
Web Accessible API in the Cloud Trade
Study (Task 28)

EED2-TP-028, Revision 01

Technical Paper
August 2017
Prepared Under Contract NNG15HZ39C

RESPONSIBLE OFFICE

Alexander Schuster, Task Lead - EED-2 Task 28
EOSDIS Evolution and Development 2 {EED-2) Contract

RESPONSIBLE AUTHORS

James Gallagher, President, OPeNDAP, Inc.
EOSDIS Evolution and Development 2 (EED-2) Contract

Ted Habermann, Principal Investigator

EOSDIS Evolution and Development 2 (EED-2) Contract

Raytheon Company
Riverdale, Maryland

Date

Date

Date

Unrestricted Content

Page 1 of 43 EED2-TP-028, Rev. 01

Task 28:
Web Accessible APIs in the Cloud

Trade Study

James Gallagher1, Ted Habermann2, Aleksandar Jelenak2,
Joe Lee2, Nathan Potter1, and Kent Yang2

1. OPeNDAP Inc., 2. The HDF Group

August 2017

Unrestricted Content

Page 2 of 43 EED2-TP-028, Rev. 01

Table of Contents
Study Goals and Summary ... 4

Introduction .. 4
Objectives ... 4
Terms .. 5
Assumptions ... 5
Findings and Recommendations .. 5
Recommended Activities ... 7
Performance Comparison of the Three Architectures ... 8
Cost Comparison of the Three Architectures ..10

Performance-Driven Context ..10
Performance-Agnostic Context ..11

Study Methodology ... 12
Sample Data Collections ...12
HDF5 File Content Map - Index Files ..13
Use Cases ..15

Analysis of Hyrax Logs from NASA Data Centers ..16
Use Case Tags ..17
Testing the Use-Cases ...17

System Architectures ..17
Overview ..17
Architecture Notes ...18

Estimating Cost ...20
Cost and Usage Information...20
OPeNDAP Logs ...21
Cost Model ...21

Study Results .. 22
Architecture 1 ..22

Performance ..22
Cost ...24

Architecture 2 ..25
Performance ..25
Cost ...27

Architecture 3 ..27
Performance ..27
Cost ...28

Appendix 1. Overview of System Components .. 29
Background ...29
DAP Protocol ...29
Hyrax Server ..29
HDF5 Library ..29
Amazon Web Services (AWS) ...31

Amazon Elastic Compute Cloud (EC2) ..31
Amazon Elastic Block Store (EBS) ...32
Amazon Elastic File System (EFS)...32
Amazon Simple Storage Service (S3) ..32

Unrestricted Content

Page 3 of 43 EED2-TP-028, Rev. 01

Appendix 2: Architecture Details ... 34
Architecture 1: Baseline..34
Architecture 2: Files with HTTP Range GETs ..35
Architecture 3: Shredded HDF5 Files ...36

Appendix 3. Use Case Description .. 38

References ... 40

Glossary ... 41

Acronyms ... 42

Unrestricted Content

Page 4 of 43 EED2-TP-028, Rev. 01

Study Goals and Summary

Introduction

The Earth Science Data and Information System (ESDIS) Project manages the science systems
of the Earth Observing System Data and Information System (EOSDIS). EOSDIS provides sci-
ence data to a wide community of users for the National Aeronautics and Space Administra-
tion’s (NASA) Science Mission Directorate. As part of its objective of continuously improving the
level of service and evolving capabilities, the ESDIS project is looking to enhance the discovera-
bility, accessibility, and usability of its data sets and services by focusing on open standards,
web accessible application programming interfaces (APIs), and improved metadata. The role of
cloud computing in facilitating these improvements is an important focus of several studies and
on-going exercises.

One of the most popular web-based data services for ESDIS users is the Open-source Project
for a Network Data Access Protocol (OPeNDAP), a data service that includes servers, clients,
and the Data Access Protocol (DAP). OPeNDAP services are heavily used in traditional data
center environments that include servers and datasets stored in file system storage. Most of the
source data for these services is written in the Hierarchical Data Format (HDF) HDF5.

Providing equivalent data services in a cloud environment is critical for successful migration to
the cloud. This study compares several potential architectures for OPeNDAP data services in
the cloud using existing ESDIS datasets and representative Use-Cases. This report describes
and presents results from that work.

Objectives
This study explored three candidate architectures for serving NASA Earth Science HDF5 data
via Hyrax running on Amazon Web Services (AWS). We studied the cost and performance for
each architecture using several representative Use-Cases.

The objectives of this project are:

● Conduct a trade study to identify one or more high performance integrated solutions for
storing and retrieving NASA HDF5 and Network Common Data Format Version 4
(netCDF4) data in a cloud (web object store) environment. The target environment is
Amazon Web Services’ (AWS) Simple Storage Service (S3).

● Conduct needed level of software development to properly evaluate solutions in the
trade study and to obtain required benchmarking/metrics for input into government deci-
sion of potential follow-on prototyping.

● Develop a cloud cost model for the preferred data storage solution (or solutions) that ac-
counts for different granulation and aggregation schemes as well as cost and perfor-
mance trades.

Unrestricted Content

Page 5 of 43 EED2-TP-028, Rev. 01

Terms
Granule: For this report, the term granule refers to an HDF5 file. Each granule is referenced by
a single DAP Universal Resource Locator (URL).
Variable: A named array of values of the same data type. In DAP these are called variables,
too. In HDF5 these are called datasets. Every granule (a.k.a. DAP URL) has zero or more varia-
bles. Every variable has zero or more attributes.
Chunk: When the HDF5 library is used to write array data, the array is broken into one or more
chunks. Each chunk holds data from a different part of the array (see section HDF5 Library for
further explanation).
A1: Architecture 1
A2: Architecture 2
A3: Architecture 3

There is also a Glossary on page 41.

Assumptions
Assumptions we made during this study:

a. The Data Access Protocol (DAP) was not changed to accommodate any of the architec-
tures, so no new client behavior is needed when accessing data from S3.

b. We are using Hyrax on Amazon Elastic Compute Cloud (EC2) running CentOS 6 in-
stances for data access.

c. To focus on actual S3 behavior and performance, we will minimize the effects of any
caching. Thus, evaluating the effect of caching, cache sizes, caching strategies, or
cache ejection polices is not part of this study.

d. The EC2 instances for the Hyrax server and the data in S3 are collocated in the same
AWS region.

e. We are using publicly available AWS price list for calculating costs.
f. Cost computations are based on our best understanding of the actual AWS billing sys-

tem.

Findings and Recommendations
Three architectures were compared in this study for a variety of use cases. Highlights are com-
pared in Table 1.

• Architecture 1 (A1) was roughly five to ten times slower than Architectures 2 (A2) and 3
(A3) for requests in which a single variable was requested from each granule.1

• However, when several variables (30 variables for the Atmospheric InfaRed Sounder
(AIRS) data -- 17 for Modern-Era Retrospective analysis for Research and Applications
Version 2 (MERRA2) -- were requested from each granule, or all the variables in the
granule were requested, A2 was from 1.6 to 2.6 times slower than A1, and A3 was be-
tween 2.6 and 3.7 times slower than A1.

1 In the DAP, requests are always for one or more variables. For both the AIRS and MERRA2 granules
used in this study, each variable uses more than one chunk, so requesting a single variable requires A2-3
make several requests to S3.

Unrestricted Content

Page 6 of 43 EED2-TP-028, Rev. 01

• Architectures 1 and 2 both have identical data storage, so an adaptive approach that
combines these two would make excellent sense. Using some metric, the server would
decide to retrieve individual chunks or collect the entire granule from S3.

• Data storage costs for A3 can be less for some granules. In those cases, A3 may be
preferred.

Our recommendation is to develop a hybrid of A1 and A2 unless specific granule charac-
teristics indicate significant storage savings of A3.

Table 1: Overview of the three architectures examined in this study.

 Architecture 1 Architecture 2 Architecture 3

Performance Faster than A2 & A3
for requests that ac-
cess many variables
or the entire granule.
Requests for one or

two variables are
much slower than for

A2 & A3.

Faster than A1 for re-
quests accessing one

or two variables.
Slower for requests for
many variables or the

entire granule.

Faster than A1 for re-
quests accessing one

or two variables. Slower
for requests for many
variables or the entire

granule.

Processing Costs Depends on
processing time

Depends on
processing time

Depends on
processing time

Storage Costs ~equal to A2 ~equal to A1 Can be 1% to 30%
lower depending on

repetition of data values
within the granule.

Full granule re-
trieval

Yes Yes No

Data Migration to
Cloud

Copy each granule file
to a single S3 object

Copy each granule file
to a single S3 object

Shred each granule file
into multiple S3 objects

Commercial Web
Crawler Access
(GoogleBot, etc.)

Potentially significant if crawlers require large amounts of information to
move from S3 to the data server. This situation can be mitigated by limiting

crawler access to just metadata held by the server.

The results of this study indicate that the principal cost drivers are:

1. The time required to transfer data from S3 to the Hyrax server running on EC2.
2. Storage of data on S3 (data and metadata).
3. Egress of data from AWS to users. Even though we factored this cost out of our analy-

sis, it is obvious that this cost is a significant component of the overall cost.

Our findings that are relevant to these costs:
1. It is possible to decrease processing costs by minimizing waiting for data. This would mean

implementing code that would evaluate the request and based on a metric utilize either the
A1 or A2 approach to minimize the data retrieval time.

Unrestricted Content

Page 7 of 43 EED2-TP-028, Rev. 01

2. It is possible to decrease data storage costs by identifying and avoiding storage of redun-
dant chunks (~30% savings in A3 for our sample AIRS data), but this comes at the loss of
access to the original source HDF5 granule.

3. Egress costs (bytes leaving AWS) are the most significant costs (~4x storage costs). These
costs depend on user behaviors and are equivalent for the three architectures we explored.

Other findings include:
1. The variables in the tested HDF5 granules had a significant number of “duplicate” chunks

(chunks with identical content), and we leveraged this when we shredded the HDF5 gran-
ules for A3. We stored duplicate chunks only once, thus saving storage space.

