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Abstract

This paper identifies the unsteady aerodynamic forces and moments for 
a typical section contained in the NACA Report No. 496, “General Theory 
of Aerodynamic Instability and the Mechanism of Flutter,” by Theodore 
Theodorsen. These quantities are named Theodorsen’s aerodynamic 
forces (TAFs). The TAFs are compared to the generalized aerodynamic 
forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach 
number computed by the doublet lattice method. Agreement between TAFs 
and GAFs is very-good-to-excellent. The paper also reveals that simple 
proportionality relationships that are known to exist between the real 
parts of some GAFs and the imaginary parts of others also hold for the 
real and imaginary parts of the corresponding TAFs.
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I.  INTRODUCTION 

Reference 1 by the present author contains the recomputation of all numerical examples in reference 2, the 
seminal and ground-breaking work on aeroelastic flutter by Theodore Theodorsen.  While performing these 
recomputations, the present author explored a number of related “tangents.”  One such tangent was to 
investigate the similarity between the unsteady aerodynamic forces and moments derived in reference 2 
(termed herein “Theodorsen’s aerodynamic forces,” or TAFs) and the generalized aerodynamic forces (GAFs) of    
the doublet lattice method (DLM) (ref. 3).   

The purpose of the present paper is to report the results of this tangential investigation.  Analytical expressions 
for the TAFs were extracted from Theodorsen’s aeroelastic equations of motion (AEOM) for a typical airfoil 
section (referred to hereinafter simply as “typical section”) in incompressible flow and are compared to the 
GAFs computed by the DLM for a high-aspect-ratio wing (AR = 20) at zero Mach number.  Simple proportionality 
relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others are 
shown to hold for the real and imaginary parts of the corresponding TAFs. 

The results of the present paper are more curiosity than revelation, and more interest than discovery.  After all, 
Theodorsen’s AEOM and the DLM have both been around for a long time.  But, in conducting a literature search, 
the present author could find no publication that contained comparisons similar to those contained herein.  So, 
for this reason, it was judged that the present results are worth sharing with the technical community. 

The remainder of this paper is organized as follows: 

Section II presents nomenclature; 

Section III addresses the recasting of Theodorsen’s AEOM into the classical form of the AEOM so 
that the comparison of TAFs and GAFs may be accomplished; 

Section IV presents analytical expressions for the TAFs; 

Section V addresses the approximation of a typical section using the DLM; 

Section VI presents the calculation of the TAFs and GAFs; 

Section VII presents the comparison of the TAFs and GAFs; 

Section VIII discusses relationships among the TAFs that are analogous to relationships among 
the GAFs; 

Section IX contains concluding remarks; 

Appendix A presents a brief examination of Theodorsen’s circulation function; 

Appendix B presents the DLM aerodynamic model chosen to compute the GAFs. 
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II. NOMENCLATURE Nondimensional distance from midchord to axis of rotation (elastic axis) of typical section, 
positive aft 

 Semichord of typical section 

Mean aerodynamic semichord,  ( ) Theodorsen’s circulation function 

 Lift curve slope 

 Static stability derivative 

 Torsional stiffness of typical section (stiffness units per unit length) 

 Aileron stiffness of typical section (stiffness units per unit length) 

 Bending stiffness of typical section (stiffness units per unit length) ( ) Incremental pressure coefficient due to pitch 

 Nondimensional distance from midchord to aileron hinge of typical section, positive aft 

 Wing mean aerodynamic chord ( ) Real part of Theodorsen’s circulation function ( ) Imaginary part of Theodorsen’s circulation function 

 Plunge deflection, Classical AEOM, positive down 

 Vertical deflection, Theodorsen’s AEOM, positive down 

 Imaginary part, equation (7) 

 Imaginary unit, 1 ( ) Bessel function of the first kind, subscript  denotes order 

 Reduced frequency,  

 Constant, equation (7) 

 Mass of typical section (mass units per unit length) 

 Real part of  element of  

 Real part of  element of  

Real part of  element of  

Imaginary part of  element of 

4



 Dynamic pressure,  

 Real part, equation (7) 

 Nondimensional torsional radius of gyration of typical section 

 Nondimensional radius of gyration of aileron 

 Wing area 

 Constants associated with the integration of velocity potentials in reference 2,  
for  = 1, 3, 4, 5, 7, 10, 11, 12 

 Free-stream velocity 

 Chordwise coordinate, Figure 1, 1 1 

 Nondimensional distance from axis of rotation to center of gravity, positive aft  

 Nondimensional distance from aileron hinge to aileron center of gravity, positive aft ( ) Bessel function of the second kind, subscript  denotes order 

 Pitch deflection, Classical AEOM, positive leading edge up 

 Torsional angular deflection, Theodorsen’s AEOM, positive leading edge up 

 Aileron angular deflection, positive trailing edge down 

 Mass ratio,  

 Fluid density 

 Circular frequency 

 Circular frequency of flexure mode 

 Circular frequency of torsional mode 

 Circular frequency of aileron mode 

Matrices: [ ] Matrix containing coefficients of acceleration terms in equations (A), (B), and (C) [ ] Matrix containing coefficients of rate terms in equations (A), (B), and (C) [ ] Matrix containing coefficients of displacement terms in equations (A), (B), and (C) [ ] Generalized stiffness matrix [ ] Generalized mass matrix [ ( )] Theodorsen’s aerodynamic force matrix 
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( )  Generalized aerodynamic force matrix { } Vector of generalized coordinates [ ] Generalized damping matrix 

Abbreviations: 

AEOM Aeroelastic equations of motion 

AR Aspect ratio 

DLM Doublet lattice method 

GAF Generalized aerodynamic force 

LE Leading edge 

OPA Ordinary Procrustes Analysis 

RMSD Root mean square distance 

SSD Sum of the squared distances 

TAF Theodorsen’s aerodynamic force 

TE Trailing edge 

One or two dots over a quantity indicate, respectively, the first or second time derivative of that quantity. 

