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Purpose and Approach
Purpose

• Reduce NOx emissions
– For the Advanced Air Transport Technology Project (AATT), small-core engine: 

single-aisle
– Goal: 80% NOx reduction wrt CAEP/6

• Have acceptable low-power operability
• Reduce fuel line complexity and improve thermal management of the fuel

Approach
• Base design on the  piloted lean direct injection (LDI) combustion concept 

developed under NASA’s Environmentally Responsible Aviation (ERA) 
project

• Replace many fuel lines – each with only 1 injection point – with a single fuel 
line with multiple injection points

• Test configuration in a medium-pressure flametube
• Also Evaluate At: Commercial Supersonic Transport (CST) cruise.  Goal: NOx < 5 EI
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Results

• The new configuration 
met the NOx goals

• Operability good except 
at the 30% ICAO point

• Replaced 5 or 7 
individual fuel lines by a 
single fuel stem with 
multiple injection points
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Outline
• Background/Motivation
• Setup

– Flametube Hardware
– Flametube Facility

• Results
– Low-power conditions

• 7% ICAO
• 30% ICAO

– High power CO emissions and combustion efficiency
– High power NOx emissions and correlation equations

• Conclusions
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Background
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Swirl-Venturi Lean Direct Injection (SV-LDI)
• Fuel-lean combustor concept
• No geometrically-separated premixing zone
• Many small fuel-air mixers replaced one 

traditionally-sized fuel-air mixer
• Air swirler followed by a converging-

diverging venturi
• Simplex, airblast, or pre-filming fuel injector

6

Baseline SV-LDI had low NOx emissions –
but poor low-power operability and a multi-line fuel stem

Baseline SV-LDI: LDI-1
• 9 fuel-air mixers in a 3 x 3 array
• Array square, 7.62-cm x 7.62-cm
• All fuel injectors are simplex
• All fuel-air mixers the same (except possibly 

swirler vane angle)

Background 2 of 3 (6 of 37)
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ERA SV-LDI: LDI-2
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LDI-2 had low NOx emissions and acceptable 
low-power operability – but a multi-line fuel stem 
that would make thermal management of the fuel 
difficult.

Background 3 of 3 (7 of 37)

• 13 fuel-air mixers split into 4 stages
• Simplex or airblast fuel injectors
• Pilot has extended venturi
• 11.43-cm x 11.43-cm square cross-section
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LDI-3 Hardware
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Fuel Stems: LDI-3 vs. LDI-2

9LDI-3 Hardware 2 of 8 (9 of 37)

LDI-2 LDI-3

The LDI-3 fuel stem reduces fuel line complexity and should 
improve thermal management of the fuel!
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SV-LDI-3

10LDI-3 Hardware 3 of 8 (10 of 37)

For the main fuel-air mixers, the fuel injection location changes.

CFD Calcs
Ajmani et al 
Early design
AIAA 2015-3785
Near-final design
AIAA 2016-4783
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Fuel Spray: SV-LDI-3

11LDI-3 Hardware 4 of 8 (11 of 37)
Good fuel-air mixing in the main fuel-air mixers

From Ajmani et al AIAA 2016-4783

Fuel-air mixing in a main fuel-air mixer
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SV-LDI-3

12LDI-3 Hardware 5 of 8 (12 of 37)

The number of fuel-air mixers in a “cup” alternates: 7-element or 5-element

7-element
• center pilot
• 6 outer mains

5-element
• center pilot
• 4 outer mains
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SV-LDI-3 Flametube Hardware

13LDI-3 Hardware 6 of 8 (13 of 37)

• 3 cups tested in a medium pressure flametube at NASA Glenn 
Research Center.