2. While the HDF4 chunks representation that we leveraged includes chunk offsets, sizes,
unique identifiers and checksums, the Universally Unique Identifier (UUID) turned out to be
unnecessary as it was superseded using the Message Digest Version 5 (MD5) value (and
will be replaced by Secure Hash Algorithm 2 (SHA2) checksums in the future). The remain-
ing parameters were adequate for the retrieval of chunks using Hypertext Transfer Protocol
(HTTP) range requests against a single object or for retrieval of entire S3 objects.

3. Given the expense of data accesses and typical DAP client behavior, expanding on the
granule-level metadata stored outside of S3 will likely reduce costs. The additional metadata
should focus on ‘use’ metadata such as the ranges of values in the granule’s variables.

4. Our National Snow and Ice Data Center (NSIDC) log analysis indicates that ~96% of their
opendap requests are associated with general purpose web crawlers. (We identified 22 dis-
tinct automated crawlers.) We suspect that crawler traffic is similarly high at the other Dis-
tributed Active Archive Centers (DAACs), but we could not confirm that suspicion without
user agent information. We need to identify a mechanism with which we can satisfy crawler
requests (desirable in terms of web search and discovery) while discouraging them from
costly activities. It may be that NASA’s recent migration to authenticated access for data has
addressed this concern. The log files we reviewed included dates prior to NASA’s change in
access control.

5. Inconsistencies across server logs from the various DAACs complicated log ingestion and
limited the scope of what we learned about how clients utilize the servers. Five fields are re-
quired in logs to fully characterize the ways in which clients utilize the DAP service:

a. Date & Time (with time resolution of 1 second or better)
b. Hashed Client internet protocol address (preferably with SHA2)
c. Request (URL path + query string)
d. Response Size
e. Requester’s User Agent

Recommended Activities
Integrate support for S3 into the HDF5 Library. The current implementation of A2 and A3 re-
trieves data from granules using direct access to data from S3. To develop this proof-of-concept
code quickly, we re-implemented some capabilities of the HDF5 library in the Hyrax data server.
It would be better to build support for S3 into the HDF5 library.

Unrestricted Content

Page 8 of 43 EED2-TP-028, Rev. 01

Refine the implementations of Arch 1, 2 and 3 in Hyrax. The implementations of Architec-
tures 1, 2 and 3 in Hyrax are not ‘production quality’ software; refine these implementations,
since the effort to move these to production will be minimal. The current implementations sup-
port parallel access to S3, but this needs to be optimized. Use the HDF5 library support for S3
when it becomes available.

Develop an adaptable server. Instead of choosing one of the three architectures, develop an
implementation that chooses different behavior based on the characteristics of the data and the
request. We know from experimentation that the different architectures respond more effectively
to different kinds of requests. It is possible to merge A1 with the A2/A3 implementations to pro-
duce a single adaptable server.

Model and mitigate web crawler costs. Since many accesses to the DAAC’s DAP servers
come from web crawlers, we should develop a more concrete description of crawler behavior
and a way to mitigate the costs of crawler traffic. At the same time, the mitigation strategy
should not limit the information those crawlers extract because they may provide important data
discovery services for users.

Model current DAAC data use. To determine the likely actual cost of moving large volumes of
data from a DAAC’s on premises storage to the AWS cloud, develop a model, based on meas-
ured use, of that DAAC’s DAP server. This will enable us to forecast the cost and resources
needed to satisfy the current level of demand for data. This same model can also compare the
performance of cloud systems to the current performance of DAP services.

The logs that we received from the DAACs were inconsistent and did not include information re-
quired for clear and unambiguous understanding of how OPeNDAP is being used (see Finding
6 above and discussion below). We need to improve consistency across the DAACs and ensure
that important information is included in the logs.

Explore deployment utilizing a serverless architecture. Evaluate the cost and performance
of a ‘serverless’ implementation of the DAP web services relative to the current version that runs
on an EC2 instance. An AWS ‘serverless’ implementation uses newer features of AWS that
eliminate the need to run a traditional web server on a virtual computer when data are not being
accessed, thus eliminating the cost of an idle EC2 instance. Adopting this may incur perfor-
mance penalties, however.

Performance Comparison of the Three Architectures

Table 2 summarizes representative performance results comparing all three architectures for
twenty-one Use-Cases run during several time periods. The total times for running all Use-
Cases are shown in the first two rows. These times are most representative of a typical set of
DAAC access Use-Cases, and they indicate that the three architectures each have advantages
in certain request patterns. For requests that touch a few chunks (one or two variables), and
thus make only a few HTTP GET requests to S3, A2 and A3 are roughly ten times faster than
A1. However, when more variables (e.g., 17 MERRA2 variables or 30 AIRS variables) are re-
quested from a granule, the A2 and A3 code takes longer than the A1 code to produce a re-
sponse (1.7 to 3.2 times more than the A1 time). When all the variables in a granule are re-

Unrestricted Content

Page 9 of 43 EED2-TP-028, Rev. 01

trieved, A2 and A3 take 3 to 6 times longer to service the request than A1. The important discri-
minant in these two kinds of access is not actually the number of variables, but rather the num-
ber of chunks. Each chunk is accessed using a separate HTTP GET request. Minimizing the
number of HTTP GET requests made by the server to S3, all other things being equal, improves
performance. The results for a variety of specific Use-Cases are shown in the rest of the Table.
They support the overall performance differences.

Table 2: Performance gain and loss using Architecture 1 as baseline.
The smaller the percentage the better performance.

Date Test A1 A2 A3
February All Use-Cases 1244 minutes 111 minutes 108 minutes

March All Use-Cases 1140 minutes 100 minutes 108 minutes
2/26/17 Use-Case 2 Dataset Metadata Response (DMR) 100.00% 8.74% 8.14%
2/26/17 Use-Case 6 MERRA2 aggregation 100.00% 19.98% 16.45%
2/26/17 Use-Case 7 aggregation A 100.00% 4.05% 3.80%
2/26/17 Use-Case 10 aggregation A 100.00% 5.49% 4.99%
2/26/17 Use-Case 11 aggregation A 100.00% 10.40% 12.43%
2/26/17 Use-Case 12 aggregation M 100.00% 26.43% 23.79%
2/26/17 Use-Case 13 aggregation M 100.00% 48.23% 57.03%
2/26/17 Use-Case 14 aggregation M 100.00% 16.49% 15.47%
2/26/17 Use-Case 15 aggregation A 100.00% 4.86% 4.53%
2/26/17 Use-Case 16 aggregation M 100.00% 86.21% 83.20%
2/26/17 Use-Case 17 aggregation A 100.00% 10.03% 10.00%
3/5/17 Use-Case 2 DMR 100.00% 9.07% 8.42%
3/5/17 Use-Case 6 aggregation M 100.00% 20.91% 16.45%
3/5/17 Use-Case 7 aggregation A 100.00% 4.25% 3.79%
3/5/17 Use-Case 10 aggregation A 100.00% 5.70% 5.11%
3/5/17 Use-Case 11 aggregation A 100.00% 11.30% 12.82%
3/5/17 Use-Case 12 aggregation M 100.00% 27.21% 24.29%
3/5/17 Use-Case 13 aggregation M 100.00% 51.09% 59.84%
3/5/17 Use-Case 14 aggregation M 100.00% 16.87% 15.91%
3/5/17 Use-Case 15 aggregation A 100.00% 4.72% 6.20%
3/5/17 Use-Case 16 aggregation M 100.00% 32.95% 30.24%
3/5/17 Use-Case 17 aggregation A 100.00% 10.58% 10.80%
3/14/17 Use-Case 18 multivariable multi-file M 100.00% 202.71% 316.11%
3/14/17 Use-Case 19 multivariable multi-file A 100.00% 169.47 % 278.02 %
3/14/17 Use-Case 20 all variables multi-file M 100.00% 433.89 % 597.36 %
3/14/17 Use-Case 21 all variables multi-file A 100.00% 287.33% 419.11%

Unrestricted Content

Page 10 of 43 EED2-TP-028, Rev. 01

Cost Comparison of the Three Architectures
There are two general contexts in which the architectures can be compared: performance-
driven and performance-agnostic. In both contexts, we will assume the same client (DAP) re-
quests are made which will also result in the same amount of egress data and the related costs.
In the performance-driven context, the time to complete client requests (same work) directly im-
pacts the total costs. This is relevant for cases where providing DAP web service is required ei-
ther to increase the capacity or support specific data processing effort for a limited period. The
performance-agnostic context is applicable to operational availability (constant presence) of
DAP web service.

Performance-Driven Context
The comparison presented here is based on the cost data reported when running the use cases
developed for this study. The cost data were collected from the Detailed Hourly AWS Cost and
Usage Reports, one of the available types of AWS billing reports.

The only cost data altered from the original was related to the S3 storage of the sample HDF5
data. There were two reasons:

1. We stored both the original HDF5 granule files (A1 and A2), and chunks (A3) in the
same S3 bucket, and thus the reported S3 storage costs did not reflect the storage sav-
ings (due to reduced storage size) for A3 versus A1 and A2.

2. We noticed that S3 storage costs are calculated daily and saved as a single hourly cost
entry once per day in the reports. This caused the S3 storage costs to be higher than
would be realistic for the Use-Cases’ runtimes.

We computed new S3 storage costs using the storage data in Table 4 and for the duration of
the Use-Cases execution for each of the three architectures.

Processing Costs
Table 3 shows the overall processing cost comparisons for running the three Architectures. The
only significant difference between the three is related to the hourly usage charge for the EC2
instance and the attached Elastic Block Store (EBS) storage during the long duration of the Ar-
chitecture 1 runs (~19 hours vs. two hours).

Table 3. Processing cost comparisons.
Architecture 1 2 3
AmazonEC2 $13.572 $1.721 $1.723

BoxUsage:m4.xlarge $12.685 $1.720 $1.720
DataTransfer-Regional-Bytes $0.001 $0.001 $0.003
EBS:SnapshotUsage $0.065

EBS:VolumeUsage.gp2 $0.821

AmazonS3 $0.103 $0.025 $0.022
Requests-Tier2 $0.008 $0.015 $0.014
TimedStorage-ByteHrs $0.095 $0.010 $0.008

Unrestricted Content

Page 11 of 43 EED2-TP-028, Rev. 01

S3 Storage Costs
The three architectures consume different amounts of S3 storage. Table 4 shows the storage
usage in gigabytes (GB) for serving the data used in this study. Since A2 and A3 require the in-
dex (DMR++ eXtensible Markup Language (XML) files, an additional 2.1 gigabytes were added
to the S3 storage amount totals for these two architectures so that the Hyrax server would be
able to serve incoming requests.

