

NASA Global Precipitation Measurement (GPM) Mission ground and satellite observations for ICE-POP: Status Update

Walt Petersen

NASA GPM Deputy Project Scientist, GV NASA Marshall Space Flight Center

David Wolff NASA GPM GV Systems Manager NASA Goddard Space Flight Center

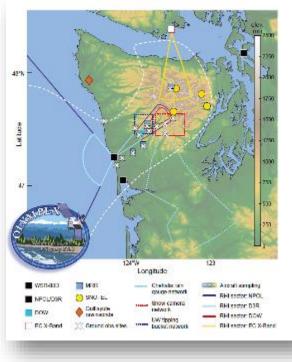
Brad Zavodsky*, Jason Roberts *NASA SPoRT Center Co-PI Marshall Space Flight Center

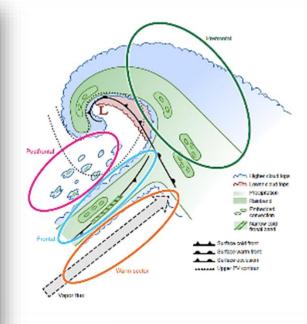
> KMA ICE-POP Meeting 19-21 September 2017

Programmatic:

- NASA Weather Program, Short Term Prediction and Operational Research Transition Center (SPoRT)
- NASA's Global Precipitation Measurement (GPM) Mission Ground Validation and Precipitation Measurement Missions Science Program
- NASA Centers: MSFC and GSFC

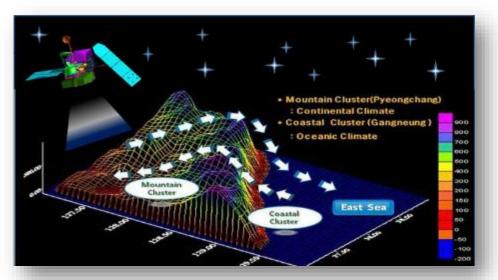
Overarching Objective:


 Leverage international collaboration and synergistic observational (GPM), numerical modeling (SPoRT/GSFC), and research transition (SPoRT) opportunity to verify, test utility, improve satellite products and numerical prediction models in heavy orographic snow regime Support current NASA collaboration with KMA, provide real-time data in support of ICE-POP, participate in significant international science effort.


GPM Ground Validation (ICE-POP Field Campaign - RDP)

- Direct/physical validation of active/passive satellite-based snowfall retrieval algorithms over coastline and mountains; melting layer interaction with terrain
- Physics of snow, coupling to snow water equivalent rate and satellite remote sensor retrieval algorithm assumptions
 - Size distributions, types/habit, water equivalent, profiles
- NUWRF Model + Observational analyses: Movement toward "level IV products" leverage intensive and multi-faceted NWP component.
- Model precipitation processes (liquid, mixed phase and frozen); Build model testing database for further active/passive remote sensing algorithm development (e.g., satellite data simulators)
- "Integrated" validation of products in operational context

GPM OLYMPEX and ICE-POP


Multi-frequency radar networks, gauges, disdrometers, aircraft, soundings....

OLYMPEX: Validation of GPM precipitation (rain, snow) estimation and precipitation physics in mid-latitude frontal systems interacting with complex terrain

GPM in ICE-POP: Validation of snow (rain/mixed) detection, estimation, and precipitation physics in steep terrain gradients as a function of synoptic regime

NASA Instruments in ICE-POP: D3R, PIP, Pluvio, MRR

Dual Frequency Dual Polarimetric **D**oppler Radar (D3R)

NASA

Precipitation Imaging Package (PIP) x 2 (imager/disdrometer)