• Two 7-element cups and one 5-element cup:      19-point
• 4 stages: pilot and 3 mains

– Pilot stage: simplex fuel nozzle, radial air swirlers
– Main stages: pre-filming fuel nozzles, axial air swirlers

3-cup “19-point ” flametube hardware

pp p

m1 m1

m1 m1

m2

m2

m2m2

m2

m2

m3

m3

m3 m3

m3

m3



National Aeronautics and Space Administration

www.nasa.gov 14LDI-3 Hardware 7 of 8 (14 of 37)

SV-LDI-3 Flametube Hardware

Looking upstream

Looking downstream
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NASA Medium Pressure Flametube

15LDI-3 Hardware 8 of 8 (15 of 37)

• Flametube capabilities
– Inlet temperature to ~920 K
– Inlet pressure to 19 bar

• Testing was done with a cast ceramic liner 
– Casting shape started out with a cross-section identical to 

that of the dome
– Casting converged to a circular cross-section several inches 

downstream of the dome
• Instrumentation

– Standard gas bench: SAE ARP 1256
• Single, 5-hole gas probe

– Steady-state recording of temperature, 
pressure, flow rates (1 Hz)

– High-speed recording of pressure (20 
kHz)

– Particulate measurements: CPC, SMPS
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Results
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NASA N+3 Small-Core Cycle

17Results 2 of 19 (17 of 37)

The flametube cannot reach the inlet pressures at high power conditions.
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7% ICAO Point  (Pilot only)

18Results 3 of 19 (18 of 37 )

• NOx is 4.3 g/kg
• CO is 51 g/kg 
• ~98% combustion efficiency

🔥 🔥🔥

• Comparison with LDI-2: NOx higher, CO lower
– Different air splits à different local f/a at pilot
– Simplex vs. airblast pilot

NOx and CO are acceptable
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30% ICAO Point

19Results 4 of 19 (19 of 37)

• Difficult point for this configuration
– Due to low equivalence ratio, could only use the pilot and one main circuit

• NOx and CO would both be lower if the equivalence ratio was higher
– Check cycle
– Change air splits
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High Power Conditions    ........

20Results 5 of 19 (20 of 37)

Match the inlet temperatures for the 85% and 100% ICAO points.
Vary pressure to aid in developing correlation equations.  

🔥🔥
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CO and Combustion Efficiency at High Power Conditions

21Results 6 of 19 (21 of 37)

• CO is low, near the equilibrium value
• Combustion efficiency typically above 99.99%

High power combustion efficiency is good.
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85% power ICAO Conditions                 .

22Results 7 of 19 (22 of 37)

Need to extrapolate p3 to 32.8 bar to estimate NOx at 85% power ICAO conditions
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🔥 🔥🔥

🔥
🔥
🔥 🔥

🔥🔥 🔥
🔥
🔥

🔥
🔥

🔥
🔥
🔥

• Match T3 and Dp/p3
• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3

0.5 – p3
0.6

• Evaluate 
assumption at:

• At Dp/p3 = 4%
• At Dp/p3 = 3%
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85% power ICAO Conditions                 .

23Results 8 of 19 (23 of 38)

Need to extrapolate p3 to 32.8 bar to estimate NOx at 85% power ICAO conditions
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• Match T3 and Dp/p3
• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3

0.5 – p3
0.6

• Evaluate 
assumption at:

• At Dp/p3 = 4%
• At Dp/p3 = 3%
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85% power ICAO Conditions                 .

24Results 9 of 19 (24 of 37)

At 4% pressure drop, it looks like p3
0.5 may overestimate NOx, but ...
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• Match T3 and Dp/p3
• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3

0.5 – p3
0.6

• Evaluate 
assumption at:

• At Dp/p3 = 4%
• At Dp/p3 = 3%
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85% power ICAO Conditions                 .

25Results 10 of 19 (25 of 37)

The effect of p3 is not consistent!
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• Match T3 and Dp/p3
• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3
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assumption at:
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85% power ICAO Conditions: Pressure Drop                  .

26Results 11 of 19 (26 of 37)

The effect of pressure drop is not consistent, either!
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100% power ICAO Conditions                 .

27Results 12 of 19 (27 of 37)

Need to extrapolate p3  to 38.1 bar to estimate NOx at 100% power ICAO conditions
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• Match T3 and Dp/p3
• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3
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100% power ICAO Conditions                 .

28Results 13 of 19 (28 of 37)

Need to extrapolate p3  to 38.1 bar to estimate NOx at 100% power ICAO conditions
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100% power ICAO Conditions                 .

