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Meteoroid environment models: MEM

» Meteoroid impact damage
depends on:

> mass
» velocity
» impact angle
» density
> We are revisiting each of
these components for the
next version of our

Meteoroid impact crater on shut- Meteoroid Engineering
tle window. Image provided by
the NASA/JSC Hypervelocity Impact Model (MEM)

Technology (HVIT) Team.



» Based on Jones SporMod model

» Has 4 populations derived from short-period, long-period,
Halley-type, and asteroidal parents.

» Based on CMOR meteor obs. and Helios zodiacal light meas.




We are considering the
Wiegert et al. (2009)
dynamical model for
MEMRS.

Links environment to a
few comets rather than
entire population

Tuned to match CMOR
observations

Predicts a faster speed
distribution for more
sensitive radars

Q

0.8

flux (arbitrary units)
0.6

0.4

0.2

0.0

0 40 50 60 70
V..(km/s)




> Nesvorny et al. developed a model based on IRAS zodiacal
light measurements

» They attribute the bulk of the environment to
helion/antihelion particles coming from JFCs
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> Nesvorny et al. predict a meteoroid speed distribution that is
sharply skewed towards slow material

» They also predict that the speed distribution is a function of
the “ionization cutoff’, but in the opposite direction

> (The form of this cutoff is a bit out-of-date, as I'll show here)



q o< mvP, flux oc m™® — Nsp,_, = Nv—2%/2 (Taylor, 1995)
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» Jones (1997) predicts SRR
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» We used Jones (1997)
to debias CMOR's
speed distribution in
Moorhead et

al. (2017)

Corrected vy values
and adjusted
coefficients
accordingly

Added Na to the list,
but didn’t find it to
be terribly significant
(Janches et al. did
the same thing in
parallel)
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> Initial trail radius effect
» Depends on meteor height and speed
» Depends on radar wavelength
» Correction: Ceplecha et al. (1998) with trail radius eq. derived
by Jones & Campbell-Brown (2005) using dual-frequency
CMOR observations
» Finite velocity effect
» Depends on meteor height, speed, and range
» Depends on radar wavelength
» Correction: from Jones & Campbell-Brown (2005)
> Pulse repetition factor
» Depends on meteor height
» Depends on radar wavelength and pulse repetition frequency
» Faraday rotation
> Not corrected for; day-night symmetry assumed



Gain pattern

The true limiting quantity is the received power, Pg:

Pr x q?a? (M R)® Pt G1 - Ggr(0, ®)

v

g - electron line density

v

« - attenuation factor(s)
» ) - radar wavelength

» R - range

v

Gt - Gg - gain pattern
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> Meteors decelerate between atmospheric entry and detection

» Brown et al. (2004) derived a deceleration correction using
meteor showers

» Depends on meteor speed and height at detection
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fraction

» We use meteor showers to characterize our observation
“filter” ...
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> Next, we invert it (solve the N x N system of equations) to
obtain the sharpened distribution.
» Hyperbolic meteors disappear naturally.
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It would be great to compare MAARSY's speed distribution with
CMOR's using the same approach.
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lonization efficiency: same
Initial trail radius: substitute MAARSY's wavelength
Finite velocity effect: substitute MAARSY's wavelength

Pulse repetition factor: substitute MAARSY's wavelength and
pulse repetition frequency

Faraday rotation: Continue to ignore?

Gain pattern: Substitute MAARSY's?

Collecting area: Characterize for MAARSY?
Deceleration: Characterize for MAARSY?
Distribution sharpening: Characterize for MAARSY?Y
Observation limit: Characterize for MAARSY?