Table 4. The amount of stored data in S3 for the different architectures.
Architecture 1 2 3
Storage Requirement (GB) 156 158.1 126.1

The storage required for Architecture 1 and 2 are very similar. The decrease in storage by
~20% for A3 reflects the savings by having only one copy of duplicated chunks.

S3 Data Requests
The total number of actual S3 requests for the Use-Cases is shown in Table 5. In Architectures
2 and 3 the number of S3 requests from the Hyrax server is larger when compared to Architec-
ture 1 because there is a request for each chunk rather than each granule. The difference be-
tween A2 and A3 is due to some use cases that involved random array sub-setting requests
and, therefore, different numbers of chunks.

Table 5: Total number of S3 requests from all the Use-Cases for each architecture.

Architecture Number of Requests Cost

A1 19,709 $0.0079

A2 37,152 $0.0149

A3 34,592 $0.0138

Despite the significant difference in numbers of S3 requests, the cost difference is small be-
cause S3 requests are one of the least expensive AWS resources (currently at $0.04 for
100,000 requests) so they do not contribute significantly to the total cost.

Performance-Agnostic Context
Cost comparison of the three architectures in this context entails that the only cost differentia-
tors are the number of S3 requests from the Hyrax server (EC2 instance) and the amount of
data stored in S3. The EC2 instance is assumed to run constantly (24/7) and that DAP requests
are the same and, hence, produce the same DAP responses (same amount of data egress).

S3 Storage Costs
The cost situation is unchanged from the previous context. A3 can reduce this cost but it de-
pends on the data itself so the savings cannot be predicted without inspecting the data.

Unrestricted Content

Page 12 of 43 EED2-TP-028, Rev. 01

S3 Data Requests
The number of S3 requests for one DAP request varies based on the architecture and the DAP
request’s type. In A1, one DAP request can cause zero or one S3 requests. For the other two
architectures, DAP data requests may generate 0 or more S3 requests depending on the num-
ber of variables, sub-setting expressions in the request, and the number of chunks that must be
read from. Since DAP requests cannot be predicted, the question becomes: can there be
enough DAP requests to generate such a large number of S3 requests that they constitute a
significant portion of the total cost?

The S3 requests’ cost is the least expensive of all AWS services we observed during our study,
at $0.04 for 100,000 requests. As an example, just one hour ($0.215) for the EC2 instance used
in this study equals 537,500 S3 requests. Or, the price of 1 gigabyte of data per month egress-
ing the AWS cloud ($0.09 for the first 10 terabytes) is equal to 225,000 S3 requests per month.
Downloading just three granules from one NASA product from this study is almost equal to one
gigabyte.

To answer our question, the following is an example with the AIRS product (NASA, 2017) used
in this study. This AIRS product has 777 variables per granule and a total size of approximately
1,643 GB in 5,300 granules. The maximum number of chunks per AIRS variable is eight. If the
DAP requests ask for all the variables in all the granules, the maximum number of S3 requests
possible is: 777 × 8 × 5300 = 32,944,800. The cost of all these requests is: 32,944,800 ×
$0.0000004 = $13.18. This amount converted to egress data equals $13.18 / ($0.09/GB-mo) =
146.42 GB per month. Since the DAP requests are asking for nearly the entire 1,643 GB data
collection, the size of data egress would be very close to this amount. This means the cost of
the S3 requests is equivalent to 8.9% of the egressed data they produced. In other words, the
cost of S3 requests will always be eclipsed by other costs.

Study Methodology

Sample Data Collections
We considered three different test data collections:
1. NASA AIRS Standard Retrieval product (365 granules; 109G)
2. NASA MERRA2 products (7,466 granules; 231G)
3. Sample HDF5 granules (96 granules; 125MB)

As discussed below, the behavior of these test collections in the cloud depends critically on sev-
eral characteristics that are not necessarily apparent on cursory examination. The important
characteristics determine how the data collections will behave in a realistic ESDIS data service.

For example, if the granules include a small number of variables, users may tend towards down-
loading the entire granule for simplicity or because they are interested in all of the variables.
Conversely, if the granule has many variables, users may be particularly interested in subsets in

Unrestricted Content

Page 13 of 43 EED2-TP-028, Rev. 01

the variable space for certain science questions; for example, they may only be interested in
sea surface temperature data. The behavior is also related to the patterns used for chunking the
variables. If the variables are contiguous (I.e. one chunk), then the entire variable can be ac-
cessed with a single call to S3. If the variables are chunked, the number of S3 retrievals re-
quired to access the entire variable will be the number of chunks in the variable.

The NASA AIRS test data we utilized includes 365 Version 6 daily granules from 2015 that were
converted from HDF4 to HDF5 for this study. Each of these granule contain 777 variables which
collectively represent 569,765 chunks (~1,561 chunks / granule) of which 330,353 (58%) are
unique. The most common redundant chunk occurs 49,640 times. The redundant chunks make
up 29.4% of the total variable data. Not storing the redundant chunks thus saves significant
fixed storage costs.

The MERRA2 collection includes many different products. We focused on 440 granules of the
MERRA2_100.tavgM_2d_slv_Nx product to test the data aggregation Use-Cases. These gran-
ules include 197 variables that are stored in one or sixteen chunks. Collectively these granules
included 82,639 chunks (~chunks/ granule) of which 81,057 are unique. The most common re-
dundant chunk occurs only 108 times. In this case, redundant chunks make up less than 1% of
the data volume.

The sample HDF5 granules are a miscellaneous collection that have been accumulated over
years of interactions. We included these granules in case we needed to test particular data
structures.

HDF5 File Content Map - Index Files
Many existing web data access architectures include catalogs or index files that separate the
logical organization of the data from the physical data storage and include additional metadata
that are required to support access services (e.g., Thematic Real-time Environmental Distrib-
uted Data Services (THREDDS) (Unidata, 2017), Globus (Globus, 2017), OPeNDAP (NOAA,
2017)). Typically, the smallest data item included in these catalogs is a granule (i.e., a file). This
approach works well if the architectures retrieve entire granules to service user requests (e.g.,
file transfer protocol or A1, described below), but they are not helpful in architectures where
sub-sets of granules (e.g., only 3 of 500 variables from a granule) are requested from the re-
source stored in S3 or similar object stores.

To our knowledge, the only existing catalog that includes sub-granule information for HDF data
is the HDF4 Map representation developed by ESDIS and The HDF Group (The HDF Group,
2017) to provide sustainable access to HDF4 data if the HDF4 libraries were no longer available
or supported. The maps are written in eXtensible Markup Language (XML) and include critical
details, e.g., sizes and offsets, required to access and decompress data objects in HDF4 gran-
ules shown below.

Unrestricted Content

Page 14 of 43 EED2-TP-028, Rev. 01

The DAP4 protocol uses the Dataset Metadata Response (DMR) to transmit the semantic,
structural description, and metadata data content of a data source (OPeNDAP, Inc., 2007). The
DMR representation includes metadata information characterizing the variables in a granule,
their datatypes, names and attributes.

To provide indexing support for Architectures 2 and 3, we combined HDF4 Map’s XML repre-
sentation for sub-granule data items with OPeNDAP’s DMR representation of metadata content
and structure to form a representation that we termed DMR++. A DMR++ representation for the
GPHeight_MW_A_sdev variable in one of the AIRS granules is shown in Table 6. It includes ex-
isting DMR information about dimensions and attributes and new information about chunks
(tagged as h4:chunks and h4:byteStream elements).

Table 6: A DMR++ representation for the GPHeight_MW_A_sdev variable in one of the AIRS granules.

<Float32 name="GPHeight_MW_A_sdev">
 <Dim name="/StdPressureLev"/>
 <Dim name="/Latitude"/>
 <Dim name="/Longitude"/>
 <Attribute name="_FillValue" type="Float32">
 <Value>-9999.</Value>
 </Attribute>
 <h4:chunks deflate_level="2" compressionType="deflate shuffle">
 <h4:chunkDimensionSizes>12 90 180</h4:chunkDimensionSizes>
 <h4:byteStream uuid="6bf9e169-b7c1-4f89-a3a3-7bcfa5e5a78b"
 nBytes="3421"
 offset="67779707"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[0,0,0]"/>
 <h4:byteStream uuid="a2dfe411-3699-4007-8245-1da034f78af5"
 nBytes="3421"
 offset="67783128"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[0,0,180]"/>
 <h4:byteStream uuid="80dd97ed-f90e-43aa-a34c-bc4a8a545900"
 nBytes="3421"
 offset="67786549"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[0,90,0]"/>
 <h4:byteStream uuid="b7d992ab-aca4-463e-8465-909893d478a0"
 nBytes="3421"
 offset="317253596"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[0,90,180]"/>
 <h4:byteStream uuid="b14adf06-d769-4298-800a-a4e79ab948dd"
 nBytes="3421"
 offset="317257017"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[12,0,0]"/>
 <h4:byteStream uuid="dc4ecfc9-9899-4266-90dd-909d332cde0a"
 nBytes="3421"

Unrestricted Content

Page 15 of 43 EED2-TP-028, Rev. 01

 offset="317260438"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[12,0,180]"/>
 <h4:byteStream uuid="3419b454-a29b-4cc6-8d8c-e2553f321d41"
 nBytes="3421"
 offset="317263859"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[12,90,0]"/>
 <h4:byteStream uuid="1391743f-57c2-4a4e-865a-599ab4ef6f77"
 nBytes="3421"
 offset="317267280"
 md5="c55324594a0787856d9b908fc7a7a201"
 chunkPositionInArray="[12,90,180]"/>
 </h4:chunks>
</Float32>

The h4:chunks element includes information about compression and chunk dimensions as well
as a list of h4:byteStream elements encoding the position of the data in the granule (offset)
and the size of the data (nBytes) of each chunk. Several attributes were added to the HDF4
Map chunk representation to support access to data in the cloud: the chunks were given univer-
sally unique identifiers (UUID) and had MD5 checksums calculated based on their byte content
to address data integrity concerns and requirements expected to be associated with the pro-
ject’s plan to engage in a data shredding processes to produce data to be utilized in A3.

