	22.75	39.51			
Spectrum 7	31.71	2.62	0.39	26.76	38.52			

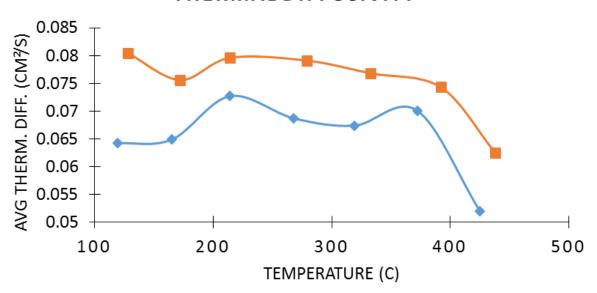

- Early samples showed less than optimal distribution
 - Clumps of elements in different regions

Fabrication Experiments – Results to Date

Table 2: X-Ray Spectroscopy Analysis of Figure 17									
%	C	∄	<	Zr	N _D	莱	Ta		
8	18.1	80.8	0	0.31					
9	18.24	1.15	78.26	0.36	0.99				
10	18.56	0.49	78.29	0.65	1.32				
11	18.94		2.1	31.08	29.87		15.91		
12	16.06		3.04	25.52	33.76	21.61			
13	18.77		0.19	77.83	3.21				
14	17.67		0.44	73.07	8.81				
15	19.32		1.69	47.06	30.15				

- Sifting materials has improved distribution
- Micro milling has only recently begun but is expected to improve distribution
 - Visual inspection seems to show improved distribution, but samples have fractured for unknown reasons

CARBIDE MATERIAL CHARACTERIZATION



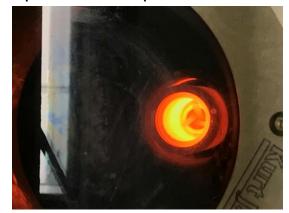
Thermal Diffusivity Measurements

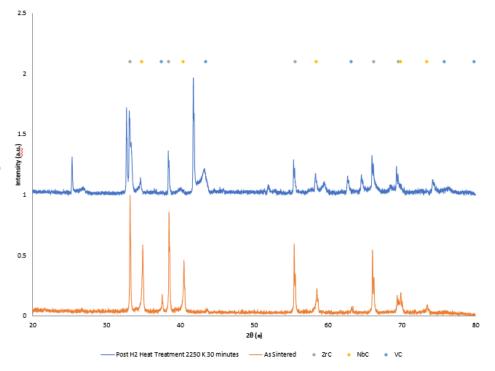
- The team is attempting to measure thermal diffusivity to fill in gaps in the literature
 - Disintegration of the first samples occurred for unknown reasons
 - Reasons are unknown, but it should be noted that samples survived much higher temperatures in CFEET
 - Future measurement attempts are planned

THERMAL DIFFUSIVITY

Hot Hydrogen Environment Testing

- Samples tested in Compact Fuel Element Environmental Test (CFEET) system at MSFC
 - 50 kW induction power supply and two-color pyrometers for temperature measurements up to 3000° C
 - Designed to flow hydrogen across subscale fuel materials for testing at high temperatures for up to ten hours.




Hot Hydrogen Environment Testing

CFEET Results

- 1st sample maintained structural integrity for 30 minutes at 2000 K
- 2nd set of three samples were run at 2250 K for 30 minutes
 - X-ray diffraction (XRD) analysis appears to show the tricarbides moving toward a solid solution
 - Unidentified peaks need further analysis to verify if they are due to the formation of free carbon, ZrC2, or other lower melting temperature compounds

Conclusions

- Results of this work are promising
- Fabrication has come a long way in showing a viable means for producing these tricarbide rings
 - High densities reached
 - Micro milling expected to lead to better distribution
 - Appears to be moving toward a solid solution after an extended period in a hot hydrogen environment
- Thermal diffusivity measurements are expected from future samples
- Tricarbide samples have held up in a hot hydrogen environment
 - Future hotter tests are planned
- The use of tricarbide fuels and this geometry have potential and warrant further investigation