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Overall Aerothermal Analysis Approach

• Environments are generated at 

a large number of particular 

locations (body points) on the 

vehicle

• Three key inputs needed 

to develop aerothermal 

environments
– Vehicle geometry

– Engine / motor 

operating parameters

– Trajectories

• Current environments are statistical (99.7% highest at each location)

• Block 1 SLS aerothermal environments are documented in SLS-SPEC-044-02
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SLS Aerothermal Environments: Processes and Codes
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SLS Aerodynamic Heating

• CLVMIN is an enhanced version of the 

MINIVER code

– Improved local condition determination

– Modified to generate statistical environments 

from trajectory sets
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1. Flow field: Free stream trajectory conditions (P, T, Mach, 

etc.) are processed through appropriate shock(s) using 

compressible flow equations

2. Flow regime: Determine if continuum / transitional / 

rarefied / free molecular based on Mach, Reynolds #

3. Boundary layer: If continuum flow, determine if turbulent 

or laminar boundary layer conditions based on Mach, 

Reynolds #

4. Heating Model: Apply depending on geometry, examples:  

spherical – 4a (i.e. Fay & Riddell), flat plate – 4b 

(Spalding-Chi w/ Mangler transformation)

5. Protuberance Factor:  If needed, apply empirical or 

analytical amplification factor (hi/hu)

*Significant use of empirical amplification factors for core 

stage and booster geometry with extensive flight/wind tunnel 

testing history
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SLS Aerodynamic Heating: Protuberances

• Many similarities, but also 

some key differences, 

compared with Shuttle

• Much of current Block 1 

design informed by CFD  

cases run in DAC-3R
– SLS-10005 OML

– TD3 6-DOF trajectory sets

– Altitudes from 50-160 kft

– Mach numbers from 2.0-4.5

• Loci/CHEM CFD code
– ~360M Cells (unstructured)

– RANS turbulence modeling

• Hi/Hu factors developed from 

solutions using protuberance 

heating and local “clean skin” 

heating

• Verification phase for Block 1 vehicle (VAC-1) is currently being informed 

by CFD using an updated SLS-10008 OML
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SLS Aerodynamic Heating: Verification

• Block 1 SLS aerodynamic heating environments for 

clean skin and protuberances were recently validated 

using measurements from the ATA-003 Phase 1 

aerodynamic heating test conducted at CUBRC in 2016

– 3% model scale

– 176 heat flux gauges and 28 pressure gauges

– 21 test runs at Mach 3.5-5.0

– Schlieren and temperature sensitive paint imaging 

• Heat flux measurements indicate that vast majority of 

SLS aerodynamic heating design environments are 

either accurate or conservative

• Some exceedances noted on Core Stage / Booster 

forward and aft attach struts – both of which are very 

complex flow fields.  Updated aft attach environments 

have been sent to Booster.

• CFD comparisons with test data inform best practices

• Block 1B SLS configurations with additional sensors 

were tested in ATA-003 Phase 2 conducted in 2016-

2017 – will inform Block 1B DAC-2 currently underway
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SLS Aerodynamic Heating: Small Protuberances

• SLS small protuberance methodology is 

based on results from several hundred 

Loci/CHEM 2-D RANS CFD cases

• Intended to provide simple estimate of 

enhanced heating for small (< 0.5 inch) 

protuberances significantly smaller than the 

local boundary layer thickness

• Results for relatively smooth protuberances 

show good agreement with the semi-empirical 

formula reported by Jaeck, 1966 in flow 

scenarios the formula was intended for, but 

important differences in scenarios it was not
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SLS Plume Radiation Heating

• Though both the RS-25 engines and the five 

segment solid rocket Boosters are derived from 

Shuttle, the engines and Boosters are now in 

much closer proximity

• Plume radiation heating primarily driven by H2O in 

RS-25 plume Mach discs and Al2O3 particles in 

booster exhaust – most significant early in flight 

• Significant heat load for areas of the vehicle base 

which have a clear view of the Booster and RS-25 

plumes

• Typically calculated using two step process -

calculate plume using CEC/RAMP2/SPF3, then 

model radiation:

