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Definitions 

Achieve-by point: A designated waypoint where the assigned spacing goal is expected to be 

achieved. It is also the waypoint where the spacing technique should 

transition from trajectory-based to state-based. 

Assigned spacing goal: The spacing interval, either in time or distance, assigned by ATC in the 

spacing clearance. 

Constant time delay: A state-based spacing algorithm that typically uses stored state data (time 

and position) from the designated traffic aircraft to determine the spacing 

interval. This algorithm also uses the designated traffic's previous or 

current speed as the nominal speed for the control law. 

End speed: The projected or expected speed command at the end of a change in the 

commanded speed. I.e., this is the expected, steady-state speed command 

at the end of a speed change.  

End speed command: See End speed. 

Federated system: An aircraft system that is designed as a stand-alone implementation, i.e., 

not integrated into the existing avionics. 

FIM aircraft or ownship: The aircraft that is using its FIM equipment, e.g., an ASTAR13 

implementation, to conduct a self-spacing operation. 

Measure spacing interval: Using the stored state data (time and position) from the designated traffic 

aircraft, the measured spacing interval in time is the difference between 

the current time and the time when the designated traffic aircraft was at 

the FIM aircraft's proximate position. The measured spacing interval in 

distance is the along-path distance between the FIM aircraft and the 

designated traffic aircraft. 

Ownship:  See FIM aircraft. 

Planned termination point: A designated waypoint where the FIM operation is to terminate. For 

distance-based clearances, the FIM operation terminates when the lead 

aircraft passes this point. For time-based clearances, the FIM operation 

terminates when the FIM aircraft passes this point.  

Spacing error: The error value that the control law is attempting to minimize. The 

trajectory-based and state-based algorithms use different methods for 

calculating the spacing error. Additionally, the spacing error may be 

defined in either time or distance, depending on the assigned spacing goal. 

Speed command: The continuous, instantaneous speed command provided by the algorithm. 

State-based operations: Based on the previous and current physical states (time, position, ground 

speed, and ground track angle) of the lead and FIM aircraft. These 

operations are only valid when the FIM and lead aircraft are on a common 

path. 
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Time-to-go: The time to go from the aircraft's current position to a designated point 

using the TBO prediction calculation. 

Traffic aircraft or The designated traffic against which the spacing aircraft is performing a 

Traffic to follow: spacing operation. I.e., the lead aircraft. 

Trajectory-based operations: Operations based on a calculated 4-D path, typically from the aircraft's 

current position to the runway threshold. The calculated 4-D paths are used 

to calculate the time-to-go of the FIM and designated traffic aircraft. The 

difference in the estimated time-to-go of the FIM and designated traffic 

aircraft to a common point is used to define the spacing error. 

 

Acronyms and Nomenclature 

2D:  2 dimensional; longitudinal and lateral 

4D:  4 dimensional; longitudinal, lateral, vertical, and temporal 

ABP:  Achieve-by point 

ADS-B:  Automatic Dependence Surveillance Broadcast 

ASG:  Assigned spacing goal 

ASTAR:  Airborne Spacing for Terminal Arrival Routes 

ATC:   Air traffic control 

ATD-1:   Air Traffic Management Technology Demonstration-1 

CAS:  Calibrated airspeed 

CTD:  Constant time delay 

DTG:  Distance-to-go 

ETA:  Estimated time of arrival 

FAF:  Final approach fix 

FIM:  Flight-deck interval management. 

FMS:  Flight management system 

ft:  Foot/feet 

gs:  Ground speed 

IM:  Interval management 



 

 

kt:  Knots 

MSI:  Measure spacing interval 

NA:  non-applicable 

nmi:  Nautical miles 

PTP:  Planned termination point 

RTA:  Required time of arrival 

SpcE:  Spacing error 

STAR:  Standard Terminal Arrival Route 

TBO:  Trajectory-based operations 

TCP:  Trajectory change point 

TOD:  Top-of-descent 

TTF:  Traffic to follow 

TTG:  Time-to-go 
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Abstract 

This paper presents an overview of the eighth revision to an algorithm 

specifically designed to support NASA's Airborne Precision Spacing 

concept. This paper supersedes the previous documentation and presents 

a modification to the algorithm referred to as the Airborne Spacing for 

Terminal Arrival Routes version 13 (ASTAR13). This airborne self-

spacing concept contains both trajectory-based and state-based 

mechanisms for calculating the speeds required to achieve or maintain a 

precise spacing interval with another aircraft. The trajectory-based 

capability allows for spacing operations prior to the aircraft being on a 

common path. This algorithm was also designed specifically to support a 

standalone, non-integrated implementation in the spacing aircraft. This 

current revision to the algorithm supports the evolving industry standards 

relating to airborne self-spacing. 