 

III.  RECASTING THEODORSEN’S AEROELASTIC EQUATIONS OF MOTION 

In order to directly compare TAFs and GAFs, Theodorsen’s aeroelastic equations of motion (AEOM) must be 
recast into a more convenient form.  This section of the present paper describes the recasting. 

 

Theodorsen’s Equations 

Reference 2 derives from first principles the AEOM for a typical section with degrees of freedom in torsion ( ), 
aileron deflection ( ), and vertical deflection (sometimes referred to as flexure) ( ).  Figure 1 illustrates the 
definitions and positive senses of many of the important parameters appearing in Theodorsen’s AEOM.   

Assumptions inherent in Theodorsen’s development of the equations are (1) the flow is potential and non-
stationary; (2) the “wing” is actually a two-dimensional typical section with no thickness and therefore with no 
airfoil shape; (3) the wing motions are sinusoidal and infinitesimal; and (4) the wing has no internal or solid 
friction, resulting in no internal damping forces.  As a consequence of these assumptions, the resulting AEOM 
are very concise, and, by today’s standards, are very simple, yet they retain the essential physical attributes of 
aeroelastic flutter.   

Theodorsen’s AEOM are three second-order simultaneous differential equations in the three unknowns, , , 
and , and their first and second time derivatives, representing the sum of the moments about the elastic axis, 
the sum of the moments about the aileron hinge, and the sum of the forces on the entire wing in the vertical 
direction.  Equations (A), (B), and (C), below, are reproduced from reference 2: 
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Unsteady circulatory aerodynamics are present in the form of the Theodorsen circulation function, ( ), a 
complex function of reduced frequency, with real part ( ) and imaginary part ( ), expressed in terms of 
Bessel functions.  Appendix A contains a brief examination of this function. 

While the form of equations (A), (B), and (C) was suitable for Theodorsen’s purposes, it poses an obstacle to the 
present purpose of comparing TAFs and GAFs.  Recasting equations (A), (B), and (C) into a more convenient form 
will eliminate this obstacle.  This more convenient form is described next. 

 

Classical Equations 

For many years the AEOM have been written in the following form, termed herein the “classical form,”[ ]{ }  +  [ ]{ }  +  [ ]{ }  +  12 [ ( )]{ } =  0 . 
where  is the generalized mass matrix,  is the generalized damping matrix,  is the  generalized stiffness 
matrix, and  is the matrix of generalized aerodynamic forces, which are functions of reduced frequency.  
Quantity  is the vector of generalized coordinates and   is dynamic pressure.  Reference 4 is one of many 
references that contain AEOM expressed in the classical form.   

Typically, the AEOM expressed in the classical form are derived from Lagrange’s equations using a modal 
approach with orthogonal modes, including rigid-body modes, flexible modes, and control-surface modes.  Also, 
the AEOM expressed in the classical form usually account for the third physical dimension in modeling a flight 
vehicle.  The classical form often employs the doublet lattice method (DLM) for computing unsteady 
aerodynamic forces.   

The classical form of the AEOM was chosen in this paper because it lends itself so well to the purpose of 
comparing Theodorsen’s aerodynamic forces (TAFs) found in equations (A), (B), and (C) to generalized 
aerodynamic forces (GAFs) computed by the DLM.   

Equation (1a) is an alternate equivalent expression for equations (A), (B), and (C), where the generalized 

coordinates are { }  =  .  Equations (A), (B), and (C) will be recast into the form of Equation (1a).   

 

(1a) 
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Recasting 

Recasting Theodorsen’s AEOM into the form of the classical AEOM is a three-step process.   
 
Step one. – The first step in recasting Theodorsen’s AEOM into the form of equation (1a) is to rewrite equations 
(A), (B), and (C) into the following matrix form 
 [ ]{ }  +  [ ]{ }  +  [ ]{ }  =  0,    where, again, { }  =   . 
In equation (2a), the various terms in equations (A), (B), and (C) have been grouped into matrices according to 
vector  and its time derivatives:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrices , , and  in equations (3a), (4a), and (5a) each contain structural terms and aerodynamic terms. 

Step two. – The second step in recasting is to separate matrices , , and  into their constituent structural and 
aerodynamic parts.  The structural parts may be further separated into mass and inertia terms, damping terms, 
and stiffness terms; the aerodynamic parts may be further separated into noncirculatory terms and circulatory 
terms (those containing ( )).  The matrix subscripts “struct,” “non,” and “circ,” will be used to denote the 
structural parts, noncirculatory aerodynamic parts, and circulatory aerodynamic parts, respectively, of matrices , , and .  These constituent matrices are found in equations (3b) through (3d), equations (4b) through (4d), 
and equations (5b) through (5d), presented next. 

(2a) 

 =   +  ( )   + ( )  ( )   + ( )  ( )         +  ; 

 =  

 + ( )2 (   ) 2 ( ) ( +  ) ( )2 (   )+ ( ) ( ) + ( ) ( )1 + ( )2( ) + ( ) ( )2  ;

=  ( )2(  ) ( + ) ( )2 (  ) 0( ) + ( ) + ( ) 0( )2 ( )2 .