– Reverse Monte-Carlo (RMC) code for multi-phase 

(Booster) plumes

– Gaseous Radiation (GRAD) code for gas-only (RS-

25) plumes

• Radiation calculated at various altitudes for SLS 

ascent

• “Shutdown spike” is captured
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SLS Plume Convection Heating

• Base pressure and convection change with altitude and Mach number
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SLS Plume Convection Heating: ATA-002 Test

• Due to completely different base and engine 

configuration for SLS, compared to Shuttle or 

Saturn V, a subscale ATA-002 plume convective 

heating wind tunnel test was conducted at 

CUBRC as part of SLS development in 2013-

2015

– 2% model scale

– 169 heat flux gauges and 37 pressure gauges

– 76 tests were run at simulated altitudes of 50-

211 kft, and Mach 2.7-5.0

• To reduce risk, a pathfinder subscale engine / 

motor development effort was conducted before 

the main plume convection heating test was run

• Updated plume convection environments were 

derived from test data and baselined in SLS-

SPEC-044-02 documentation in late 2015

• Test data exhibited significant differences from 

Shuttle (e.g. base heat shield, engine thermal 

blankets, engine nozzles)

• CFD comparisons with test data inform best 

practices for these types of environments

TFAWS 2017 – August 21-25, 2017



SLS Plume Induced Flow Separation (PIFS) Heating

• PIFS is closely related to plume convection 

heating, and occurs as the recirculating 

plume gases cause boundary layer 

separation on the vehicle at high altitude

• Classic example is Saturn V

• Current SLS PIFS heating methodology 

predicts heating based on Shuttle and Saturn 

data 

• PIFS heating is applied to the Core Stage 

and Booster by circumferential zones using  

RS-25 engine and Booster Plip / Pamb ratio

• The phenomenon is also observed in 

Loci/CHEM CFD solutions – comparisons will 

be made moving forward
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SLS Booster Separation Motor (BSM) Plume Impingement Heating

• Forward BSM plume impingement environment is 

similar to Shuttle scenario, but aft BSM environment is 

completely new for SLS

• Loci/CHEM unstructured CFD code

– ~120M cell grid assumes flow field symmetry

– RANS turbulence modeling and frozen chemistry

– Plume gases modeled as a single equivalent gas

– Four cases completed at 0.02, 0.2, 0.4, and 0.6 seconds 

after initiation of booster separation

• High confidence in direct plume impingement heating 

prediction from CFD, based on Constellation-era tests 

and Ares I-X flight data

• Recent CFD analysis has analyzed aft BSM rotation 

options to enhance separation clearance

*Orion MPCV Launch 

Abort System (LAS) 

Jettison Motor (JM) 

plume impingement 

environments also 

derived from CFD



SLS Core Auxiliary Power Unit (CAPU) Plume Heating

• New environment for SLS - CAPU system drives 

hydraulic fluid used for RS-25 gimballing and 

throttling

• System is powered in flight by H2 gas tapped off 

from main propulsion system

• Four exhaust ports in Core Stage base emit the H2

gas in a “low” flow state for most of the time, but 

also periodically pulse into a “high” flow state

• Loci/CHEM CFD solutions

– ~200M cell grid

– 6 species (O2, N2, H2, H2O + 2 equivalent plume gas 

species)

– Fast 2H2 + O2 → 2H2O chemistry assumed

– Solutions through Boost Stage flight completed in 2015

• Convective heating environments developed from 

analysis and simplification of these solutions

• Radiative heating environments developed from 

these solutions and GASRAD code

• Combined convective and radiative environments 

integrated into the final design environments
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Summary

• Aerothermal environments for the vehicle are integrated from 

several different sources of heating:

– Aerodynamic heating

– Plume radiation heating

– Plume base convection/recirculation heating

– Plume induced flow separation heating

– Plume impingement heating

– CAPU plume/flame heating

• Experience and test data obtained during Block 1 SLS 

development is aiding work on Block 1B vehicle
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