 

Introduction 

Concepts for self-spacing of aircraft operating in an airport terminal area have been under development 

by the National Aeronautics and Space Administration (NASA) since the 1970's (ref. 1). Interest in these 

concepts have recently been renewed due to a combination of emerging, enabling technology (Automatic 

Dependent Surveillance Broadcast data link, ADS-B) and the continued growth in air traffic with the ever 

increasing demand on airport and runway throughput. Terminal area self-spacing has the potential to 

provide an increase in runway capacity through an increase in the accuracy of over-the-threshold runway 

crossing times (ref. 2). 

 

A follow-on to NASA's terminal area in-trail spacing development (refs. 3 and 4) and the initial 

development of a concept and implementation of a trajectory-based merging capability (ref. 5) was 

instantiated in an application called the Airborne Spacing for Terminal Arrival Routes, ASTAR. This 

concept extended the self-spacing capability beyond the terminal area to a point prior to the top of the 

en route descent. This implementation was a trajectory based concept for the entire arrival spacing 

operation. The second revised implementation of this algorithm (ref. 6) was designed to support dependent 

runway operations and was referred to as ASTAR10. This second revision provided the ability to manage 

spacing against two traffic aircraft, with one of these aircraft operating to a parallel runway. This support 

for parallel dependent runway operations also included the computation of offset threshold crossing times 

based on the longitudinal distance offset between the two parallel runways and the ability to use diagonal 

distance spacing once the aircraft are on parallel approaches (ref. 7). This revision of ASTAR also had a 

rewritten control law relative to the previous version that was based on the original Advanced Terminal 

Area Approach Spacing (ATAAS) algorithm (ref. 3). The third revision of ASTAR, referred to as 

ASTAR11 (ref. 8), was a "lite" version of ASTAR10. In this revision, the ability to space against a second 

aircraft that is operating to a dependent runway was removed. Additionally, several implementation 

improvements were made based on observations from a pilot-in-the-loop simulation using ASTAR10. The 

fourth revision of ASTAR (ref. 9) was another update to ASTAR11. In this revision, the primary focus was 

to modify ASTAR to better support the flight deck interval management portion of the Air Traffic 

Management Technology Demonstration-1 (ATD-1) (ref. 10). Part of this modification included a change 

to the basic control law and the ability to recalculate an aircraft's vertical path if that aircraft is off of its 

preplanned vertical path. The fifth revision of ASTAR (ref. 11), referred to as ASTAR12, was an update to 

ASTAR11. In this fifth revision, the focus was to again modify ASTAR to better support the flight deck 



 

 

interval management portion of ATD-1, where the ATD-1 environment does not support the rich data 

exchange envisioned for the NextGen environment (ref. 12). Due to this data sharing limitation between 

the ground systems and the aircraft, a ground speed compensation term was added to the control law to 

account for some of the operational differences between the scheduled times of arrival used by the ATD-1 

ground tools and this airborne tool, where these differences are not communicated to the aircraft due to the 

voice-only ATC environment in ATD-1. For example, the ground tools typically include a schedule delay 

during high demand periods at an airport. Without knowledge of this schedule delay, the airborne system 

may issue speed commands that seem inappropriate to ATC. Additionally, a ground speed feedback term 

could eliminate some of the spacing error at the final approach fix (FAF) during situations where the traffic 

aircraft is flying a constant speed offset from the planned, nominal speed. 

 

In addition to the trajectory-based operation (TBO) concepts like ASTAR12, earlier work also examined 

the use of state-based concepts for Flight-deck Interval Management (FIM), i.e., airborne self-spacing. 

These stated-based concepts do not require any knowledge of the leading aircraft's planned route (refs. 13-

16) and typically use saved aircraft state data recorded from the leading aircraft. While these state-based 

concepts could easily support self-spacing operations, they could not provide the potential benefits in airport 

noise reduction and reduced fuel usage that are offered by TBO concepts. However, because these state-

based concepts do not require knowledge of the leading aircraft's intended flight path, they are not 

susceptible to path prediction errors encountered in the TBO concepts. 

 

To define FIM equipment requirements for near-term operational environments, the RTCA began 

developing a document that describes equipment requirements for FIM operations. Partly because the near-

term ATC environment does not support the data exchange necessary for an optimized TBO-based FIM 

operation, the RTCA defined several FIM capabilities and requirements that are better suited for this near-

term period. The primary FIM capabilities defined by RTCA require the use of an integrated TBO and state-

based concept for most FIM operations. The sixth (ref. 17) revision of ASTAR integrated a new state-based 

spacing capability into ASTAR's existing TBO concept, with additional logic to determine which of the 

two control laws to employ. The primary focus of this revision was to better support the evolving industry 

requirements described in the draft RTCA document titled Minimum Operational Performance Standards 

(MOPS) for Flight-deck Interval Management (FIM) (ref. 18), otherwise known as the FIM MOPS. The 

seventh (ref. 19) of ASTAR was developed for the Interval Management Alternative Clearances (IMAC) 

experiment (ref. 20). The FIM system requirements for the IMAC experiment were based on the RTCA 

FIM MOPS, with the MOPS requirements themselves evolving during this development period (ref. 21). 