(3a) 

(4a) 

(5a) 
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The structural parts of matrices , , and  in equation (2a) are 

= + ( )+ ( ) 1  , 
 

= 0 0 00 0 00 0 0  , 
(As stated above, Theodorsen did not include any structural damping terms in the derivation of his AEOM.) 

=  0 00 00 0  . 
Matrices , , and  correspond, respectively, to matrices , , and  in equation (1a). 

Via recasting the aerodynamic parts of matrices , , and  will ultimately correspond to matrix ( ) in 
equation (1a).   The aerodynamic part of matrix  contains noncirculatory aerodynamic terms only, sometimes 
referred to as apparent mass terms 

= ( ) ( )( ) 1  . 
There are no circulatory aerodynamic terms in matrix  

= 0 0 00 0 00 0 0  . 
 

Matrix  contains aerodynamic terms only, both noncirculatory and circulatory  

=  ( ) 1 ( 2 ) 01 ( 2 ) 12 01 1 0  , 

(3b) 

(4b) 

(5b) 

(3c) 

(4c) 

(3d) 
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= ( )  

2 (   ) (  ) 2 (  )(  )2  2  . 
 

The aerodynamic part of matrix  also contains both noncirculatory and circulatory terms 

 

= 0 1 ( + ) 00 1 ( ) 00 0 0  , 
 

= ( ) 

2 (  ) 2 (  ) 002 2 0  . 
 

Employing these constituent matrices and eliminating the null matrices  and , equation (2a) may 
now be expressed as  

 

 

 

Recalling the purpose of comparing TAFs and GAFs, attention is now turned to the aerodynamic terms in 
equations (1a) and (2b).  In equation (1a), the product [ ( )]{ } corresponds, in equation (2b), to the sum 
of products [ ]{ }, [ ]{ }, [ ]{ }, [ ]{ }, and [ ]{ }.  However, there is a “mismatch” 
between the aerodynamic terms in equations (1a) and (2b):  The sum in equation (2b) contains products of 
coefficient matrices with vector  and the time derivatives of  while the term in equation (1a) contains a 
product of a coefficient matrix and vector  only.  This mismatch is resolved in the final step of the recasting. 

Step three. – The third step is to employ the Fourier transform to express equations (1a) and (2b) in the 
frequency domain.  Recall that the Fourier transforms of the first and second time derivatives of a quantity are 
equal, respectively, to  times the Fourier transform of the quantity and ( )  times the Fourier transform of 
the quantity.   

[ ]{ }  +  [ ]{ } 
 + [ ]{ } + [ ]{ } + [ ]{ } + [ ]{ } + [ ]{ } = 0 .

(2b) 

(4d) 

(5c) 

(5d) 
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Recognizing that  =   and that  ( ) = = , equations (1a) and (2b) take the forms 

[ ]{ }  +  [ ]{ }  +  [ ]{ }  +  12 [ ( )]{ } =  0 

and 

 

 

 

Theodorsen’s AEOM are now in the necessary form.  All matrices in equations (1b) and (2c) are multiplied by 
vector , thus removing the mismatch and making it possible to equate directly the aerodynamic terms in 
equation (2c) to the aerodynamic terms in equation (1b), or 12 [ ( )] = [ ] + [ ] +  [ ] + [ ] + [ ] . 
 The elements of matrix ( ) are Theodorsen’s aerodynamic forces, examined next. 

 

IV.  ANALYTICAL EXPRESSIONS FOR THEODORSEN’S AERODYNAMIC FORCES 

The goal of this section is to obtain analytical expressions for Theodorsen’s aerodynamic forces (TAFs), which 
requires the examination of the right side of equation (6).  Each matrix in equation (6) is order 3x3, with the 
rows corresponding to aerodynamic moments about the elastic axis, aerodynamic moments about the aileron 
hinge, and aerodynamic forces on the entire wing in the vertical direction, and with the columns corresponding 
to unit changes in torsion angle, aileron deflection angle, and vertical deflection. 

As equation (6) specifies, the elements of matrix ( ), the TAFs, are obtained by performing the operations 
indicated on the right side.  Thus, taking into account both the matrix coefficients on the right side of equation 
(6) and the elements of these matrices themselves (as found in eqns. (3c), (4c), (4d), (5c), and (5d)), the resulting 
expressions for the TAFs will be complex functions of reduced frequency. 

Without showing at this time the full expressions for the TAFs, each matrix element of equation (6) has the form 12 ( ) = +  . 
Within the square brackets the real and imaginary components,  and , are functions of reduced 
frequency, Theodorsen’s circulation function, and the geometric quantities  and .  The constant  is 
element-specific and may be  , , , , or 1. 

In equation (7) if one substitutes the definition of  into the multiplying factor, , one obtains  

= 2 = 2 = 2 12 2 . 

[ ]{ }  +  [ ]{ } [ ]{ } + [ ]{ } +  [ ]{ } + [ ]{ } + [ ]{ } = 0 . 
(2c) 

(6) 

(7) 

(1b) 
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Thus, both sides of equation (7) contain dynamic pressure, which may be eliminated, leaving ( ) = 2 +  . 
The multiplying factor in equation (7), , is an artifact of the normalization Theodorsen chose in creating 
equations (A), (B), and (C).  Thus, as explicitly indicated in equation (8), Theodorsen’s normalization is 
responsible for the mass, , appearing in every element of matrix ( ). 

When the real and imaginary parts of the Theodorsen circulation function, ( ) and ( ), are substituted for ( ), the real and imaginary parts of matrix ( ), by column, are listed below.  For simplicity, ( ), ( ) and ( ) are written without their functional argument. 