Creating the DMR++ files for our sample data required development of three new capabilities:

1. Extraction of the chunk (h4:byteStream) information from HDF5 files, and
2. A tool for reading existing DMR and HDF5 files and augmenting them with the byte

stream storage information.
3. Added a URL to the relevant S3 object as an attribute to the DMR++’s Dataset element

in A2, and added a URL to the S3 object as an attribute to each h4:byteStream element
in A3. This allowed the DMR++ files to be completely portable from one system to an-
other without “loosing” their reference to the binary data.

The first capability was added to a new custom branch of the HDF5 library and implemented in
the h5py library for access using Python. The second capability was developed as a prototype
stand-alone tool written in Python that utilized the first capability. And the third was accom-
plished using a bash script.

Use Cases
To characterize Hyrax cost and performance in the cloud, we identified several representative
use cases that could be tested across all three architectures based on common usage found in
Hyrax server logs from NASA DAACs. Initially, these use cases were designed to include two
configuration options of the OPeNDAP HDF handlers (Climate Forecast [Convention] (CF) and
default) and two versions of the DAP Protocol (DAP2 and DAP4). All options and protocols

Unrestricted Content

Page 16 of 43 EED2-TP-028, Rev. 01

could be tested in A1. As the other architectures were implemented, we focused on the use
cases using the CF configuration option of the HDF5 handler and DAP4 protocol because we
anticipate that will be the primary access path used by NASA data users.

Analysis of Hyrax Logs from NASA Data Centers
We collected Hyrax request logs from the Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC), Atmospheric Science Data Center at NASA Langley Research Cen-
ter (LaRC ASDC), National Snow and Ice Data Center (NSIDC), and Land Processes Distrib-
uted Active Archive Center (LP DAAC). In total, we collected logs of 18,409,186 user requests.
To protect user privacy the source institutions replaced the original internet protocol addresses
with anonymous hashed values. The ASDC log we received had the largest number of re-
quests, with more than 10 million records and LP DAAC had the smallest, with 500,000. Some
of our analysis of the logs was conducted using ElasticSearch and Kibana, other analyses were
conducted using custom code to decompose and group the logs in various ways.

The fields in these logs varied across the DAACs. In the union of the logs we found a total of 22
unique fields, yet the logs had only 4 fields in common. This precluded several informative anal-
yses we would have like to have made. For example, in the logs we received, only the NSIDC
log provided user-agent information which is crucial to understanding the behavior of both crawl-
ers/bots and of programmatic access clients. The time granularity varied quite a bit between the
logs also:

• NSIDC – 1 second
• LaRC ASDC – 1 second
• LP DAAC – 1 minute
• GSFC GES DISC – 1 day

which also makes access patterns difficult to discern.

Some interesting patterns emerged from the examination of these logs:

1. Web crawlers (‘bots) are clearly responsible for most traffic in the NSIDC log (the only logs

we had with user-agent field that allows the unambiguous identification of crawlers and ro-
bots). The ‘bot access is not limited to HTML and XML files. The ‘bots also make requests
for DAP data and metadata responses. These ‘bots made 3,196,153 of the 3,327,182 re-
quests in the NSIDC log, or roughly 96% of total accesses.

2. PyDAP and OC4.3.2 (netCDF library) are responsible for most the programmatic access at
NSIDC (NSIDC logs were the only ones with User-Agent information)

3. In some cases, programmatic access looks for a specific spatial subset of data from multiple
granules of the same product for different dates. This pattern was well represented in our
Use-Cases.

4. In some cases, we identified very inefficient sub-setting/request behaviors. For example,
one log showed that over 900,000 requests, each for a single value from a multi-dimen-
sional array were submitted to the server. The same data could have been retrieved using a
single request utilizing an OPeNDAP constraint expression to retrieve all of the values. Ex-
amining these behaviors in the context of logs with the additional user-agent information
would allow us to understand these patterns in detail.

Unrestricted Content

Page 17 of 43 EED2-TP-028, Rev. 01

Use Case Tags
To unambiguously track performance and cost for each use case we added a special URL
query parameter to each Hyrax request: cloudydap. This parameter was included in every DAP
request and passed on by the Hyrax server to every AWS S3 request it made. Such requests
were reported in S3 access logs, making it possible to connect each S3 request to the appropri-
ate client DAP request. The format of the cloudydap parameter values was:

cloudydap = {UseCase}_{Arch}_STARTED_{seconds-since-epoch}.h5

where:
• {UseCase} is the Use-Case identifier, e.g. UC1 for the Use-Case 1.
• {Arch} is the architecture identifier, e.g. A1CFT for A1 CF=True Hyrax server.
• seconds-since-epoch would be replaced with the output of a date +%s UNIX com-

mand (ex: 1485208202) which should be the same for every request in a specific run of
a collection of the Use-Cases.

Testing the Use-Cases
We created test scripts for each of the Use-Cases and ran these scripts weekly against the
three different architectures. While some scripts modeled individual accesses against single
granules, other scripts simulated the aggregation behavior of the Hyrax NetCDF Markup Lan-
guage (NcML) handler (which was not available with the proof-of-concept code) using the Hyrax
command line tool, Back End Server Command Line (bescmdln). The retrieval results were
compared with results for the same requests run locally on a Hyrax server at The HDF Group.

System Architectures

Overview
To understand performance and cost of serving data in AWS, we implemented and compared
three alternative architectures that differ in storage approach (complete granules vs. chunks)
and access approach (complete granules vs. parts of granules vs. complete chunks). The archi-
tectures are summarized in Table 7 below and described in detail in Appendix 1. The first ar-
chitecture is a baseline for estimating cost and performance. For the second and third architec-
tures, we compared cost and performance to the first architecture.

Unrestricted Content

Page 18 of 43 EED2-TP-028, Rev. 01

Table 7: Summary of storage and access approaches for the candidate architectures.

Architecture AWS Storage AWS Requests Extract Transform
& Load Process

A1: Entire gran-
ule

Object = Entire
granule

One HTTP GET request for
each requested granule. Last
granule accessed is cached.

Copy entire granule.

A2: HTTP range
request

Same as A1* One HTTP range GET re-
quest per chunk.

Same as A1.

A3: Object store Object = Contig-
uous variable or
one of its chunks

Same as A2. Shred granule into
contiguous variables
and chunks.

*If HDF5 File Content Maps are stored in S3, storage cost will be more than A1.

Architecture Notes
During this study, we have noted several characteristics/features that differentiate these archi-
tectures from one another. These are described briefly here.

Migrating Data to the Cloud
Data must be migrated from existing storage to the cloud to be served from the cloud and the
process used for this migration may impact ESDIS decisions so we describe it here. For A1 and
A2 the objects stored in S3 are complete granules so transferring these data to the cloud is pri-
marily a simple copy operation. We did this migration using a script that copies directory struc-
tures and files and creates an XML index file that emulates the original directory structure to
simplify access for direct users of the S3 repository.

A3 requires the original granules to be shredded into S3 objects where each object contains a
single variable (contiguous storage) or a single chunk of a variable. This requires knowing
where these chunks are in the original data granules, extracting them from the original granules,
transferring them to S3 and naming them. We chose to do this process from a remote source
(The HDF Group internal server) rather than from granules already in S3 to emulate the process
of a transfer from an existing DAAC. We wrote a tool that extracts information about chunk loca-
tions and sizes from DMR++ files and transferred the identified chunks to S3 as objects.

Naming Objects in the Cloud to Decrease Storage Costs
Many ESDIS data systems include elaborate schemes for naming data granules to support easy
user recognition of products and, in many cases, time periods. These names can be preserved
in the index files described above for A1 and A2, but the granules no longer exist in A3. As de-
scribed above, we created unique identifiers for each data element in anticipation of using those
identifiers as object identifiers but instead utilized the MD5 hashes to name the S3 objects uti-
lized in A3.

Unrestricted Content

Page 19 of 43 EED2-TP-028, Rev. 01

As we shredded granules into objects we discovered that many of the data objects had the
same MD5 checksums which indicates that they have identical content. (While MD5 may not be
perfect in this regard it was enough for this study) This means that we can save space by stor-
ing only one instance of each of those chunks. One might expect that the number of repeating
chunks would be small, but it turns out to be substantial in some situations. Our test data in-
cluded 365 granules of the AIRS3STD.006 (NASA, 2017) product from 2015. That variable in-
cluded four chunks that occurred more than 1000 times with the most common chunk occurring
49,640 times (136 times per granule). Eleven chunks occurred 365 times (once per granule). All
told, removing these repeating chunks decreased the storage from ~115 GB to ~81 GB (29%),
decreasing the number of S3 objects by 42%. In the MERRA 2 case, the size of repeating
chunks was much smaller, less than 1% of the total. These decreases will decrease storage
costs in a way that depends on specific characteristics of each variable.

Original HDF5 Granule Downloads
A1 and A2 preserve the original granules intact and, therefore, those original granules are avail-
able for download. This is not true for A3. Once a granule is shredded, it is not straightforward,
and probably not possible, to reconstruct the original granule file. However, data would be avail-
able in several formats including as a downloadable netCDF-4/HDF5 file by utilizing Hyrax’s
ability to transmit responses in multiple encodings.

EC2 Caching
We did not specifically explore the effect of EC2 caching (saving recently requested data on the
EBS storage of the EC2 instance) on performance, but we do have a common-sense observa-
tion. The EBS volume utilized by the EC2 instance must be large enough to accommodate at
least one of the largest granules for the service to work at all, and for caching to have much real
value the EBS volume should be large enough to accommodate many granules.