29Results 14 of 19 (29 of 37)

Need to extrapolate p3  to 38.1 bar to estimate NOx at 100% power ICAO conditions
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• Estimate NOx 

assuming previous 
p3 trends:         
NOx ∝ p3
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• Evaluate 
assumption at:
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NOx correlation equations: Form
• Develop correlation equations 

based on previous correlation 
equations

• Complication: NOx emissions 
depend on the type of stage

30Results 15 of 19 (30 of 37)

Solution: Split the correlation equation into separate terms for the pilot and main stages

0 375 750 1250 1500

From Ajmani et al AIAA 2017-5017
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NOx correlation equations: Form
• Choose the form of the correlation equation based on 

previous correlation equations for SV-LDI
• Fit 1: Choose the exponent a of p3

a, the divisor b of eT3/b , 
and the exponent c of Dpc to be the same as in previous 
correlation equations

• Fit 2: Let a and b vary

31Results 16 of 19 (31 of 37)

Main stage termsPilot-stage term
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NOx correlation equations

32Results 17 of 19 (32 of 37 )

Both correlation equations look reasonable, but Fit 2 seems to model the effect of p3 better.

Fit 1 Fit 2
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ICAO NOx Emissions

Results 18 of 19 (33 of 37) 33

Condition Meas. 
NOx

(g/kg)

NOx
NOx ∝ p3

0.6

(g/kg)

NOx
FIt 1

(g/kg)

NOx
Fit 2

(g/kg)

NOx
NOx ∝ p3

0.931

(g/kg)
7% ICAO 4.3
30% ICAO 6.25
85% ICAO 7 6.8 8.2 8.8
100% ICAO 17 12.8 18.8 21.2
NOx Sereverity
Parameter, 
Dp/F00 (g/kN)

13.80 12.32 15.03 15.97

NOx reduction
wrt CAEP/6

87% 89% 86% 85%

Exceeded the NOx reduction goal of 80% reduction wrt CAEP/6
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Supersonic PC90

Results 19 of 19 (34 of 37) 34

Difficult point to reach: high Dp and uneven fuel staging required.
Did not meet the supersonic cruise NOx goal of NOx, EI < 5 g/kg.
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Summary
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Summary

• Woodward, FST, and NASA developed a third-
generation, low-NOx, swirl-venturi lean direct 
injection combustor concept, SV-LDI-3.

• SV-LDI-3 reduces fuel line complexity compared to 
LDI-1 and LDI-2 designs.
– This should improve thermal management of the fuel.

• SV-LDI-3 met the AATT NOx reduction goal of 80% 
reduction wrt CAEP/6.

• Also evaluated at supersonic conditions.
– Did not meet supersonic cruise goal of NOx, EI < 5 g/kg.

36Summary 2 of 3 (36 of 37 )
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Recommendations for Future Work

• Adjust air splits between the pilot and the main fuel 
stages

• Change the pilot to lower NOx, especially at the 7% 
ICAO power point
– Change injector type 
– Reduce air swirl

• Use additional gas analysis probes
• Test at higher pressure if a higher-pressure 

flametube becomes available.  Or do a sector test.
• Increase the physics in the correlation equations

37Summary 3 of 3 (37 of 37 )
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Backup
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Background: Lean Direct Injection
• Fuel lean: no rich front end

– All combustion air enters through the dome

• Fuel is injected directly into the flame zone
– Reduces problems with autoignition, flashback, and 

combustion instabilities

• Requires fine atomization and rapid, uniform 
fuel/air mixing

• Several small fuel/air mixers replace 1 
conventionally-sized fuel/air mixer

• Many fuel/air mixing strategies
– Swirler: radial, axial, or discrete jet
– Venturi: placed downstream of swirler or omitted
– Fuel injector: type and flow number

Results are presented here for Swirl-Venturi LDI (SV-LDI)

Lean burn concepts
– Lean, premixed, 

prevaporized (LPP)
– Lean partially 

premixed
– Lean direct 

injection (LDI)
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30% ICAO Point

41Results 

• Difficult point for this configuration
– Due to low equivalence ratio, could only use the pilot and one main circuit

• NOx and CO would both be lower if the equivalence ratio was higher
– Check cycle
– Change air splits
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All High-Power Data
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