The current, eighth revision of ASTAR, described in this document, corrects some performance deficiencies 

noted in the IMAC experiment and further aligns the design and performance of ASTAR13 with the FIM 

requirements of the FIM MOPS of reference 21. 

Overview 

The RTCA FIM MOPS describes five FIM clearance types: Maintain Current Spacing, Capture Then 

Maintain Spacing, Achieve-by Then Maintain, Final Approach Spacing, and IM Turn. ASTAR13 is 

designed to support all of these clearances except for IM Turn. Additionally, the spacing interval that is 

assigned by ATC, the assigned spacing goal, may be defined in either time or distance. Significant 

modifications were made in this revision of ASTAR to better support distance-based spacing. In all of the 

supported clearance types, ASTAR ceases providing speed commands once the ownship passes the planned 

termination point (PTP), which is a point on the ownship's route that is either designated by ATC or is part 

of the planned procedure. For all of the distance-based clearances, there is a special sub-mode of the state-

based control law, referred to as ground speed matching, that is used after the target aircraft passes the 

planned termination point. A simple description of each of the supported clearances is as follows: 

Maintain Current Spacing Clearance: The Maintain Current Spacing clearance, referred to as MAINTAIN, 

is intended to be used when ATC desires the FIM aircraft to maintain its current relative spacing, either in 
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time or distance, from its designated lead aircraft. For the Maintain Current Spacing clearance, only the 

state-based solution is used. The aircraft must be on a common path for this operation. At the initiation of 

this clearance, the measured spacing interval (MSI) at the time of initiation becomes the assigned spacing 

goal (ASG). In this operation, only the state-based algorithm is used as the control law. 

Capture then Maintain Spacing Clearance: From an algorithm standpoint, the Capture then Maintain 

Spacing Clearance, referred to as CAPTURE, is similar to the Maintain Current Spacing clearance with the 

exceptions that the ASG is specifically assigned by ATC and that the spacing error is initially allowed to 

be outside of the acceptable spacing tolerance, i.e., the capture phase. Only the state-based solution is used 

and therefore the aircraft must be on a common path for this operation. 

Achieve-by Then Maintain Clearance: A generic scenario for the Achieve-by Then Maintain Clearance, 

referred to as CROSS, would begin with the FIM and lead aircraft on different routes. ATC would issue the 

FIM clearance and spacing would begin using the TBO algorithm. For the time-based Achieve-by Then 

Maintain clearance, ASTAR uses a TBO control law until the Ownship arrives at the designated achieve-

by point (ABP) and the state-based control law is used afterward. For the distance-based Achieve-by Then 

Maintain clearance, ASTAR uses a TBO control law until the Traffic aircraft arrives at the achieve-by point 

and the state-based control law is used afterward. 

Final Approach Spacing Clearance: The Final Approach Spacing clearance type, referred to as SPACE, is 

similar to the Achieve-by Then Maintain clearance, with the achieve-by point and planned termination point 

co-located for the Final Approach Spacing clearance type. This clearance is only issued when one or both 

of the aircraft are on the final approach course. For this clearance, the achieve-by point is always the planned 

termination point, dictating that only the TBO algorithm within ASTAR is used for spacing. 

From a design standpoint, ASTAR can conceptually be thought of as two distinct self-spacing, speed 

control laws with logic to determine which control law is to be invoked. The first control law is the TBO 

concept of ASTAR12. The second control law is a newer, state-based concept based on a design described 

in reference 22, which is a constant-time delay (CTD) implementation. The mode selection criteria is shown 

in table 1 and the fundamental design of ASTAR is shown in figure 1, noting that a special submode of the 

CTD control law is used for distance-based operations once the target passes the PTP. 

 
 

Table 1. Control Mode Selection Criteria 

 

Clearance ASG type TBO CTD 

MAINTAIN 
Time 

NA 
Until ownship passes PTP 

Distance Until target passes PTP 

CAPTURE 
Time 

NA 
Until ownship passes PTP 

Distance Until target passes PTP 

CROSS 
Time Until ownship passes ABP Until ownship passes PTP 

Distance Until target passes ABP Until target passes PTP 

FINAL 
Time Until ownship passes PTP Until ownship passes PTP 

Distance Until target passes PTP Until target passes PTP 

 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. ASTAR13 basic design structure. 

A brief summary of the elements shown in figure 1 is provided as follows, with detailed descriptions in 

the subsequent sections: 

 All traffic state data: Input data that contains the ADS-B state data from all of the surrounding aircraft. 