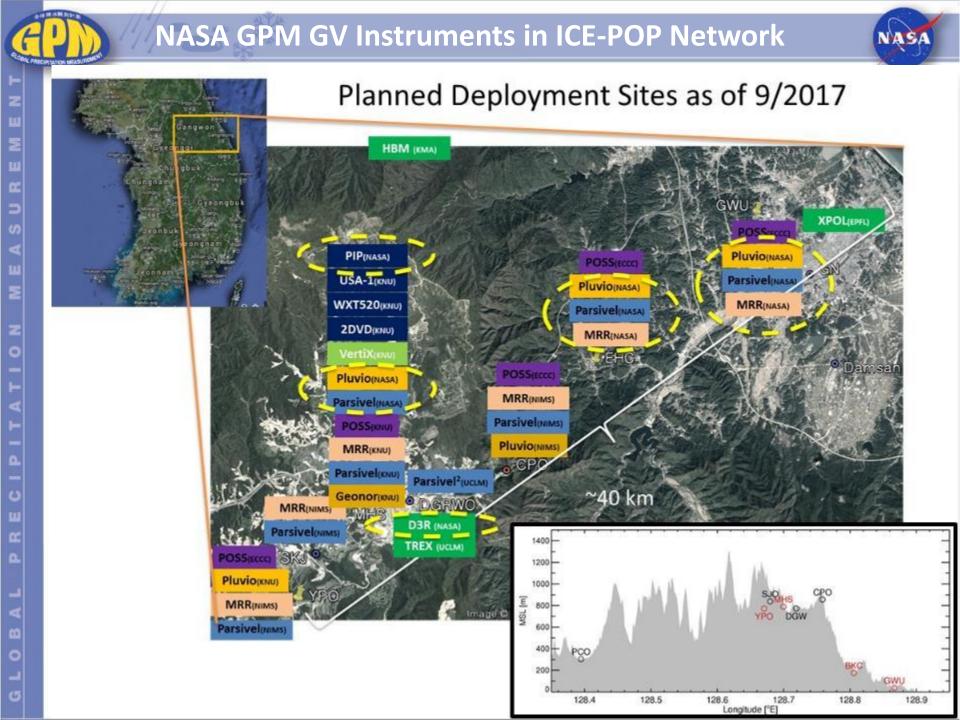
Pluvio₂ x 3

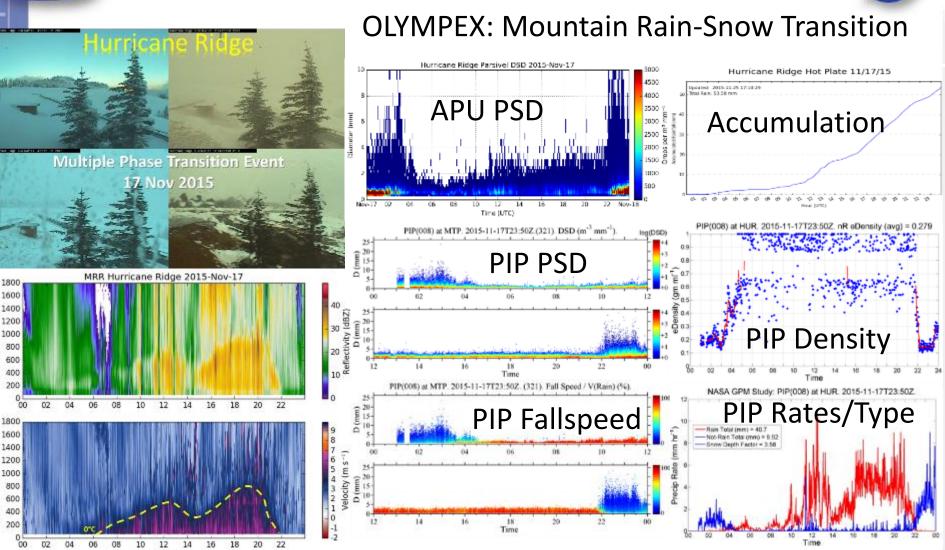
Shipment 1:

- 3 Autonomous Parsviel Units (APU)
- 3 Pluvio² 400 Weighting Precipitation Gauges with full Tretykov & alter wind fences
- Arrived end of March 2017; Setup at DGW for testing in May
- Data available from a KMA server via sftp