 

First column: 

=  2 18 + 2 14 2 + 12  ; =  2 12 + 2 14 2 + 12  ; 
=  2 1 ( + ( ) ) 12 +  ; 
= 2 1 2 + 12 +  ; 

=  2 2 12 + 2  ; = 2 + 2 12 + 2  . 
 

Second column: 

= 2 1 ( + ( ) ) + ( + ) + + 12 2 + 12  ; 
=  2 1 2 + 12 + 12 2 + 12  ; =  2 1 + ( ) 2 +  ; 
= 2 1 2 + 2 +  ; 
= 2 1 [ + 2 ] ;
= 2 1 [ + + 2 ] .

 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

(9f) 

(9g) 

(9h) 

(9i) 

(9j) 

(9k) 

(9l) 

(8) 
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Third column: 

= 2 1 + 2 + 12  ; =  2 1 2 + 12  ; =  [ ] ;         
= 2 1 1 [ ] ; 

=  2 1 [ 2 ] ; =  2 1 [2 ] . 
 

The elements of matrix ( ), equations (9a) through (9r), are analogous to the generalized aerodynamic forces 
(GAFs) produced by the doublet lattice method. 

It should be noted that Fung (ref. 5), Hodges and Pierce (ref. 6), Wright and Cooper (ref. 7), and Weisshaar (ref. 
8) all present, in various forms, expressions that are analogous to equations (9a) and (9b), (9e) and (9f), (9m) and 
(9n), and (9q) and (9r).  The expressions in references 5-8 correspond to a typical section without an aileron; 
there are no expressions in these references corresponding to a typical section with an aileron. 

 

V.  APPROXIMATING A TYPICAL SECTION USING THE DLM 

The DLM was chosen for computing GAFs because it is so commonly used in the field of Aeroelasticity. 

In order to compare the TAFs and GAFs in a meaningful way, it is necessary to recognize and attempt to 
minimize the fundamental differences between TAFs and GAFs:   

TAFs are aerodynamic forces for a typical section (i.e., a two-dimensional wing) in 
incompressible flow; 

GAFs from the DLM are aerodynamic forces for a three-dimensional wing in 
compressible subsonic flow. 

To minimize these differences, it was necessary, therefore, to create a doublet lattice model whose 
aerodynamics would reasonably approximate the aerodynamics of a typical section in incompressible flow, 
discussed next. 

The three-dimensional analog of a typical section with a trailing-edge control surface is an unswept rectangular 
wing of infinite span with a trailing-edge control surface, also of infinite span.  Such a wing and control surface 
would produce chordwise pressure distributions that are invariant as one proceeds out the span. 

The DLM analog of incompressible flow is a flow whose Mach number is zero.  Such a flow would have 
characteristics equivalent to those assumed by Theodorsen in reference 2. 

(9m) 

(9n) 

(9o) 

(9p) 

(9q) 

(9r) 
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However, a DLM aerodynamic model with infinite span at any Mach number is impossible to construct and, 
thus, the corresponding GAFs impossible to compute.  It was assumed that a DLM aerodynamic model with a 
very high aspect ratio unswept rectangular wing at zero Mach number would sufficiently minimize the 
differences so that a meaningful comparison could be made.  If these assumptions are correct, chordwise 
pressure distributions for the inboard portion of the wing would be almost invariant as one proceeds out the 
span.  Thus, GAFs computed using only the pressures and mode shapes from the inboard 10 percent of the wing 
semispan should approximate, as well as can be expected, GAFs for a typical section in incompressible flow.   

To this end, an unswept rectangular wing with an aspect ratio of 20 at zero Mach number was chosen for the 
DLM aerodynamic model.  The DLM has an option to take advantage of symmetry (or asymmetry) and to model 
only half of the configuration.  Employing this option, the aspect ratio of the half wing was 10.  Figure 2 shows a 
sketch of the aerodynamic model.  Appendix B describes this aerodynamic model in detail and addresses the 
validity of the high-aspect-ratio assumption. 

 

VI.  CALCULATION OF TAFs AND GAFs 

The calculations described in this section of the paper were performed with quantities corresponding to the 
“standard case” in reference 2: = 0.1;  = 0.5;  = 0.4;  = 0.2;  = 0.25;  = ;   =  ; = 1;   

with frequencies, , , and , variable. 

But because the TAFs and GAFs deal with aerodynamic forces only and not structural forces, the quantities  
and  are the only ones from the standard case necessary for the calculations. 

TAFs were computed in Matlab® using equations (9a) through (9r).  The quantity  was set to unity.  These 
equations were solved for 101 values of reduced frequency beginning at 1x10-6 with an increment of 0.01, for an 
effective range of 0 to 1.  (The first reduced frequency was not zero for the following reason:  In Matlab® at zero 
reduced frequency, Bessel functions of the second kind – elements appearing in both the numerator and 
denominator of the real and imaginary parts of Theodorsen’s circulation function – assume values of minus 
infinity, which, in turn, cause these same real and imaginary parts to be “not a number,” i.e., an undefined or 
not-representable value.) 
 
The GAFs were computed in the version of the doublet lattice method residing in the ISAC code (ref. 9) using the 
aerodynamic model described in the previous section.  The analysis included degrees of freedom of pitch, 
trailing-edge control surface deflection, and plunge (analogous to torsion, aileron deflection, and vertical 
deflection for the TAFs).  To better approximate a pressure distribution invariant with span, only the inboard 20 
strips of the DLM aerodynamic model were used to compute the GAFs.  The pitch axis was set at 30% chord 
(equivalent to  = -0.4) and the trailing-edge control surface hinge was set at 75% chord (equivalent to  = 0.5).  
The doublet lattice model was executed for 12 values of reduced frequency ranging from 0 to 1. 