This would obviously include the state data from the traffic to follow (TTF), if one was selected and its 

data were available. 
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 Ownship state and route data: Input data that contains the ownship's inertial and air references data, 

planned performance data, and augmented route information used in the generation of its 4-D path. 

 FIM instruction or clearance data: Input data that contains ASTAR control options and the FIM 

clearance information. If only the calculation of the MSI is desired, then only the identification of the 

TTF, i.e., the designated traffic aircraft, is required. 

 TTF state and route data: Input data that contains the designated traffic aircraft's inertial data, planned 

performance data, and augmented route information used in the generation of its 4-D path.  

 Process and record all traffic data: Stores approximately 10 minutes of 1 Hz ADS-B state data from all 

of the surrounding aircraft. 

 Calculate the MSI: If a TTF has been identified and both aircraft are on a common path, then calculate 

both the along-path distance and along-path time between the ownship and the TTF using the state-

based data. 

 Valid clearance data: As a minimum, valid clearance data would include the FIM clearance type, the 

identification of the designated traffic aircraft, i.e., the TTF, the identification of the expected routing 

for the TTF, and the assigned spacing goal. For an Achieve-by Then Maintain Clearance, the 

identification of the ABP would also be required. The PTP may be identified in the clearance or may 

be part of the procedure. 

 Calculate ownship and TTF trajectories: From the ownship and TTF route information, calculate the 

planned 4D trajectory for each aircraft. 

 Select control law: Depending on the spacing clearance type and the current positions of the aircraft on 

their respective routes, either the TBO or CTD control law is selected. 

 TBO control law: Use the TBO control law to calculate the speed commands. 

 CTD control law: Use the CTD control law to calculate the speed commands. 

 Output speeds and modes: Output various control mode state data and if appropriate, the speed 

commands. 

Trajectory-Based Operation Algorithm Implementation 

 

As with the previous versions of ASTAR, the overall concept for a trajectory-based solution for en route 

and terminal area self-spacing is fairly straightforward. If the 4D trajectory of an aircraft and its position 

are known, then the aircraft's position on its trajectory can be determined. By knowing the aircraft's position 

on its trajectory, the aircraft’s estimated time-to-go (TTG) to a point is known. To apply this to a time-

based, self-spacing concept, a TTG is calculated for both the TTF and for the ownship, noting that the 

trajectories do not need to be the same. The nominal spacing time, tnominal, and the spacing time error, terror, 

can then be calculated as:  

 

tnominal = TTGTTF  +  spacing goal , 

 

terror = TTGownship  –  tnominal , 

 



 

 

where the identification of the TTF aircraft and the determination of the spacing goal are performed by 

ATC.  

 

A required time of arrival (RTA) capability can also be implemented in a manner similar to the traffic 

spacing technique. In this case, 

 

tnominal = RTA – current time.  

 

From terror, a speed error value can then be calculated. A conceptual example for the determination of 

terror for traffic spacing, i.e.,  terror = TTGownship  –  tnominal , is shown in figure 2. 

 

 

 

 

 

 

 

 

Figure 2. Time error example. 

By design, the TBO portion of ASTAR13 is considered an achieve-by algorithm (ref. 23), i.e., it is 

designed to attain the spacing goal at the ABP. The algorithm does not exactly obtain and maintain the 

spacing goal until the ownship is near the ABP. Using this control method, the aircraft should be able to fly 

speeds that are closer to the nominal profile for a longer portion of the operation relative to a more stringent 

control method that would maintain a fixed spacing interval. 

The implementation of the TBO portion of ASTAR13 is comprised of five major elements: trajectory 

computation, current trajectory state data computation, the calculation of the spacing interval, the speed 

control law, and speed change minimization; noting that the trajectory and current trajectory state data 

computations are also performed when the CTD is used for speed control. Details of these elements are 

provided in subsequent sections. 

Trajectory Computation 

General 

The prototype system developed at the NASA Langley Research Center uses a standalone trajectory 

generator that calculates a full 4D trajectory from a 2D path specification. Reference 24 provides a 

description of the latest documented version of this algorithm. The trajectory definition begins with a simple 

2D path definition along with relevant speed and altitude constraints. The 2D path definition is typically an 

augmented traditional Standard Terminal Arrival Route (STAR) with a continuous connection to an 

instrument approach procedure. The trajectory generator then computes a full 4D trajectory defined by a 

series of Trajectory Change Points (TCP's). This standalone approach was developed for two reasons. First, 

a near-term implementation separate from the flight management system (FMS) was considered to be more 
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practical from a development and implementation cost perspective. Second, since ASTAR needs to 

calculate the trajectory for the TTF, the additional complexity of calculating the trajectory for the ownship 

was minimal. Neither of these reasons, however, would preclude use of the FMS for providing the ownship 

trajectory into ASTAR nor the use of a data linked estimated time of arrival (ETA) or TTG from the TTF. 