A1 is the only architecture that in this study not only employs but relies on caching. In this study,
a caching capability was not included in the proof of concept implementations of A2 and A3. In
Hyrax, A2 and A3 can be implemented to utilize caching in the future. In A1 when a DAP re-
quest is received, the server determines if the granule that contains the requested data is al-
ready in the cache and only retrieves it from S3 if it is not. This clearly improves the perfor-
mance of a series of requests against the same granule. These could be for different spa-
tial/temporal subsets from the granule or for different variables from the same granule. We lim-
ited the A1 cache size so that only a single granule could ever be held. Even then if multiple
DAP requests are received against the same granule, A1 will utilize the cached granule. For this
reason, many of the tests are carefully designed to not make consecutive requests from the
same granule to neutralize this caching effect in A1.

S3 Retrievals
In A1 the number of S3 requests required to generate a response is at most one, because of the
caching mentioned above. The number of S3 requests required in A2 and A3 depends on the

Unrestricted Content

Page 20 of 43 EED2-TP-028, Rev. 01

details of the data storage and the relationship of the requests to that storage. For example, if a
variable is stored contiguously, i.e. in one piece, then one request will always return the entire
variable. If the variable is in multiple chunks, then the number of S3 requests depends on the
relationship between the chunk layout and the requested area of interest. It will always be be-
tween one and the total number of chunks in the variable.

As stated previously, the proof-of-concept implementation of A2 and A3 do not utilize caching:
Multiple requests against the same variable in a granule result in multiple, redundant S3 trans-
fers.

Estimating Cost
Controlling costs incurred by using AWS Cloud services is very important for maintaining the
value over similar on-premises IT resources. Because AWS Cloud costs are determined solely
based on usage, active monitoring is a must regardless of the complexity of the system archi-
tecture implemented in the AWS Cloud. However, prior to implementation, a realistic cost model
of the AWS Cloud services and how they integrate into the system should guide the design pro-
cess to avoid unexpectedly high costs right from the start.

For this study, we relied on the AWS cost and usage reports to exactly find out which AWS
Cloud services were used and their prices. Usage modelling (DAP requests) was based on Hy-
rax logs obtained from several NASA DAACs.

Cost and Usage Information
Billing reports provide information about the costs related to using AWS Cloud resources. The
billing period is always one calendar month. Some types of billing reports can be provided dur-
ing a billing period but that information represents only estimates of the true costs. The final bill
is provided after the end of each billing period. Billing information can be presented in different
ways:

• Hourly, daily, or monthly
• Per account for multi-account users
• AWS product or product resource
• User-defined tags

There are several types of billing reports: AWS Usage Report, Detailed Billing Report, and AWS
Cost and Usage reports. Of those, only the AWS Usage Report is provided by default, as a
high-level aggregation of costs over entire billing period.

For this study, we opted to use the Detailed Hourly AWS Cost and Usage Report with Re-
sources and Tags. Reports of this type have the highest level of granularity both in time (per
hour) and AWS resources. Each unique combination of AWS product, its resource type, and op-
eration will produce a separate line in these reports for any fraction of an hour when used. For

Unrestricted Content

Page 21 of 43 EED2-TP-028, Rev. 01

example, the final January 2017 report has 15,814 entries of hourly cost and usage information,
each described with up to 73 columns in the table.

OPeNDAP Logs
OPeNDAP logs are standard web server log files in the Apache HTTPd Common Log Format.
Such files are produced by the web server that is part of the Hyrax server’s front-end for han-
dling incoming DAP requests. Producing these log files is a very common, practically required,
configuration setting for all web servers and because of that there are many software tools that
can parse such log entries.

The importance of OPeNDAP logs is that the information they contain about DAP requests is
the best source of information for something like this study:

• Type of DAP request (metadata or data).
• Granule that contains requested data.
• Variables in the granule that are being requested.
• What kind of constraint expressions (data sub-setting), if any, is being utilized. This infor-

mation is invaluable for more accurately estimating the number of S3 requests for A2
and A3

• Frequency of repeated access to same variables and granules.
• Amount of data returned as responses to DAP requests.

We have identified the information that should be available in these logs for maximum useful-
ness as the following:

• Date & Time (with time resolution of 1 second)
• Hashed Client internet protocol address (preferably with SHA2)
• Request (URL path + query string)
• Response Size
• Requester’s User Agent

Internet Protocol addresses in the log entries can be anonymized to protect requester privacy if
the anonymized values can still be unambiguously differentiated for their original values. Anony-
mizing the user-agent field (which may be something desired by a provider of the log files) ren-
ders the value of the user-agent field nearly worthless for analysis. The file can still be used to
identify patterns of access using the user-agent hash, but it eliminates the possibility of linking
the patterns to specific software. In addition, an anonymized user-agent field means that identi-
fying which requests are being made by robots, crawlers, or directed programmatic data access
must be done using inference.

Cost Model
Costs fall neatly into two general categories: fixed and dynamic. Fixed costs are generally appli-
cable to all three architectures while dynamic costs are related to the specific architecture.

Unrestricted Content

Page 22 of 43 EED2-TP-028, Rev. 01

Examples of fixed costs are:
• Data storage in S3
• AWS outbound data resulting from running Use-Cases
• EC2 instance(s)

Examples of dynamic costs are:
• The number of S3 requests made by the Hyrax server.
• The data flow between the S3 bucket and the Hyrax server if they are not located in the

same AWS region.

Not considered in the cost modeling are:
• EC2 instance type for the Hyrax server.
• How many Hyrax servers to run at any one time.
• Other types of data storage available in AWS, like Glacier or S3 Infrequent Access.
• Usage of any other AWS services that could make the proposed architectures more effi-

cient or robust, like Lambda, Amazon Simple Notification Service, etc.

The common configuration for all three architectures were:
• One EC2 instance of the same type for the Hyrax server.
• Sample HDF5 data stored in S3.
• Both the EC2 instance and the S3 bucket with sample data are in the same AWS region.

In addition to the fixed costs of staging data in S3 and running Hyrax as an EC2 instance, all
other usage costs stem from user DAP requests. Ability to model them appropriately is crucial
for estimating realistic total costs. Properties of user DAP requests of interest for modeling costs
are:

• type (metadata, data),
• if a data request:

o sub-setting, or
o aggregation, or
o file download;

• source data granules(s).

Study Results

Architecture 1

Performance
The performance of A1 varies depending on two factors: complete granule size, and EC2 cach-
ing. The complete granule size affects the performance because A1 must copy the entire gran-
ule from S3 to EC2 before Hyrax can service the request. Figure 1 shows the S3 response
times for A1. Each dot shows the total response time vs. the number of bytes sent for a single

Unrestricted Content

Page 23 of 43 EED2-TP-028, Rev. 01

granule transfer. The data are divided into three groups depending on granule size. The
MERRA2 granules are in the two groups on the left as they have two sizes (~112 and ~193
MB). Their transfer times are mostly between 1.2 and 8 seconds with a few up to 20 seconds.
The AIRS granules make up the group on the right as they are significantly larger (300-320 MB)
and their transfer times are mostly in the range from 4 to 24 seconds. Two AIRS transfers that
are not unusual in terms of granule size took well over a minute to complete. Through the test-
ing, we have seen S3 operate such that most requests are relatively quick, 4 seconds in the
AIRS example. But frequently and without an identifiable pattern an identical request took many
times longer. This variation appears to be an S3 issue and is beyond the scope of this work to
diagnose.

Figure 1: Architecture 1 (All Use Cases).

A1 caches granules on EC2 because it utilizes the regular Hyrax data handlers (the hdf4_han-
dler in this study) to service the request. Once the granule has been copied to the EC2 instance,
Hyrax works on it like any other granule. We sized the cache for our A1 instance so that it would
only hold a single granule to minimize unwanted caching effects. Regardless, if the A1 code re-
ceives 3 consecutive DMR requests for the same HDF5 granule on S3, DMR output generation
time drops significantly for the second and third requests due to cache effect (Figure 2). A1
data access is roughly twice as fast as data access with A2 and A3 when the requested HDF5
granule is resident in the Hyrax cache (on EC2) at the time the request is received. In general,
we structured our tests to avoid making multiple consecutive requests for data from the same
granule to eliminate this cache effect.

Unrestricted Content

Page 24 of 43 EED2-TP-028, Rev. 01

Figure 2: The effect of cached data on the performance of Architecture 1.

Cost
Table 8 shows the detailed cost data for A1 as reported in the hourly AWS cost and usage re-
ports for one complete run of all the Use-Cases.

Table 8: Breakdown of reported AWS costs for Architecture 1.
AWS Service Usage Type Operation Cost (US$)
AmazonEC2 BoxUsage:m4.xlarge RunInstances 12.7

DataTransfer-In-Bytes RunInstances 0.00
DataTransfer-Out-Bytes RunInstances 0.00
DataTransfer-Regional-Bytes PublicIP-In 0.00

PublicIP-Out 0.000872
EBS:SnapshotUsage CreateSnapshot 0.065
EBS:VolumeUsage.gp2 CreateVolume-

Gp2
0.821

EBSOptimized:m4.xlarge Hourly 0.00

AmazonS3 DataTransfer-Out-Bytes GetObject 0.00
Requests-Tier1 ListBucketVersions 0.0275

PutObject 0.00005
Requests-Tier2 GetObject 0.00788

HeadBucket 0.000258
ReadACL 0.0000016

TimedStorage-ByteHrs StandardStorage 0.095
USE1-USW2-AWS-Out-Bytes GetObject 0.000272

HeadBucket 0.00000522
ListBucketVersions 0.0422

awskms us-east-1-KMS-Requests ListAliases 0.00

Unrestricted Content

Page 25 of 43 EED2-TP-028, Rev. 01

The total cost was $13.75, as reported in 437 entries over a 19-hour-long period. The largest
cost comes from running the EC2 instance for the Hyrax server (92.29%) and its EBS volume
(5.98%). Since these are the most expensive AWS services, the longer run time of the Use-
Cases is the direct driver for these costs. The cost of S3 data storage is only 0.69% of the total
cost, while the cost of Hyrax’s S3 requests for HDF5 granules is at 0.06%.

Architecture 2

Performance
 There are two major functional differences between A1 and A2:

1. The number of bytes transferred between S3 and the Hyrax server on EC2. In A2 (and
A3), the transfer size is the sum of sizes of the chunks required to fulfill the data re-
quest. A2 data requests returned between 217 and 831,744 bytes compared to an aver-
age granule size of 210,308,700 bytes in A1.