Before plotting, each TAF and each GAF was normalized by its own maximum complex absolute value over its 
own range of reduced frequencies.  This normalization removed the differences in absolute magnitudes of the 
TAFs and GAFs due to dimensional factors within equations (9a) through (9r) and within the DLM, leaving only 
the general shapes and normalized amplitudes of the TAFs and GAFs for comparison. 
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Figure 3 contains nine plots arranged in three rows and three columns.  The TAFs are indicated by solid lines and 
the GAFs by open circles.  In each plot, the imaginary part of the TAF or GAF is plotted as a function of its 
respective real part.  The arrows indicate the direction of increasing reduced frequency.  An indexed pair, (i,j), 
identifies each plot.  The first index in the pair specifies an aerodynamic force or moment (i = 1 refers to torsion 
moment; i = 2 refers to aileron hinge moment; i = 3 refers to vertical force) and the second index specifies a unit 
displacement in one of the degrees of freedom (j = 1 refers to torsion or pitch; j = 2 refers to aileron deflection; 
j = 3 refers to vertical deflection or plunge).   

Referring back to the normalization of the computed TAFs and GAFs, mentioned above, these particular TAFs 
and GAFs are always normalized by either their first point (at  = 0) or their last point (at  = 1).  In eight of the 
nine cases presented in figure 3 the normalizing point for a given TAF corresponds to the normalizing point for 
the companion GAF; that is, either both normalizing points are at  = 0 or both normalizing points are at  = 1.  
However, this is not the situation for the (3,1) case; in this case the TAF is normalized by its point at  = 0 while 
this GAF is normalized by its point at  = 1.  The magnitude difference between the (3,1) TAF and the (3,1) GAF 
along the real axis near a real part of unity is the result of this normalization quirk. 

From a qualitative perspective, the magnitudes and shapes of corresponding TAFs and GAFs in figure 3 agree 
very well.  The next section of the paper examines quantitative comparisons of the TAFs and GAFs.   

 

VII.  COMPARISON OF TAFs AND GAFS 

This section of the paper presents quantitative comparisons of the magnitudes and shapes of corresponding 
TAFs and GAFs. 

 

Comparison of Magnitudes 

The percentage difference between the complex absolute values of each pair of normalized TAFs and GAFs at a 
single reduced frequency (  = 0.5) was chosen as the measure for comparing magnitudes.  While this quantity is 
not a definitive measure of the magnitude differences between TAFs and GAFs (percentage differences will vary 
depending on the reduced frequency chosen), because  = 0.5 is the middle value in the range of reduced 
frequencies, it is nonetheless thought to be a representative measure.  The adjectives “good,” “very good,” and 
“excellent” are used to describe differences in magnitude ranging from 10 to five percent, five to one percent, 
and less than one percent, respectively. 

The percentage differences were computed with the following results:  
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TABLE 1. – SIMILARITY IN MAGNITUDE FOR PAIRS OF TAFs AND GAFs  
 

Percentage Differences Between 
Complex Absolute Values at  = 0.5 

  i = 1 i = 2 i = 3 
j = 1 0.57 0.88 1.16 
j = 2 0.57 1.91 0.70 
j = 3 2.56 6.76 0.87 

 

where indices  and  are elements of the indexed pair defined in Section VI of this paper. 

As can be seen from Table 1, the percentage differences in magnitudes between corresponding pairs of TAFs 
and GAFs are generally very small, with most differences less than one percent, suggesting good-to-excellent 
agreement in the magnitudes of the normalized TAFs and GAFs.  The average percentage differences are largest 
for the second column (corresponding to aileron deflection) and quantify what the eye clearly sees in figure 3:  
there is more separation between the circles and the solid lines in the second column than in the other two 
columns.  Not quantified in Table 1, but apparent from visual examination of figure 3, is that for all 
corresponding pairs of TAFs and GAFs their respective starting and ending values, maxima and minima, and sign 
changes (if present) are also in very good agreement. 

 

Comparison of Shapes 

An ordinary Procrustes analysis (OPA, ref. 10) is a means of quantifying the similarity in the shapes of two 
curves.  An OPA was performed for each pair of normalized TAFs and GAFs as they appear in figure 3.  A 
requirement of an OPA is that each shape be defined by the same number of points.  Therefore, from the full set 
of 101 points defining each TAF, subsets of 12 points were created that correspond to the 12 reduced 
frequencies defining each GAF, where each “point” is a point in the complex plane defined by a real part and an 
imaginary part. 

An OPA is a three-step process:   

(1)  the translation of the centroid of each shape to the origin (in this case the origin of the complex plane); 

(2)  the scaling of each translated shape so that the root mean square distance (RMSD) of its points to the 
origin is unity; and 

(3)  the optimal rotation of one translated and scaled shape so as to minimize the sum of the squared 
distances (SSD) between corresponding points of the two translated and scaled shapes.   

At the completion of these steps, the two curves have been translated (so that their centroids are coincident at 
the origin), scaled (so that they are “the same size”), and optimally rotated (so that corresponding points on the 
two curves are “as close as they can be” to each other).  At this stage in the process, a single quantitative 
measure can be computed that captures the similarity in the shapes of the two curves.  This quantitative 
measure is the square root of the minimized SSD obtained from step (3) and is referred to as the “Procrustes 
distance.”  The smaller the Procrustes distance, the better the similarity between shapes.  A Procrustes distance 
of zero indicates identical shapes.   
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The Procrustes distance is a relative measure that is a function of the number of points defining each curve.  
Two curves defined by a given number of points will have a correspondingly larger Procrustes distance than the 
same two curves defined by fewer points.  