One of the major difficulties in computing a 4D trajectory involves the calculation of the length of the 

ground path during a turn. The turn radius can change due to the presence of wind or changes in the aircraft’s 

specified speed, affecting the length of the ground path. This change in the path length can then affect the 

distance to a deceleration point, which then affects the turn radius calculation. To accommodate this 

interaction, the trajectory calculation uses a multi-pass technique when generating the 4D path with the first 

pass generating a close approximation to the TCP's based on the computed ground speeds. The following 

iterations then use the input from the previous pass as a starting point to refine the solution. 

In conjunction with the basic 4D calculation, ASTAR preprocesses the trajectory input data. Depending 

on the situation, ASTAR may update the following generic trajectory parameters: ownship and TTF final 

approach speeds, initial cruise altitude and speed, differences between the predicted and actual top of 

descent point, and differences in wind forecast data. 

Final Approach Speed 

Two sets of independent options were developed for situations where the end of the flight path was the 

runway threshold. The first option is designed for the situation where the ABP is the runway threshold, 

noting that this situation is not valid in the current FIM MOPS. To support this first option, the use of an 

achieve-by algorithm coupled with the operational requirement to achieve a stabilized approach means that 

the algorithm must compensate for differences in the TTF's and the ownship's actual final approach speeds. 

ASTAR has the ability to modify each aircraft's trajectory data by substituting the individual aircraft's 

planned final approach speed for the trajectory's generic runway threshold crossing speed. By using the 

individual aircraft's planned final approach speed, the TTG calculations explicitly compensate for the final 

approach speed differences between the spacing aircraft.  

The second option gives ASTAR the ability to support several different operational techniques used to 

determine where the final approach speed is achieved. In the generic case, the final deceleration starts at a 

point prior to the runway threshold, causing the aircraft to achieve its final approach speed as it crosses the 

runway threshold. This baseline technique does not enable stabilized approaches and is not typical for 

transport aircraft approaches; thus, ASTAR provides three other choices for final approach speed initiation. 

These choices are: 

 Begin the final deceleration at the waypoint that is designated as the final approach fix (FAF). This is 

the default behavior for the majority of the research studies using ASTAR. 

 Begin a deceleration such that the aircraft reaches its final approach speed at a specific altitude, e.g., to 

be at the final approach speed at 1000 feet (ft) above the runway's elevation, which is also the minimum 

requirement for instrument approaches in transport aircraft (ref. 25). To support this option, a special 

waypoint is included in the trajectory input data and is placed between the runway threshold and the 

FAF waypoint. Only the crossing altitude and crossing speed data are included in this special waypoint's 

data and the trajectory generator calculates its position on the horizontal portion of the path. 

 Begin the final deceleration at a point prior to the FAF such that the aircraft just achieves its final 

approach speed as it crosses the FAF, noting that transport category aircraft do not normally operate in 

this manner. 



 

 

Initial Cruise Altitude and Speed 

A second change that ASTAR may make to the ownship's or TTF's trajectory input data is to substitute 

the individual aircraft's actual cruise altitude and Mach for the initial, generic altitude and Mach specified 

in the basic augmented 2D path. This change will only occur at the initiation of a new 3D path and with the 

aircraft's current altitude and Mach matching a relevant data set being provided to ASTAR. That is, for the 

ownship, the current altitude and Mach of the aircraft must match a special cruise altitude and Mach data 

set being sent to ASTAR. For the TTF, this special data set was estimated from the TTF's ADS-B state data. 

Top of Descent Monitoring 

The FMS may calculate and the aircraft may fly from a top-of-descent (TOD) point that is appreciably 

different than the generic TOD estimated by the trajectory generator. Since this difference in the TOD point 

can introduce a significant error into the estimation of the aircraft's ground speed during this descent and 

therefore, lead to a significant error in the aircraft's TTG, ASTAR monitors the conformance of the aircraft 

to its predicted TOD point. If the aircraft begins its descent from cruise before the point that ASTAR 

predicted, ASTAR will calculate the actual, current descent angle based on this actual TOD and the next 

altitude crossing restriction, replace the generic descent angle in the augmented 2D path data with this new 

value, and then recalculate the 4D path. A similar technique is used for a late descent except that ASTAR 

may recalculate the 4D path several times, depending on how far beyond the originally estimated TOD 

point that the actual TOD occurs. 

Recalculation of the Vertical Path 

Similar to the problem noted in the section Top of Descent Monitoring, if an aircraft is significantly far 

from its planned vertical path, the difference between the planned ground speed and the actual ground speed 

can be large. This difference in ground speed can then produce a significant error in the aircraft's TTG. 

Several previous versions of ASTAR allowed the vertical path error, i.e., the difference between the planned 

altitude along the path and the aircraft's actual altitude at that horizontal position on the path, to reach 6,000 

ft, at which time it was assumed that the planned path was no longer valid. 

