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The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is
being developed within NASA as a risk reduction activity to mature, integrate and test
ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems tar-
geted for infusion into near-term robotic and future human spaceflight missions. The ini-
tial COBALT payload instantiation is integrating the third-generation ALHAT Navigation
Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements,
with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navi-
gation (TRN) global-position estimates. The COBALT payload will be integrated onboard
a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and
guidance planning during two flight test campaigns in 2017 (one open-loop and closed-
loop). The NDL is targeting performance capabilities desired for future Mars and Moon
Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars
2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-
reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C)
components in closed-loop flight demonstrations prior to the actual mission EDL.

I. Introduction

Section will provide an overview of the importance of ALHAT capabilities to future NASA missions and
the motivation behind the development of the COBALT payload for risk reduction with future precision-
landing GN&C technologies. Some brainstorming notes follow:

The support for COBALT is across multiple NASA directorates and projects. The NASA Human Ex-
ploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Program is
investing in risk reduction activities for future robotic and human landers through the AES Lander Tech-
nologies (LT) Project. The AES-LT Project is leading the development of the COBALT payload. The
third-generation NDL is receiving development support through internal-LaRC investments, the AES-LT
project, and through NASA STMD (Space Technology Mission Directorate). The development of the LVS
is supported through the NASA SMD (Science Mission Directorate), and incorporation of LVS into the
COBALT payload is through the AES-LT project.
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The flight tests of the COBALT payload will be conducted onboard the Masten Space Systems (MSS)
Xodiac rocket-propulsive terrestrial testbed; these flight tests are funded through the NASA STMD Flight
Opportunities (FO) Program.

Provide overview of the importance of ALHAT capabilities to safely, precisely and softly land future
robotic and human landers at scientifically compelling but geographically hazardous locations, as well as at
in the proximity of pre-existing surface assets. Several near-term planetary science priorities involve robotic
landings on the Moon, Venus and comets, as highlighted in the National Research Council (NRC) decadal
survey on planetary science.1 The NRC has identified safe and precise landing technologies as a high priority
need for future Entry, Descent and Landing (EDL) missions.2 An overview will also be provided of prior
and current NASA investments into safe and precision soft landing GN&C capabilities.3,4, 5

Include citations for NASA investments into TRN,6,7, 8, 9 NDL,10,11 other ALHAT capabilities,12,13,14

and prior test campaigns (e.g., Morpheus, helicopters, sounding rockets).

II. COBALT Payload Design

Section will discuss the payload design and ALHAT sensors within the COBALT payload. Models and
pictures of the hardware will be included.

COBALT HEOMD-AES	LT	/	STMD-FO	/	SMD	MTDP	

Xodiac	
Vehicle	

Courtesy	Masten	

Payload	
Frame	

Compute	
Element	

NDL	Electronics	

NDL	Op@cal	Head	

COBALT	
Payload	

LVS	Camera	

IMU	

Courtesy	NASA/JPL-Caltech	

Figure 1. Representative images of sensors and payload: NDL (left) and COBALT layout (middle and right).

III. Baseline Flight Profile

Section will discuss the baseline flight profile and flight performance targeted for the COBALT flights
onboard Xodiac. An image of the trajectory profile will be included, annotated with Nav modes (COBALT
vs vehilce), sensor sequencing, and guidance events.

IV. Xodiac Rocket-Propulsive Terrestrial-Flight Vehicle

Section will discuss the development and target performance for the MSS Xodiac vehicle that will be
utilized for the open- and closed-loop flight testing of COBALT.

V. Next Steps for COBALT

Remaining work for payload integration, followed by open-loop flight tests. Subsequent work in prepa-
ration for closed-loop flight tests.

Follow-on risk-reduction initiatives for maturing and demonstrating ALHAT Hazard Detection, new
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implementations of Navigation algorithms and Guidance planning algorithms, maturation of the Xodiac
platform and FO suite of test vehicles for advancing and testing EDL technologies in closed-loop GN&C
systems prior to actual mission EDL.
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