As a reference, Procrustes distances were computed for three pairs of curves unrelated to TAFs and GAFs:  one 
pair with dissimilar shapes (semicircle and line segment); another pair with similar shapes (semicircle and semi-
ellipse with an eccentricity of 0.886); and a final pair with identical shapes (two line segments with different 
locations, lengths, and orientations).  So that these Procrustes distances would be consistent with those for the 
TAFs and GAFs, these curves were also described by 12 points each.  Results for these pairs of curves are 
summarized in Table 2: 

 

TABLE 2. – SIMILARITY IN SHAPE FOR VARIOUS PAIRS OF CURVES 
 

Shapes 
(as defined 

above) 

Procrustes 
Distances 

Dissimilar 1.71 
Similar 0.806 

Identical 0 
 

Based on the results in Table 2, the adjectives “good,” “very good,” and “excellent” are used to describe 
differences in Procrustes distances ranging from 0.403 to 0.2, 0.2 to 0.1, and less than 0.1, respectively. 

For the pairs of TAFs and GAFs, the resulting Procrustes distances are summarized in Table 3:  

 

TABLE 3. – SIMILARITY IN SHAPE FOR PAIRS OF TAFs AND GAFs 
 

Procrustes Distances for -  
  i = 1 i = 2 i = 3 

j = 1 0.0455 0.0625 0.0242 
j = 2 0.0394 0.0527 0.0086 
j = 3 0.1544 0.2813 0.0191 

 

where indices  and  are elements of the indexed pair defined in Section VI of this paper. 

All Procrustes distances in Table 3 lie between those for the similar and identical shapes in Table 2, with most 
Procrustes distances in Table 3 at least an order of magnitude smaller than unity.  These results indicate that 
the shapes of the TAFs and the shapes of the GAFs are in good-to-excellent agreement with each other.  The 
TAFs and GAFs whose Procrustes distances are the smallest, and therefore, whose shapes are most similar, are 
those for = 3 (aerodynamic forces due to flexure), followed by those for = 1 (aerodynamic forces due to 
torsion), followed by those for = 2 (aerodynamic forces due to aileron deflection).  Not quantified in Table 3, 
but apparent from visual examination of figure 3, is that for all corresponding pairs of TAFs and GAFs their 
respective curvatures and inflection points are also in very good agreement.  
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VIII.  RELATIONSHIPS AMONG THE TAFs 

As stated in Section IV of this paper, the elements of matrix ( ), equations (9a) through (9r), are analogous to 
the generalized aerodynamic forces (GAFs) produced by the doublet lattice method and figure 3 and Tables 1 
and 3 confirm the extent to which this is true.  To distinguish the TAFs from the GAFs, for purposes of the 
following discussion, the GAFs are assigned the symbol . 

In the classical aeroelastic equations of motion, when the rigid-body modes are pure plunge ( ) and pure pitch 
( ), it is possible to extract some of the longitudinal stability derivatives from the GAFs produced by the DLM 
(refs. 11 and 12).  Two such derivatives, the lift curve slope and the static stability derivative, may each be 
obtained in two different ways:  The first is from the real part of the generalized force or moment due to  at 
zero reduced frequency; the second is from the imaginary part of the generalized force or moment due to  at a 
very small value of reduced frequency.  Using Theodorsen’s mode-ordering convention, these expressions are  

= = 2  

and  

= = 2  . 
where  is wing area and  is mean aerodynamic chord. 

From equations (10a) and (11a), the following expressions follow: = 2  ; 
and = 2  . 
If the quantity  is defined to be = , then equations (10b) and (11b) become 

=  

and 

=  . 
Flexure ( ) and torsion ( ) in Theodorsen’s aeroelastic equations of motion are related to plunge and pitch in 
the classical equations.  The total force on the wing in the vertical direction in Theodorsen’s equations is directly 
analogous to lift in the classical equations.  The torsion moment in Theodorsen’s equations is related, but not 
directly, to the pitching moment in the classical equations (the former is about the elastic axis, the latter is about 
the center of gravity).   

(11a) 

(10a) 

(10c) 

(11c) 

(10b) 

(11b) 
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With these close relationships between Theodorsen’s and the classical aeroelastic equations of motion one 
would expect that the following analogous relationships among the TAFs, analogous to equations (10c) and (11c) 
for the GAFs, might also be true:     =  ; 
and =  . 
where, for a typical section, the mean aerodynamic semichord, , is its semichord, . 

This is, in fact, the case.   

To prove that the right sides of equations (12a) and (13a) are equal to their respective left sides, equations (9e) 
and (9r) are substituted into equation (12a) and equations (9a) and (9n) are substituted into equation (13a), 
yielding  2 2 12 + 2 = 2 1 [2 ]  

and 

 + 2 2 + = 2 +  , 

respectively. 

Recall that equations (10a) through (13b) hold only when their left sides are evaluated at zero reduced 
frequency and their right sides are evaluated at very small values of reduced frequency.  At zero reduced 
frequency, within the left sides of equations (12b) and (13b), the terms containing  and  are zero.  When 
these terms are eliminated from the left sides of equations (12b) and (13b) and the factor  is removed from 
both sides, equations (12b) and (13b) become   [2 ] = 1 [2 ]  , 
which is an identity, and 2 + 12 = 1 2 + 12  , 
which is also an identity. 

Although not shown in references 11 and 12, a relationship similar to those expressed in equations (12a) and 
(13a) also exists between the real part of Theodorsen’s aerodynamic aileron hinge moment due to , , 
and the imaginary part of Theodorsen’s aerodynamic aileron hinge moment due to , , namely    

=  . 