In this version of ASTAR, once an aircraft reaches 4,000 ft of vertical path error, ASTAR will attempt 

to construct a new 4D path beginning at the aircraft’s current estimated position on the original horizontal 

path. The altitude constraints are then deleted for any downstream waypoint that has an altitude constraint 

that is higher than the altitude of this new, initial waypoint. Lastly, ASTAR determines if the first altitude 

constraint following the initial waypoint can be met. If this constraint cannot be met using the original 

crossing angle, a new crossing angle is calculated based on a linear descent between the initial waypoint 

and the constraint. This new angle is used in subsequent 4D trajectory calculations. 

Atmospheric Forecast Data 

The last modification that ASTAR may apply to the trajectory input data is to modify the original 

atmospheric forecast data provided to the algorithm. Atmospheric data into and within ASTAR is based on 

waypoint locations instead of a typical wind grid. It was assumed in the design of ASTAR that a highly 

developed atmospheric forecast model could be used to provide vertical profile wind data at the waypoint 

locations. Of special importance to ASTAR would be the atmospheric estimation at the altitude that the 

trajectory would be crossing the waypoint's position. It was assumed then that the externally provided 

waypoint atmospheric data would provide reasonably accurate data that would bound the expected 

waypoint trajectory crossing altitude. Up to 10 altitude atmospheric data sets (altitude, wind direction, wind 

magnitude, and temperature deviation) per waypoint may be input into ASTAR, along with a barometric 

setting value for that waypoint. From this initial, external input ASTAR may provide both local and global 

modifications to the forecast atmospheric data provided to the trajectory generator. 
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While up to 10 altitude data sets per waypoint may be input into ASTAR, ASTAR itself maintains an 

internal atmospheric model that uses local aircraft-sensed atmospheric data in addition to the input waypoint 

atmospheric data. This internal atmospheric model maintains a 1000 ft incremental vertical profile, from 0 

ft to 60,000 ft, for every waypoint on all of the paths. This incremental vertical profile contains a "gain" 

value, the original input wind and temperature forecast for this altitude, a measured wind and temperature 

for this altitude, and the current estimated wind and temperature forecast for this altitude. Initially, the gain 

values are all set to zero and the external wind and temperature forecast is used to populate the input wind 

and temperature forecast for each altitude in its profile. An altitude-based linear interpolation is used to 

populate the altitudes that do not directly have any input value.  

Measured atmospheric values may be adjusted using local or global data. For the local data case, the 

ownship's wind derivation is used to update the estimated wind forecast. In this case, wind profiles for every 

waypoint within 50 nautical miles (nmi) of the ownship's horizontal position may be modified. For these 

waypoints, if the ownship is at or above 12,000 ft, then each of the 1000 ft incremental vertical profile data 

sets may be modified for altitudes within ±5000 ft of the ownship's altitude. For the situation where the 

ownship is below 12,000 ft, then each of the 1000 ft incremental vertical profile data sets may be modified 

for altitudes within ±3000 ft of the ownship's altitude. Whether a specific 1000 ft incremental vertical profile 

data set is modified depends on the current gain value for that data set and the gain value computed for the 

current ownship's position relative to this data set. The ownship's current gain is calculated as follows: 

xownship =  relative horizontal position of ownship (in nmi) to the wind profile point and 

zownship =  relative vertical position of ownship (in ft) to the wind profile point. 

if  (xownship > 50 nmi) then  gainhorizontal = 0,  

otherwise  gainhorizontal = 1 - (xownship / 50 nmi). 

if (altitudeownship ≥ 12,000 ft) then 

if (zownship > ±5000 ft) then,  gainvertical = 0,  

otherwise  gainvertical = 1 - absolute value of (zownship / 5000 ft). 

otherwise 

if (zownship > ±3000 ft) then,  gainvertical = 0,  

otherwise  gainvertical = 1 - absolute value of (zownship / 3000 ft). 

ownship's current gain = gainhorizontal * gainvertical . 

If the ownship's computed gain is greater than the gain value for the data set, then the estimated 

atmospheric data are updated with the new gain value and measured atmospheric data. The new estimated 

atmospheric data are computed based on a double linear interpolation between the original forecast data 

and the measured data. The double linear interpolation uses the relative horizontal position, the relative 

vertical position, and the previously calculated, associated gain values. 

ASTAR has the option to include a global wind updating capability in its wind forecast update. In this 

case, ASTAR uses time correlated ADS-B state vector and air referenced velocity reports from all 

surrounding aircraft to generate a local wind estimate at each aircraft's position. The estimated wind forecast 



 

 

is then updated in the manner previously described. This option is not used in the ATD-1 implementation 

due to communication constraints in the near-term national airspace system. 