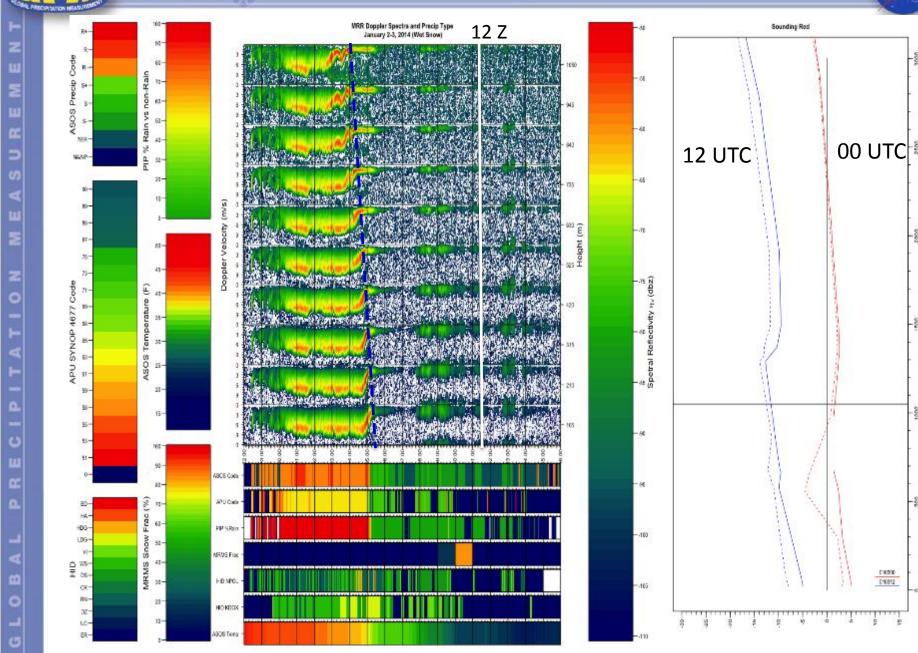
Shipment 2:

- 2 Precipitation Imaging Probes (PIP)
- 2 Micro Rain Radars (MRR)
- Arrived first week of July 2017
- MRRs setup at DGW 14 July; Gate spacing?
- Data not yet available on the KMA server
- PIP status?

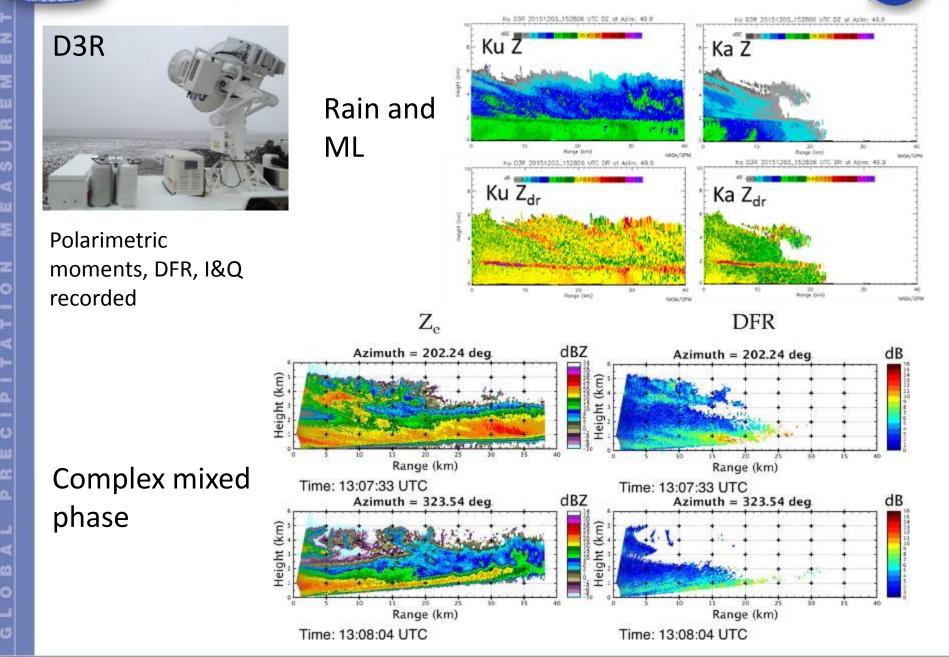

Shipment 3:


- D3R Radar shipped 9/12/17
- Mid/late October setup/testing

MRR Z, Velocity spectra capture phase transitions and low level structure Parsivel (APU), PIP capture phase transition, precipitation type, size distribution, rates, while gauge captures reference water equivalent accumulation.