(13a) 

(12a) 

(12b) 

(13b) 

(12c) 

(13c) 

(14a) 
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When equations (9c) and (9p) are substituted into equation (14a), the following equation is obtained 2 1 ( + ( ) ) 12 + = 2 1 1 [ ]  . 
 

And, again, when the terms containing  and  on the left side are set to zero and the factor  is removed 
from both sides, equation (14b) becomes   1 [ ] = 1 1 [ ]  , 
which, again, is an identity. 

Thus, as confirmed by the identities in equations (12c), (13c), and (14c), the relationships between the real parts 
of aerodynamic forces or moments due to  at zero reduced frequency and the imaginary parts of those same 
forces or moments due to  at a very small value of reduced frequency that held for the GAFs from the DLM also 
hold for the TAFs from Theodorsen’s aeroelastic equations of motion. 

 

IX.  CONCLUDING REMARKS 

This paper has investigated the similarity between the unsteady aerodynamic forces and moments derived in 
reference 2 (termed herein “Theodorsen’s aerodynamic forces,” or TAFs) and the generalized aerodynamic 
forces (GAFs) computed by the doublet lattice method (DLM) (ref. 3).  Some of the important conclusions are: 

(1) Analytical expressions for the TAFs were extracted from Theodorsen’s aeroelastic equations 
of motion. 

(2) A comparison of normalized TAFs and GAFs for the “standard case” of reference 2 indicated 
good-to-excellent agreement in magnitudes and shapes. 

(3) Relationships between selected pairs of analytical expressions for the TAFs were shown to 
be identical to known analogous expressions between corresponding pairs of GAFs. 

(4) The averaged incremental chordwise pressure distributions for the inboard ten percent 
semispan of a very high aspect ratio (AR = 20) rectangular wing at zero Mach number are 
good approximations to corresponding pressures for a typical section in incompressible 
flow. 

 

 

(14b) 

(14c) 
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APPENDIX A 
THEODORSEN’S CIRCULATION FUNCTION 

In reference 2, Theodorsen derives a function that has been associated with his name for over three-quarters of 
a century, Theodorsen’s circulation function, ( ), a complex function of reduced frequency with real part ( ) 
and imaginary part ( ), expressed in equation (A1):      ( ) = ( ) + ( ). 
In terms of equations (A), (B), and (C) in the main body of this paper, ( ) determines the magnitude 
attenuations and and phase lags in circulatory aerodynamic forces and moments due to variations in torsion, 
aileron deflection, and flexure for a typical section in unsteady incompressible potential flow. 

Theodorsen’s circulation function may be expressed in terms of Bessel functions of the first and second kinds, ( ) and ( ), respectively, where subscript  denotes the order of the Bessel function.  As expressed in 
reference 2, the real part of ( ) is    ( ) = ( )[ ( ) + ( )] + ( )[ ( ) ( )][ ( ) + ( )] + [ ( ) ( )]  

and the imaginary part is  ( ) = ( ) ( ) + ( ) ( )[ ( ) + ( )] + [ ( ) ( )]  . 
Theodorsen’s circulation function is presented graphically in three different forms, each form revealing different 
aspects of ( ).  All plots were generated in Matlab® by solving equations (A2) and (A3) for values of reduced 
frequency beginning at 1x10-6 and ending at 100.  This first reduced frequency was not zero because, in Matlab®, 
Bessel functions of the second kind (appearing multiple times in eqns. (A2) and (A3)) assume values of minus 
infinity at zero reduced frequency.  

Figure A1 presents the real part and the negative of the imaginary part of Theodorsen’s circulation function as 
functions of reduced frequency.  Both scales are linear.  At = 0, the value of ( ) is unity, but is seen to 
quickly drop off with increasing , approaching a value of 0.5 as  approaches infinity.  At = 0, the value of ( ) is zero and approaches zero again as  approaches infinity. 

Figure A2 presents Theodorsen’s circulation function in frequency-response-function fashion.  The upper plot 
contains the magnitude (complex absolute value) of ( ) as a function of reduced frequency; the lower plot 
contains the phase angle, expressed in degrees, as a function of reduced frequency.  Both plots are semi-log, 
with the frequency scales logarithmic and covering four decades.  It can be seen that the low- and high-
frequency asymptotes of the magnitude are unity and 0.5, respectively, the low- and high-frequency asymptotes 
of the phase angle are both zero degrees, and that the maximum phase lag introduced is on the order of 15 
degrees at a reduced frequency of about 0.3. 

Figure A3 presents Theodorsen’s circulation function in the complex plane with the imaginary part of ( ) 
plotted against its real part.  Both scales are linear.  Reduced frequency varies along the length of the curve and 
the arrow indicates the direction of increasing reduced frequency.  Reduced frequencies of 0.01. 0.1, 1, and 10 
are indicated by circles.  

(A1) 

(A3) 

(A2) 
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APPENDIX B 
DOUBLET LATTICE AERODYNAMIC MODEL 

This appendix describes the aerodynamic model from the doublet lattice method (DLM) constructed to compute 
the generalized aerodynamic forces (GAFs) for comparison with the Theodorsen aerodynamic forces (TAFs).  
This appendix also addresses the validity of the assumption made in Section V of the main body of this paper, 
namely that the steady pressures computed by the DLM for very high aspect ratio (AR = 20) unswept rectangular 
wing at zero Mach number would approximate very well the theoretical steady pressures for a typical section.  
An implied assumption is that if the steady pressures agree, the unsteady pressures will as well. 