To exclude erroneous measured wind values which can typically occur when an aircraft is turning, a 

simple track-file for each aircraft is maintained for each aircraft's true ground track. If this ground track 

value is changing, based on the aircraft's current and previous track angle values, the aircraft's wind data 

are excluded from the wind forecast update. In other words, if an aircraft is turning, its wind estimation is 

not used in the internal forecast. 

Once a new internal forecast has been generated, ASTAR selects the best altitudes for each waypoint, 

based on bounding the trajectory crossing altitude, to update the atmospheric data profile in the trajectory 

input data. To determine if a new trajectory calculation is required due to a change in the forecast 

atmospheric data, a waypoint-by-waypoint comparison between the wind data profiles of the current 

trajectory wind data and the internal forecast data is performed. If there is a significant difference between 

these data sets, then the trajectory profile atmospheric data are updated using the internal wind forecast data 

and a trajectory recalculation is performed. The determination of a significant difference between these data 

sets is based on the following calculation for each wind-altitude point in the trajectory: 

if the difference in wind speed is greater than the variable “s”, then the difference is significant 

or 

if the wind speed of the trajectory data is greater than s and the difference in wind angle is 

greater than the variable “a”, then the difference is significant, where 

if the distance to go for the ownship, DTGownship , is greater than 200 nmi, s = 5 kts and a = 10°, 

otherwise if DTGownship is greater than 20 nmi, s = 3 kts and a = 5°, 

otherwise s = 1.5 kts and a = 5°. 

Additionally, if the barometric altimeter setting value from the internal forecast data and the trajectory 

atmospheric data are not equal, a trajectory recalculation is performed.  Lastly, if the internal forecast 

temperature value at the ownship's current position differs from the trajectory temperature data by more 

than 5 degrees, then the trajectory profile atmospheric data is updated and a trajectory recalculation is 

performed.  

Trajectory State Data Computation 

The trajectory state data are the trajectory data, e.g., altitude, CAS, ground speed, and ground track, at a 

point on the trajectory. By design, speed and altitude changes occur linearly between TCP's as defined by 

the trajectory generator. Because of this, the determination of a trajectory state based on an aircraft’s 

position is reasonably easy to calculate. First, the determination of the relative segment, i.e., between which 

two TCP’s does the aircraft's position lie, must be calculated. For the example shown in figure 3, TCP1 is 

the first TCP on the trajectory, which is typically a high-altitude, cruise waypoint, and TCPn is the last TCP, 

which is typically the runway threshold. Beginning with the first TCP segment, i.e., the segment defined 

by the TCP pair TCP1 and TCP2, a determination is made if the aircraft's position lies angularly between 

the two TCP's and if so, is the orthogonal distance (fig. 4) between the aircraft's position and that segment 

a minimum for the trajectory? In this example, the aircraft is forward of TCPi (fig. 5), in the direction of 

the trajectory's ground path, and behind TCPi+1 (fig. 6). 
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Figure 3. Trajectory state estimation. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Orthogonal distance measurement. 

 

 

 

 

 

 

 

 

 
Figure 5. Aircraft's position forward of TCPi. 

 

 

 

 

 

 

 

 
Figure 6. Aircraft's position behind TCPi+1

The trajectory state distance, i.e., the distance-to-go (DTG), is then simply calculated from the distance 

to TCPi+1 (DTGi+1) plus the relative distance between TCPi+1 and the projection of the position unto the 

segment (this relative distance is shown as d in figure 7). The trajectory altitude is then computed using a 

simple linear interpolation between the distance between the trajectory state point (d in figure 7) and TCPi+1 

and the distance between TCPi and TCPi+1, i.e., DTGi - DTGi+1. For example, the altitude, alt, at a position 

pd on the trajectory can be calculated as: 

x = d / ( DTGi - DTGi+1 ) 

altd = alti+1 + x * (alti   -  alti+1) 

 

 

 

 

 

 

Figure 7. Distance-to-go measurement. 

  



 

 

Since speed changes are constant between TCP's, the trajectory state speeds and time at pd may be 

calculated using the linear equations of motion. For example, the CAS at pd, CASd, may be calculated as 

follows: 

CASd = √𝐶𝐴𝑆𝑖+1
2    +   𝑥 ∗ (𝐶𝐴𝑆𝑖

2  −   𝐶𝐴𝑆𝑖+1
2 ) 

The determination of the trajectory state from the TTG can be computed using a similar technique. 

Calculation of the TBO Spacing Interval 

The assigned spacing interval provided by ATC, the assigned spacing goal (ASG), may be given to 

ASTAR in either time or distance. An explanation of these two spacing interval types is provided in the 

following three sections. 

TBO Time Interval 

The ASG is the interval that ATC would assign for the spacing aircraft to obtain at the ABP against the 

assigned TTF. The spacing interval for ASTAR is a time-reference interval against a TTF that is typically 

landing on the same runway as the ownship, although the ATC assigned ABP could be almost any point on 

the route. The operational goal in this situation is for the ownship to cross the ABP at the ASG time interval 

after the TTF crossed the ABP.  