2. The number of S3 requests made by Hyrax to retrieve the data from S3. In A1 Hyrax
makes a single HTTP GET request to retrieve the granule. In A2 retrieving 1 MERRA2
variable composed of 16 chunks causes 16 GET requests to be issued to S3. Request-
ing all of the variables in a MERRA2 granule from A2 (or A3) results in the server issu-
ing 3107 GET requests to S3. Similarly, for the AIRS data, although the AIRS variables
we examined have 8 chunks.

The performance of A2 is also much better than A1 when small single variable data requests
involve subsets across many granules. For example, in use-case 6 where we subset one data
point from each granule and aggregate each point over time from hundreds of granules, A2 per-
forms 4 to 30 times faster than A1 (Figure 3).
This performance advantage disappears quickly as the number of requested variables in-
creases. The MERRA2 granule contains 197 variables. Asking for 16 of them caused A2 to take
twice as long as A1 to service the request and A3 took 3 times longer. Doing the same with 30
AIRS variables (of the 777 in the granule) caused A2 to respond in 1.7 times the time of A1 and
A3 responded in 2.8 times the time of A1.

Unrestricted Content

Page 26 of 43 EED2-TP-028, Rev. 01

Figure 3: The cumulative effect of performance gain: transferring whole HDF5 granule vs. HDF5 chunks

per data subset request

The size of the data transfers in A2 and A3 is small enough (<1MB) that the performance is im-
pacted by S3 start-up time rather than the transfer time. Figure 4 shows that for most cases, the
S3 turnaround time is > 90% of the total time.

Figure 4: Architecture 2 (All Use Cases)

Unrestricted Content

Page 27 of 43 EED2-TP-028, Rev. 01

Cost
Table 9 holds the cost data as reported in the detailed hourly AWS cost and usage reports for
one complete run of all the Use-Cases.

Table 9: Breakdown of reported AWS costs for Architecture 2 and all Use-Cases.
AWS Service Usage Type Operation Cost (US$)
AmazonEC2 BoxUsage:m4.xlarge RunInstances 1.72

DataTransfer-In-Bytes RunInstances 0.00
DataTransfer-Out-Bytes RunInstances 0.00
DataTransfer-Regional-Bytes PublicIP-In 0.00

PublicIP-Out 0.00133
AmazonS3 Requests-Tier1 ListBucketVersions 0.00257

Requests-Tier2 GetObject 0.0149
HeadBucket 0.0000248

TimedStorage-ByteHrs StandardStorage 0.0101
USE1-USW2-AWS-Out-Bytes GetObject 0.000134

HeadBucket 0.00000051
ListBucketVersions 0.00395

The total cost was $1.75, as reported in 39 entries over a two-hour-long period. The largest cost
comes from running the EC2 instance for the Hyrax server at 98.12% of the total. The small to-
tal cost for this architecture is largely due to only requiring two billable hours to complete all the
Use-Cases. The cost of S3 data storage is only 0.46% of the total cost, while the cost of Hyrax’s
S3 requests for HDF5 granules is at 0.79%.

Architecture 3

Performance
The performance of A3 is similar to the performance A2. When the request only accesses a sin-
gle chunk of a single variable in each granule, such as in Use-Case 6 which retrieves a single
pixel from each granule, A3 performs slightly better than A2. If several chunks are involved,
such as in Use-Case 11 which retrieves an entire variable, it performs slightly worse than A2
(Figure 5). A3 suffers, as A2 does, when the number requested variables increase, and in fact
A3 is consistently the worst performing of the three architectures for requests involving many
variables (Use-Case 18 and 19) and when all the variables are requested (Use-Case 20 and
21).

Unrestricted Content

Page 28 of 43 EED2-TP-028, Rev. 01

Figure 5: Subset and aggregation performance of Architecture 2 and Architecture 3

depends on the number of chunks involved.

Cost
Table 10 holds the cost data as reported in the detailed hourly AWS cost and usage reports for
one complete run of all the Use-Cases.

Table 10: Breakdown of reported AWS costs for Architecture 3 and all Use-Cases.
AWS Service Usage Type Operation Cost (US$)
AmazonEC2 BoxUsage:m4.xlarge RunInstances 1.72

DataTransfer-In-Bytes RunInstances 0.00
DataTransfer-Out-Bytes RunInstances 0.00
DataTransfer-Regional-Bytes PublicIP-In 0.00133

PublicIP-Out 0.00133
USE1-USW2-AWS-In-Bytes PublicIP-In 0.00
USE1-USW2-AWS-Out-Bytes PublicIP-Out 0.00

AmazonS3 Requests-Tier1 ListBucketVersions 0.00327
Requests-Tier2 GetObject 0.0138

HeadBucket 0.0000236
TimedStorage-ByteHrs StandardStorage 0.00806
USE1-USW2-AWS-Out-Bytes GetObject 0.000124

HeadBucket 0.00000048
ListBucketVersions 0.00502

The total cost was $1.75, as reported in 43 entries over a two-hour-long period. The largest cost
comes from running the EC2 instance for the Hyrax server at 98.12% of the total. The small total
cost for this architecture is largely due to only requiring two billable hours to complete all the
Use-Cases. The cost of S3 data storage is now 0.46% of the total cost, while the cost of Hyrax’s
S3 requests for HDF5 granules is at 0.79%.

Unrestricted Content

Page 29 of 43 EED2-TP-028, Rev. 01

Appendix 1. Overview of System Components

Background
Thanks to the range-get support in HTTP/1.1, it is possible to subset HDF5 data using typical
web servers such as Apache Tomcat or HTTPD without relying on Hyrax. The caveat is that the
HTTP client should know precisely what ranges of bytes should be requested and how to cor-
rectly interpret the chunk returned from the HDF5 granule on web server. Such operations are
typically done by HDF5 library internally but HDF5 library operation is limited to POSIX-based
local files only.

DAP Protocol
The OPeNDAP Data Access Protocol (DAP) is a data transmission protocol designed specifi-
cally for science data. The protocol relies on the widely used and stable HTTP and Multipurpose
Internet Mail Extensions (MIME) standards, and provides data types to accommodate gridded
data, relational data, and time series, as well as allowing users to define their own data types.
The DAP has been in use since 1995 and is a NASA Community Standard.

Hyrax Server
Hyrax is OPeNDAP Inc.’s implementation of a DAP server. Hyrax is two-tiered system with a
public facing front end application (the OPeNDAP Lightweight Frontend Service, OLFS) and a
private facing back end application (the Back End Server, BES) that handles all of the data ac-
cess and heavy lifting for the server. The OLFS is implemented as a Java servlet which is typi-
cally deployed in Apache Tomcat. The OLFS looks at each request and formulates a query to
the BES which handles reading data from the data stores and returning DAP-compliant re-
sponses to the OLFS. In turn, the OLFS may pass these responses back to the requestor with
little or no modification or it may use them to build more complex responses. The nature of the
inter-process communication (IPC) between the OLFS and BES is such that they should both
be on the same computer or be able to communicate over a very high bandwidth channel.

HDF5 Library
HDF5 is a data model, several code libraries, and file format for storing and managing data. It
supports an unlimited variety of data types, and is designed for flexible and efficient input and
output of high volume and complex data. HDF5 is portable and extensible, allowing applications
to evolve in their use of HDF5.

HDF5 has found widespread use in many scientific and engineering applications that deal with
multidimensional numerical arrays. It is a de facto standard for storing data in Earth Science,
synchrotron and particle physics, and high performance computing centers around the world.

Unrestricted Content

Page 30 of 43 EED2-TP-028, Rev. 01

The most important elements of the HDF5 data model are: Groups, Datasets, and Attributes.
(Note: In this document, we use the term variable to refer to the HDF Dataset) Groups establish
hierarchical relationships among other HDF5 objects much like folders/directories in a file sys-
tem. Datasets are the main data payload object. They typically represent multidimensional ar-
rays of elements of the same data type. Attributes also carry data and have the same size limi-
tations as Datasets. However, their role is to hold data that provide the context (self-description)
for the data in the Groups and Datasets.

One feature of HDF5 variables that is important to this study is their storage layout. There are
three different ways that the elements belonging to one HDF5 variable can be stored in an
HDF5 granule file:
1. contiguous – all variable elements are physically adjacent to each other in one block;
2. chunked – variable elements are stored throughout the granule file in equal-sized chunks of

a pre-defined size (as illustrated by Figure A1-1);
3. compact – variable elements are stored contiguously in the variable’s object header.

The compact storage arrangement is applicable only to HDF5 variables smaller than 64 kilo-
bytes and is therefore seldom used.

Chunked storage is required for HDF5 variables which can have their size altered with new data
(extendable) or which have one or more unlimited dimensions. Using this layout can greatly im-
prove performance for large variables because only the chunks with data of interest need to be
read or written. However, selecting the chunk size without considering read/write access pat-
terns may also cause seriously poor performance.

With a chunking layout, it is possible to process each chunk’s data on their way to the granule
file (write operation) and apply the reverse processing on the same chunk’s data on their way
from the granule file (read operation). This is the task for HDF5 filters and the HDF5 library has
several built-in. It is possible also to supply third-party filters. Typically, filters are used to reduce
the size of the stored data in the granule file (compression), or to scale the values according to

Figure A1-1: Diagram of contiguous and chunked variable layout. Contiguous storage holds multiple array rows in a
contiguous region of the disc. Chunked storage breaks arrays into multi-dimensions blocks, each stored contiguously.

Unrestricted Content

Page 31 of 43 EED2-TP-028, Rev. 01

a formula. The HDF5 library automatically handles invocation of selected filters in correct order
for both read and write operations.

Amazon Web Services (AWS)
Amazon Web Services (AWS) is a subsidiary of Amazon.com launched in 2006. AWS offers an
ever-growing suite of Internet-accessible services that enable utilization of on-demand compu-
ting systems. These systems are commonly referred to as cloud computing. Cloud computing
enables access to various IT resources (compute power, storage, database, etc.) with the cost
based entirely on usage (pay-as-you-go pricing). This new approach to procuring IT resources
was largely enabled by the advances in virtualization (ability to host several virtual computers
independently on a single physical computer hardware), continuous decline in data storage
hardware cost, and general availability of faster networking and Internet access.

