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Motivation

P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. Bilén, R. Reinhart, and D.

Mortensen, “Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite

Communications,” in 34th AIAA International Communications Satellite Systems Conference,

October 2016.



Proposed Solution

RLNN: a neural network-based reinforcement learning method



Proposed Solution

Reinforcement learning Q–function equations:

• State-Action-Reward-State-Action (SARSA)

Qk+1(sk , ak ) = Qk (sk , ak ) + α[r + γQ(sk+1, ak+1) − Q(sk , ak )] (1)

• Time-Difference

Qk+1(sk , ak ) = Qk (sk , ak )+α[r+γmax
a

Qk (sk+1, a)−Qk (sk , ak )] (2)

• Proposed equation for SATCOM

Qk+1(sk , ak ) = Qk (sk , ak ) + α[rk − Qk (sk , ak )] (3)



Proposed Solution

Ensemble of deep neural networks



Simulation results

Exploration probability ε = 0.5, wi = 1/6

(a) Exploration OFF

(b) Exploration ON



Simulation results

Exploration probability ε = 1/k , wi = 1/6

(a) Exploration OFF

(b) Exploration ON



Conclusions

• Hybrid ML-based multi-objective radio resource allocation – RLNN

• Virtual exploration enables control over:

• Performance levels while exploring actions

• Time spent exploring very “bad” actions

• RLNN is independent of exploration probability function

• Improvements of up to 3.9× on packets experiencing performance

values higher than 0.55
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Backup

• Performance threshold

• 95% of current maximum performance predicted by NN

• Rejection probability = 1



Backup

fobs(x) = w1fThrp +w2fBER +w3fBW +w4fSpc eff +w5fPwr eff +w6fPwr con

(4)

Throughput

fThrp = Rs ∗ k ∗ c (5)

Bandwidth

fBW = Rs ∗ (1 + β) (6)

Spectral efficiency

fSpc eff = k ∗ c/(1 + β) (7)

Power efficiency

fPwr eff = (k ∗ c)/((10(Es/N0)/10)) ∗ Rs) (8)

Additional consumed power

fPwr con = Es ∗ Rs (9)



Backup

Table 1: Adaptable parameters

Parameter Variable Value range

Modulation order M̄ [4, 8, 16, 32]

Bits per symbol k̄ [2, 3, 4, 5]

Encoding rate1 c̄ [1/4 − 9/10]

Roll-off factor β̄ [0.2, 0.3, 0.35]

Bandwidth ¯BW [0.5 − 5] MHz

Symbol rate R̄s [0.41 : 0.1 : 3.7] MSamples/sec

Additional Tx Es/N0 Ēs [0 : 1 : 10] dB

1Different modulation schemes use different encoding rate sets