 

Doublet Lattice Method 

The DLM is a well-known and extensively-used linear finite-element unsteady aerodynamic code that is an 
extension of the vortex lattice method.  Lifting surfaces are approximated by “segments of planes … divided into 
small trapezoidal [boxes] … arranged in columns parallel to the freestream” (ref. 3).  Steady flow effects are 
represented by a horseshoe vortex located on each trapezoidal [box] and oscillatory flow increments are 
represented by a uniform line of acceleration potential doublets added to the bound vortices (ref. 3).  The DLM 
has been used by many airplane manufacturers for many decades to predict the flutter characteristics of many 
airplanes in use today.   

 

Aerodynamic Model 

The number and distribution of boxes in a DLM aerodynamic model is highly dependent on the configuration 
being investigated.  For the current configuration, a large number of boxes was necessary in the chordwise 
direction in order to capture the rapidly changing chordwise pressure distributions immediately aft of the wing 
leading edge and immediately forward and aft of the aileron hinge line.  A large number of boxes was necessary 
in the spanwise direction due to the high aspect ratio of the wing.  These necessities led to an aerodynamic 
model with a very large number of boxes. 

Table B1 shows the box chordwise properties chosen for this aerodynamic model.  There were 33 boxes in the 
chordwise direction with box chords smallest in regions where pressure changes are largest (near the wing 
leading edge and forward and aft of the aileron hinge).  Box aspect ratios have an inverse relationship with box 
chords.  To comply with box-aspect-ratio requirements, the aerodynamic model contained 200 strips, each with 
a width of five percent of the chord, producing a final aerodynamic model containing 6600 boxes.  The model 
was comprised of two panels:  one representing the forward portion of the wing, from the leading edge to the 
aileron hinge line; the other representing the full-span aileron, from the hinge line to the trailing edge.  The 
shaded entries in Table B1 correspond to boxes on the aileron. 
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TABLE B1. – CHORDWISE BOX PROPERTIES 
Expressed as x/c 

Box No. Box LE Box TE Box 
Chord Box AR  Box No. Box LE Box TE Box 

Chord Box AR 

1 0.0000 0.0200 0.0200 2.5000  -- -- -- -- -- 
2 0.0200 0.0425 0.0225 2.2222  18 0.5785 0.6105 0.0320 1.5625 
3 0.0425 0.0675 0.0250 2.0000  19 0.6105 0.6400 0.0295 1.6949 
4 0.0675 0.0945 0.0270 1.8519  20 0.6400 0.6670 0.0270 1.8519 
5 0.0945 0.1235 0.0290 1.7241  21 0.6670 0.6910 0.0240 2.0833 
6 0.1235 0.1545 0.0310 1.6129  22 0.6910 0.7130 0.0220 2.2727 
7 0.1545 0.1875 0.0330 1.5152  23 0.7130 0.7325 0.0195 2.5641 
8 0.1875 0.2225 0.0350 1.4286  24 0.7325 0.7500 0.0175 2.8571 
9 0.2225 0.2595 0.0370 1.3514  25 0.7500 0.7675 0.0175 2.8571 

10 0.2595 0.2985 0.0390 1.2821  26 0.7675 0.7875 0.0200 2.5000 
11 0.2985 0.3390 0.0405 1.2346  27 0.7875 0.8100 0.0225 2.2222 
12 0.3390 0.3810 0.0420 1.1905  28 0.8100 0.8350 0.0250 2.0000 
13 0.3810 0.4235 0.0425 1.1765  29 0.8350 0.8625 0.0275 1.8182 
14 0.4235 0.4655 0.0420 1.1905  30 0.8625 0.8925 0.0300 1.6667 
15 0.4655 0.5055 0.0400 1.2500  31 0.8925 0.9250 0.0325 1.5385 
16 0.5055 0.5435 0.0380 1.3158  32 0.9250 0.9610 0.0360 1.3889 
17 0.5435 0.5785 0.0350 1.4286  33 0.9610 1.0000 0.0390 1.2821 

 

The reduced frequencies chosen for the doublet lattice aerodynamic model were 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, and 1.   

 

Validity of High-Aspect-Ratio Assumption 

As a check on the high-aspect-ratio assumption, at zero reduced frequency the chordwise pressures along strips 
2 through 20 were compared with the chordwise pressures along the first strip.  If the assumption is valid then, 
from corresponding box to corresponding box, pressures in strips 2 to 20 should be only minimally different 
from pressures in strip 1.   

These comparisons were made.  The pressures due to pitch for each box in strips 2 through 20 were found to be 
within 0.1% of their respective values for each box in strip 1; the pressures due to aileron deflection were within 
0.2%.  (At zero reduced frequency there is no pressure produced due to plunge.)  Thus, over this portion of the 
wing, the chordwise pressure distributions are, in fact, near-invariant as one proceeds out the span and the 
high-aspect-ratio assumption is judged to be valid. 
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Figure 1. – Parameters of the airfoil-aileron combination
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Figure 2. – Aerodynamic model of DLM very-high-aspect-ratio wing model.
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Figure 3. – Comparison of Theodorsen’s aerodynamic forces from equation (9)
and generalized aerodynamic forces from the doublet lattice method.

Arrows indicate direction of increasing reduced frequency.
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Figure A1. – Real and imaginary parts of Theodorsen’s circulation function.
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Figure A2. – Magnitude and phase representations of 
Theodorsen’s circulation function.

(a)  Magnitude

(b)  Phase
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Figure A3. – Complex plane representation of Theodorsen’s circulation function.
Arrow indicates direction of increasing reduced frequency.
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