Architecting computer systems based on cloud computing can help lower the cost of providing
and managing comparable on-premises computing resources, and dramatically improve respon-
siveness to changing processing demands. By aggregating usage from many customers, cloud
providers can achieve higher economies of scale on their IT resources than any individual cus-
tomer. The savings are further possible by utilizing cloud services only when required, thus scal-
ing cloud-computing resources in sync with the need.

AWS is available from sixteen global Regions. The Regions are physical locations distributed
globally in proximity to major IT markets. Each Region has several Availability Zones (AZ), 42 in
total. Availability Zones consists of one or more discrete data centers with physical computing
hardware and supported by redundant power, networking, and connectivity.

AWS currently offers a wide range of services from basic (compute, storage, hosted relational
databases) to very sophisticated, e.g. preconfigured computing frameworks for analytics (Spark,
MapReduce), artificial intelligence/machine learning, or Internet-of-Things (IoT).

What follows are brief introductions of the AWS services relevant for this report.

Amazon Elastic Compute Cloud (EC2)
Amazon EC2 is a service for providing compute resources in AWS. These computing resources
are in the form of virtual computers (EC2 instances) available in a variety of operating systems,
type and number of CPUs, and memory capacity. It is also possible to create customized tem-
plates, called Amazon Machine Images (AMI), and procure EC2 instances based on them to
have a number of servers running with pre-installed software and data in the exactly the same
manner.

There are many EC2 instance categories, optimized for a range of specific tasks: high perfor-
mance computing (HPC) clusters, high data input/output, massive floating-point processing ca-
pacity (graphics processing unit (GPU) Compute and GPU Graphics instances), etc.

Unrestricted Content

Page 32 of 43 EED2-TP-028, Rev. 01

The OPeNDAP Hyrax servers for this study were run as EC2 instances.

Amazon Elastic Block Store (EBS)
Amazon EBS furnishes persistent block storage volumes for EC2 instances in the AWS Cloud.
One EBS volume can belong only to one EC2 instance. Although some higher end EC2 in-
stances do come with local block volumes, called instance storage, EBS volumes are the only
way to provide file system-like data storage for most of the default EC2 instances. It is also one
option for preserving any data after EC2 instances are shut down. EBS volumes can have their
size changed on-the-fly and support point-in-time backups. These EBS snapshot backups can
be used by other EC2 instances.

EBS volumes come in two general types: solid state drive (SSD) and hard disk drive (HDD), and
each offer a few subtypes optimized for throughput or general use. Every EBS volume is auto-
matically replicated within its Availability Zone for increased reliability and data protection.

Amazon Elastic File System (EFS)
Amazon EFS is a service for providing data storage for EC2 instances with a standard file sys-
tem interface (POSIX). EFS’s functionality is akin to network-shared file storage (NFS) in on-
premises computer systems. Storage capacity scales automatically so the charges are related
to only capacity that is actually being used at hourly sampling. EFS storage is shareable among
EC2 instances and is one approach for establishing common data sharing for applications that
may run on multiple EC2 instances.

It is also possible to connect Amazon EFS with on-premises servers as a mean of migrating
data or backing up data to the AWS Cloud.

Amazon Simple Storage Service (S3)
Amazon S3 provides object storage service for the AWS Cloud. This storage architecture differs
from Amazon EBS and EFS as data are managed as objects associated with unique identifiers
within a collection. Amazon S3 refers to such collections of data objects as buckets. There are
no limits for the number of objects in one bucket, and each object can be up to 5 terabytes in
size.

In traditional file systems, data is stored in files within a hierarchy of folders/directories. Object
storage on the other hand has no hierarchy; each object is accessed by its unique identifier,
known as the key. Thus, object storage can be viewed as an application of associative arrays to
data storage.

Amazon S3 implements a Representational state transfer (RESTful) Application Programmer
Interface (API) for object access, which is another difference from the file system interfaces.
This allows it to be used as a serverless data web storage, enabling any application that
“speaks” HTTP protocol to directly and easily access its objects.

Unrestricted Content

Page 33 of 43 EED2-TP-028, Rev. 01

Amazon S3 is designed to be massively scalable and with high level of data durability (stated:
99.999999999%). Its price is aimed at making it an AWS storage service that is economical for
storing large amounts of data and accessing them efficiently whenever required. There is also a
lower-priced service tier called S3 Standard - Infrequent Access aimed at storing infrequently
accessed data. S3 buckets can be configured to automatically migrate objects to the S3 Infre-
quent Access storage.

Unrestricted Content

Page 34 of 43 EED2-TP-028, Rev. 01

Appendix 2: Architecture Details

Architecture 1: Baseline
The most straightforward way to serve HDF5 data from S3 using Hyrax is simply to use S3 as a
granule storage device and copy entire granules required to service a data request from S3 to
the EC2 instance that receives the data request (see Figure A2-1). Once the granule is trans-
ferred, Hyrax serves HDF5 data as usual from local storage using the Hyrax’s HDF5 handler.
This architecture also includes an XML index file, similar to a THREDDS catalog, that maps the
physical data storage to a user interface and includes some access and service related
metadata. In addition, retrieved granules are cached on the EC2 instance’s local storage (EBS
Cache in Figure A2-1) and accessed without redundant transfers from S3 to EC2. OPeNDAP
initially developed this baseline architecture several years ago with support from the National
Oceanic and Atmospheric Administration (NOAA). We adopted it as a baseline for this study be-
cause the code was available and functional and it allowed us to establish a baseline quickly.

Figure A2-1: Diagram of Architecture 1 in which complete files are stored in Amazon S3 and retrieved as a single ob-
ject. Once retrieved, multiple OPeNDAP requests for data in each file can be serviced without copying the file again.

Unrestricted Content

Page 35 of 43 EED2-TP-028, Rev. 01

Architecture 2: Files with HTTP Range GETs
A2 is identical to A1 in terms of data storage, i.e. entire granules are stored as objects, but dif-
fers in the access and retrieval approach. An important capability of Hyrax allows users to re-
quest subsets of granules using constraint expressions in the query string of OPeNDAP URLs.
When Hyrax is serving data from the local filesystem the HDF handler translates the user re-
quest into the minimal series of file seeks and reads that are required to satisfy the request. This
decreases the amount of unnecessary data retrieved and transferred to the user and simplifies
many data management tasks on the user side.

The S3 HTTP interface allows the retrieval of partial objects data using the HTTP/1.1 Accept-
Ranges request. In this case, the request includes the size and offset of the desired data along
with an object identifier and only that data is retrieved and transferred from S3 to EC2.

A2 takes advantage of the Range GET capability (see Figure A2-2) by translating the DAP re-
quest into a series of range-gets required to fulfill the request. This approach minimizes the
amount of data transferred between S3 and EC2 as Hyrax does not have to transfer the entire
HDF5 from S3 as shown in A1.

The maximum number of S3 requests that the server will make is the number of chunks in each
of the requested variables. For contiguous storage layout case, it will be 1. If some chunks are
consecutive (e.g., chunk 1 ends at 10 and chunk 2 begins at 11), the number of requests can be
reduced when data request involved consecutive chunks.

Unrestricted Content

Page 36 of 43 EED2-TP-028, Rev. 01

Figure A2-2: Diagram of Architecture 2 in which complete files are stored in S3 and OPeNDAP requests against
those files are serviced by retrieving blocks of bytes from a known location in the file. These retrievals are termed

range-gets. Their locations are stored in an external index.

Architecture 3: Shredded HDF5 Files
The third architecture we explored is closest to the actual object store concept in that we “shred”
the original granule files into individual objects that are the contiguous variables or chunks in the
original granule (see Figure A2-3). The md5 checksums added to the DMR representation (de-
scribed above) are used as unique identifiers (keys) for each object. In this case, the Hyrax
server access a series of objects required to service a user request in exactly the same way as
they are accessed in a granule. Instead of utilizing a filesystem to seek to an offset position in a
file and read the bytes in order to retrieve data, the software makes an HTTP request for the
same data using the md5 checksum recorded in the DMR++ file.

Unrestricted Content

Page 37 of 43 EED2-TP-028, Rev. 01

Figure A2-3: Diagram of Architecture 3 in which files are split into multiple pieces (shards) and those shards are

stored in S3. OPeNDAP requests are serviced by copying requested shards directly from S3. In this case,
the original data are preserved as shards, but the original files are not preserved.

Unrestricted Content

Page 38 of 43 EED2-TP-028, Rev. 01

Appendix 3. Use Case Description

Use-
Case

Tag

Description

1 n/a Access the CF-enabled DAP2 Hyrax Dataset Descriptor Structure (DDS),
Dataset Attribute Structure (DAS) and Data responses (.das, .dds, .dods).

2 UC2_A1CFT,
UC2_A2CFT,
UC2_A3CFT

Access the CF-enabled DAP4 Hyrax DMR and Data responses (.dmr,
.dap).

3 n/a Access the default DAP2 Hyrax DDS, DAS and Data responses (.das,
.dds, .dods).

4 n/a Access the default DAP4 Hyrax DMR and Data responses (.dmr, .dap).
5 n/a

Get netCDF-4 files with the CF-enabled DAP2 Hyrax FileOut netCDF re-
sponses (.nc4).

6 UC6_A1CFT,
UC6_A2CFT,
UC6_A3CFT

This test emulates a subset request for the MERRA2 aggregation in which
a single value is retrieved from every aggregation member granule. Nomi-
nal client query: PRECCU[0:1:0][180:1:180][288:1:288]

7 UC7_A1CFT,
UC7_A2CFT,
UC7_A3CFT

This test emulates a subset request for the AIRS aggregation in which a
single value is retrieved from every aggregation member granule. Nominal
client query: Temperature_A[0][0][0]

8 n/a Access the CF-enabled DAP2 Hyrax DDS, DAS and Data responses of an
HDF5 granule with contiguous storage (.das, .dds, .dods).

9 n/a Access the CF-enabled DAP4 Hyrax DMR and Data responses of an
HDF5 granule with contiguous storage.