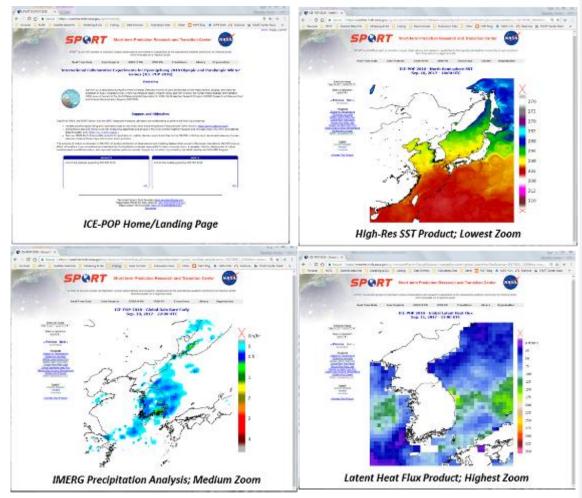

Instrument Data: MRR, PIP phase transition

Height


0100300

010812

Data Examples: D3R



https://weather.msfc.nasa.gov/sport/icepop/

- Focused on forecast challenges in the Korean Peninsula
- Provides links to GPM (orbit, merged, diagnosed) and supporting satellite products and NUWRF NWP model output plots
- Display static images and animations to show evolution of weather situation
- Multiple zooms allow for look at big picture weather patterns and high-resolution features

Still under developmentsuggestions welcome.

For select IMERG Products also see: https://pmm.nasa.gov/data-access/global-viewer

Satellite Observations, Diagnosed, Model Products

Variable	Area Covered	Spatial Resolution	Temporal Refresh	Data Latency	Data Type; NASA Instrument(s)
Precipitation Rate and Phase	Land & Water	15-km	1-3 hours	30-60 minutes	Passive Microwave; GPM Constellation*
Merged Precipitation Analysis	Land & Water	10-km	30 minutes	4 hours (Early)	Passive Microwave, Infrared; GPM Constellation* + GEO
Surface Temperature	Water Only	25-km	1 hour	30-60 minutes	Passive Microwave; GPM Constellation*
Surface Relative Humidity	Water Only	25-km	1 hour	30-60 minutes	Passive Microwave; GPM Constellation*
Surface Wind Speed	Water Only	25-km	1 hour	30-60 minutes	Passive Microwave; GPM Constellation*
Sensible Heat Flux	Water Only	25-km	1 hour	30-60 minutes	Passive Microwave; GPM Constellation*
Latent Heat Flux	Water Only	25-km	1 hour	30-60 minutes	Passive Microwave; GPM Constellation*
H-Resolution Sea Surface Temperature	Water Only	2-km	12 hours	6 hours	Model, Infrared; MODIS, VIIRS
NUWRF Model Outputs (cf. Tao presentation)	3-Domain	9, 3, 1 km			Every 6-hours, 24-hour forecast for every 30 minutes; products FDP Defined

*GPM Constellation instruments: GMI, AMSR-2, AMSU/MHS, ATMS, SSMI/S **Additions/modifications possible as requirements dictate

C

65

Weather Program

- SPoRT display/viewer for FDP/RDP operations in ICE-POP domain
- Satellite products, surface parameters (LH/SH fluxes), high resolution SST, NUWRF FDP model products
- Action(s) ongoing......
 - Complete GPM observational and NUWRF model product access
 - Page navigation/product browse functionality

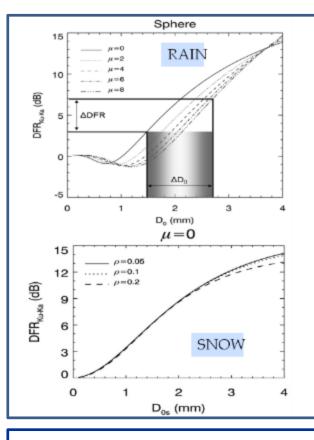
GPM GV: Validation for satellite products (databases, forward models etc.)

- Direct/physical validation of satellite-based snowfall retrievals over complex terrain
- Physics of snow, cloud model ice process, simulated remote sensing
- Model + Observational analyses: Movement toward level IV products Instrument Deployment
 - D3R Radar- in route 9/12/17 with install at DGRWO October 2017; IOP 2018
 - PIP, MRR2, Parsivel, Pluvio in country; operating winter 2017/18
 - Action(s) ongoing......
 - Complete radar deployment; ensure scanning strategy (system)
 - Complete instrument network deployments, ensure comms + operability
 - Ensure data QC, transfer, products, display, archive (temporary, permanent)

EXTRA

C

NAS

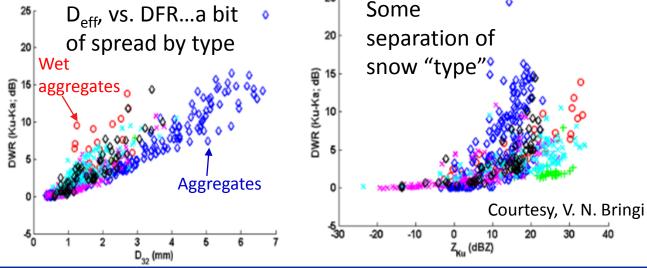

D3R: [Dual-Freq., Dual-Pol., Doppler Radar]