10 UC10_A1CFT,
UC10_A2CFT,
UC10_A3CFT

This test emulates a subset request for the AIRS aggregation in which a
3x6x21 pixel area is retrieved from every aggregation member granule. In
this test the location of the area was chosen such that 2 of the 8
chunks of the variable are required to formulate the response. Nominal cli-
ent query: Temperature_A[13:1:15][40:1:45][175:1:195]

11 UC11_A1CFT,
UC11_A2CFT,
UC11_A3CFT

This test emulates a subset request for the AIRS aggregation in which the
requested variable is decimated for every aggregation member granule.
Nominal client query: Temperature_A[0:8:23][0:15:179][0:15:359]

12 UC12_A1CFT,
UC12_A2CFT,
UC12_A3CFT

This test emulates a subset request for the MERRA2 aggregation in which
a 41x51 pixel area is retrieved from every aggregation member granule. In
this test the location of the area was chosen such that 4 of the 16
chunks of the variable are required to formulate the response. Nominal cli-
ent query: PRECCU[0:1:0][160:1:200][245:1:295]

13 UC13_A1CFT,
UC13_A2CFT,
UC13_A3CFT

This test emulates a subset request for the MERRA aggregation in which
the requested variable is decimated for every aggregation member gran-
ule. Nominal client query: PRECCU[0:1:0][0:60:360][0:8:575]

Unrestricted Content

Page 39 of 43 EED2-TP-028, Rev. 01

14 UC14_A1CFT,
UC14_A2CFT,
UC14_A3CFT

This test emulates a subset request for the MERRA2 aggregation in which
a 40x50 pixel area chosen at random from the target array and is then re-
trieved from every aggregation member granule. This is repeated 50
times with a new subset area chosen each time. Nominal client query:
PRECCU[0][160:1:199][245:1:294]

15 UC15_A1CFT,
UC15_A2CFT,
UC15_A3CFT

This test emulates a subset request for the AIRS aggregation in which a
40x50 pixel area chosen at random from the target array and is then re-
trieved from every aggregation member granule. This is repeated 50
times with a new subset area chosen each time. Nominal client query:
Temperature_A[0:8:23][0:1:39][0:1:49]

16 UC16_A1CFT,
UC16_A2CFT,
UC16_A3CFT

In this test a 40x50 pixel subset request for the MERRA2 aggregation is
placed at a random location the target array and retrieved from the granule
file. Each granulein the list is accessed with a different subset location.
Nominal client query: PRECCU[0][160:1:199][245:1:294]

17 UC17_A1CFT,
UC17_A2CFT,
UC17_A3CFT

In this test a 40x50 pixel subset request for the AIRS aggregation is placed
at a random location the target array and retrieved from the granule file.
Each granule in the list is accessed with a different subset location. Nomi-
nal client query: Temperature_A[0:8:23][0:1:39][0:1:49]

18 UC18_A1CFT,
UC18_A2CFT,
UC18_A3CFT

 This test requests 17 decimated variables from 100 MERRA2 granules
used in the aggregation tests. Nominal variable subset looks like:
PRECCU[0][0:60:360][0:8:575]

19 UC19_A1CFT,
UC19_A2CFT,
UC19_A3CFT

This test requests 30 decimated variables from 100 of the AIRS granules
used in the aggregation tests. Nominal variable subset looks like: Temper-
ature_A[0:8:23][0:15:179][0:15:359]

20 UC20_A1CFT,
UC20_A2CFT,
UC20_A3CFT

This test requests every variable (197 in all) from 100 of the MERRA2
granules used in the aggregation tests. There is no query string submitted
with this test.

21 UC21_A1CFT,
UC21_A2CFT,
UC21_A3CFT

This test requests every variable (777 in all) from 100 of the AIRS gran-
ules used in the aggregation tests. There is no query string submitted with
this test.

Unrestricted Content

Page 40 of 43 EED2-TP-028, Rev. 01

References
Globus. (2017, 03 07). Research Data Management Simplified. Retrieved from Globus:

https://www.globus.org/
NASA. (2017, 3 9). AIRS3STD: AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1

degree x 1 degree V006. Retrieved from NASA GES DISC:
https://disc.sci.gsfc.nasa.gov/uui/datasets/AIRS3STD_V006/summary?keywords=%22AI
RS%22

NOAA. (2017, 03 07). Access Data. Retrieved from NOAA:
https://www.nodc.noaa.gov/access/services.html

OPeNDAP, Inc. (2007, 03 07). The Data Access Protocol: DAP Version 4.0. Retrieved from
OPeNDAP Documentation:
http://docs.opendap.org/index.php/DAP4:_Specification_Volume_1#Characterization_of
_a_Data_Source

The HDF Group. (2017, 03 07). HDF4 Mapping Project. Retrieved from The HDF Group
Support Website: https://support.hdfgroup.org/projects/h4map/

Unidata. (2017, 03 07). Unidata | THREDDS Data Server. Retrieved from Unidata:
http://www.unidata.ucar.edu/software/thredds/current/tds/

Unrestricted Content

Page 41 of 43 EED2-TP-028, Rev. 01

Glossary

AWS Amazon Web Services are reliable, scalable, and inexpensive cloud computing

services that allow users to pay for what they use.

Deflate A lossless data compression algorithm that uses a combination of the LZ77 al-
gorithm and Huffman coding

DMR Dataset Metadata Response is an XML representation of OPeNDAP resource.

DMR++ Dataset Metadata Response with additional offset/length information for each
variable.

EBS The Amazon Elastic Block Store is the storage file system used by an Amazon
EC2 instance. EBS is one of the more expensive AWS storage systems

EC2 Amazon Elastic Compute Cloud is a web service that provides secure, resiza-
ble compute capacity in the cloud that allows users to run their applications like
Hyrax server.

Hyrax The next generation server from OPeNDAP

Kibana A web-based analysis platform typically used with ElasticSearch
(https://www.elastic.co/products/kibana)

LZ77 Lossless data compression algorithm published in a paper by Abraham Lempel
and Jacob Ziv in 1977

MD5 Message Digest 5 is a hash function algorithm that produces 128-bit hash
value.

NcML NetCDF Markup Language is an XML representation of netCDF metadata.

netCDF-4 Network Common Data Form version 4 is a file format based on HDF5.

NSIDC National Snow and Ice Data Center – A NASA DAAC for cryospheric data.

S3 The AWS Simple Storage Service is an object store that utilizes an HTTP inter-
face to add and retrieve digital objects from a user defined “bucket”. S3 is one
of the cheapest AWS storage system and trades performance for cost (like
most AWS services).

SHA2 The Secure Hash Algorithm 2. It is a set of cryptographic hash functions de-
signed by the National Security Agency (NSA). Cryptographic hash functions
are mathematical operations run on digital data; by comparing the computed
"hash" (the output from execution of the algorithm) to a known and expected
hash value, a person can determine the data's integrity.

Shuffle An HDF5 library filter that exploits the fact that, for many array variables, most
of the entropy occurs in only a few byes of the elements’ values.

https://www.elastic.co/products/kibana)

Unrestricted Content

Page 42 of 43 EED2-TP-028, Rev. 01

Acronyms

AIRS Atmospheric InfaRed Sounder

API Application Programmer Interface
AWS Amazon Web Services

BES Back End Server

BESCMDLN Back End Server Command Line

CF Climate Forecast [Convention]

DAAC Distributed Active Archive Center

DAP Data Access Protocol

DAS Dataset Attribute Structure

DDS Dataset Descriptor Structure

DMR Dataset Metadata Response

EBS Elastic Block Store

EC2 Elastic Compute Cloud

EFS Elastic File System

GES DISC Goddard Earth Sciences Data and Information Services Center

GB Gigabyte

GPU Graphics processing unit

HDF Hierarchical Data Format

HTTP HyperText Transfer Protocol

IoT Internet-of-Things

IP Internet Protocol [Address]

IPC Inter-process communication

LaRC ASDC Atmospheric Science Data Center at NASA Langley Research Center

LP DAAC Land Processes Distributed Active Archive Center

MD5 Message Digest 5

MERRA2 Modern-Era Retrospective analysis for Research and Applications Version 2

MIME Multipurpose Internet Mail Extensions

NcML NetCDF Markup Language

netCDF-4 Network Common Data Form version 4

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

NSIDC National Snow and Ice Data Center

Unrestricted Content

Page 43 of 43 EED2-TP-028, Rev. 01

OLFS OPeNDAP Lightweight Frontend Service

OPeNDAP The Open-source Project for a Network Data Access Protocol

RESTful Representational state transfer

S3 Simple Storage Service

SHA2 Secure Hash Algorithm 2

THG The HDF Group

THREDDS Thematic Real-time Environmental Distributed Data Services

URL Universal Resource Locator

UUID Universally Unique Identifier

XML eXtensible Markup Language

	Study Goals and Summary
	Introduction
	Objectives
	Terms
	Assumptions
	Findings and Recommendations
	Recommended Activities
	Performance Comparison of the Three Architectures
	Cost Comparison of the Three Architectures
	Performance-Driven Context
	Performance-Agnostic Context

	Study Methodology
	Sample Data Collections
	HDF5 File Content Map - Index Files
	Use Cases
	Analysis of Hyrax Logs from NASA Data Centers
	Use Case Tags
	Testing the Use-Cases

	System Architectures
	Overview
	Architecture Notes
	Migrating Data to the Cloud
	Naming Objects in the Cloud to Decrease Storage Costs
	Original HDF5 Granule Downloads
	EC2 Caching
	S3 Retrievals

	Estimating Cost
	Cost and Usage Information
	OPeNDAP Logs
	Cost Model

	Study Results
	Architecture 1
	Performance
	Cost

	Architecture 2
	Performance
	Cost

	Architecture 3
	Performance
	Cost

	Appendix 1. Overview of System Components
	Background
	DAP Protocol
	Hyrax Server
	HDF5 Library
	Amazon Web Services (AWS)
	Amazon Elastic Compute Cloud (EC2)
	Amazon Elastic Block Store (EBS)
	Amazon Elastic File System (EFS)
	Amazon Simple Storage Service (S3)

	Appendix 2: Architecture Details
	Architecture 1: Baseline
	Architecture 2: Files with HTTP Range GETs
	Architecture 3: Shredded HDF5 Files

	Appendix 3. Use Case Description
	References
	Glossary
	Acronyms