13.91GHz ± 25MHz; Ka- 35.56GHz ± Hz BZ, -2 dBZ noise equivalent at 15 km, 50m range resolution m (nominal) m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka) 6 dBi (Ku), 44.3 dBi (Ka)		
HHz BZ, -2 dBZ noise equivalent at 15 km, 50m range resolution m m (nominal) m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka)		
50m range resolution m m (nominal) m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka)		
m m (nominal) m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka)		
m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka)		
m 50° Az, -0.5-90° El (full hemisphere) (72 in.) (Ku), 28 in. (Ka)		
(72 in.) (Ku), 28 in. (Ka)		
(72 in.) (Ku), 28 in. (Ka)		
dBi (Ku), 44.3 dBi (Ka)		
45.6 dBi (Ku), 44.3 dBi (Ka)		
0.89° (Ku), 0.90 (Ka)		
Dual linear simult. and alternate (H and V)		
~ -25 dB		
< -30 dB		
Within 0.1 degrees		
0-24°/s Az, 0-12°/s El		
PPI sector, RHI, Surveillance, Vertical		
ting		
eceiver		
Solid State Power Amplifier Modules		
200 W (Ku), 40 W (Ka) per H and V channel, Max duty cycle 30%		
4.8 (Ku), 6.3 (Ka)		
~ 90 dB		
GMAP		
cts		
uivalent reflectivity factor (Z_h) (Ku, Ka)		
opler velocity (unambiguous: 26 m/s)		
ferential reflectivity (Z _{dr}) (Ku, Ka)		
ferential propagation phase (ϕ_{dp}) (Ku, Ka)		
polar correlation coefficient (ρ_{hv}^{qp}) (Ku, Ka)		
ear depolarization ratio (LDR_{h}, LDR_{v})		
(Ku, Ka) (in alternate mode of operation) NETCDF		

NASA

Retrieving snowfall from Dual Frequency Precipitation Radar

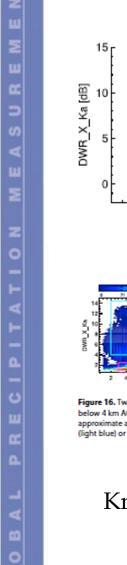
Lookup tables of DFR to estimate D_o

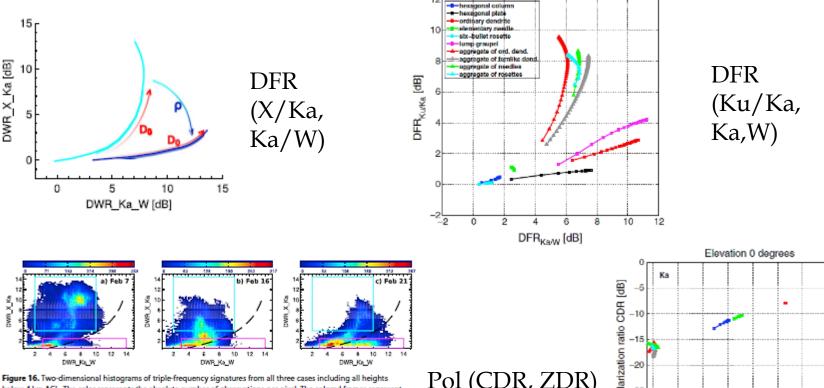

Use with $Z_{K\mu}$ to estimate N_{μ} with μ = fixed (ambiguities in assumed ρ and μ).

Integrate to get contents.

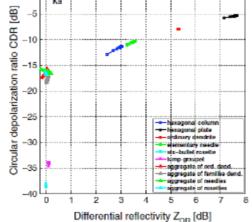
CMB additionally uses the GMI scattering to constrain total column IWP (at say, 166 GHz).

Dual-Frequency Approach tested with GV data


25 r


25

Snow Physics with Triple-Frequency Polarimetric Radar


65

below 4 km AGL. The color represents the absolute number of observations per pixel. The colored frames represent approximate areas in the triple-frequency space that were found to be related to the presence of large aggregates (light blue) or rimed particles (purple) in the surface in situ observations.

Pol (CDR, ZDR)

Elevation 0 degrees

Tynella and Chandrasekar (2014, JGR)

Kniefel et al., 2015 JGR