Internal to the algorithm, once the TTF crosses the ABP, the adjusted spacing time interval for figure 8 

is then calculated as: 

adjusted spacing time interval =  

 adjusted spacing time intervaloriginal  - (current time - ABP crossing timeTTF ), 

 

where the adjusted spacing time intervaloriginal is the ASG along with any other adjustments, e.g., runway 

offset, and ABP crossing timeTTF is the time that the TTF crossed the ABP.  

TBO Distance Interval 

In the distance spacing interval case, the operational goal is for the ownship to be at the ASG distance 

behind the TTF just as the TTF crosses the ABP. For this case, the distance spacing interval is converted to 

a time-based interval using the speeds associated with the 4D trajectory. The applicable spacing time that 

is used by the control law is calculated from the 4D trajectory by determining the difference between the 

ownship’s trajectory TTG at the ASG distance from the ABP and the time-to-go on the ownship's trajectory 

at the ABP. The conversion of this distance-based ASG to a time interval is calculated as:  

adjusted spacing time interval = TTGownship at (ABP DTG + ASG distance) - TTGownship at ABP . 

Once the TTF has crossed the ABP, TBO-based distance spacing is not valid and therefore the calculation 

of an adjusted spacing interval after the TTF has crossed the ABP is not required. 

TBO Speed Control Law 

The use of the trajectory calculations in the speed control law is relatively straightforward. The time error 

term calculation described previously,  

 

terror = TTGownship  –  tnominal  , 
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is used in the speed control law (fig. 8). The overall design concept for this control law was to command 

speeds within ±15% of the nominal speeds, providing some level of speed predictability to the flight crew 

and to ATC. This technique also eliminates the unbounded speed command problem noted in reference 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Speed control law. 

The value of g1 (fig. 9), which is used to gain schedule the speed error term, is: 

 

if the ASG is time-based, DTGgain = DTGownship - DTGABP to end-of-path 

 

otherwise, DTGgain = DTGownship - ASG - DTGABP to end-of-path 

 

if  (DTGgain > 100 nmi) then, g1 = 0.375,  

 

otherwise if  (DTGgain > 40 nmi) then g1 = 0.375 + 0.125 * (100 - DTGgain) / 60, 

 

otherwise if  (DTGgain > 20 nmi) then g1 = 0.5 + 0.5 * (40 - DTGgain) / 20, 

 

otherwise if  (DTGgain > 5 nmi) then g1 = 1.0 + 0.5 * (20 - DTGgain) / 15, 

 

otherwise  g1 = 1.5. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Gain schedule, g1. 

The value of g2 is 0.15. This limit filter limits the speed-error value to ±15% of the ownship's nominal 

trajectory speed. At 10 nmi, these values produce 1.5 kt of speed correction (fig. 9) for one second of time 

error. 

 

For the case of the RTA, the nominal spacing time is simply: 

 

tnominal   = RTA – current time 

 

where this value is substituted for the nominal spacing time from the TTF data and the TTF ground speed 

compensation term is set to zero in figure 8. 

In ASTAR, ground speed compensation (fig. 10) is used in the TBO control law (fig. 8) as a way to limit 

the ownship closing too quickly on the TTF when both are relatively far from the airport. Ground speed 

compensation in this implementation is only used when the TTF is flying a speed that is slower than the 

nominal ground speed and was meant to compensate for the accepted ATC tendency to slow aircraft below 

the nominal arrival speeds when they are farther from the airport.  

 

 

 

 

 

 

 

Figure 10. Ground speed compensation. 

In this ground speed compensation, the difference between the TTF's actual and planned ground speeds 

is input into a first order filter, with this first order filter, fof, being used to dampen out short term variability 
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and noise within the TTF’s ground speed deviation value. The time constant, t, used in this filter is as 

follows: 

if  (DTGgain >30 nmi) then, t = 60 sec,  

otherwise if  (DTGgain ≤ 0) then t = 0, 

otherwise t = 30 sec + DTGgain (sec / nmi),  

 

where DTGgain is the same value as used in the previous speed error term calculation. The output of this first 

order filter value is then converted to a CAS term using the ownship's current altitude. This value is then 

gain limited, with a g3 limit term of +0 to -0.15. This limit filter limits the compensation value to a range 

between +0% to -15% of the ownship's nominal trajectory speed. 

To eliminate the ground speed compensation input into the basic control law as the ownship approaches 

the ABP, a gain schedule term, g4, based on the TTF's distance to the ABP, DTGTTF to ABP, is used. The g4 

term is defined as follows: 

if  (DTGgain > 40 nmi) then g4 = 1.0,  

otherwise if  (DTGgain < 20 nmi) then, g4 = 0, 

otherwise g4  = (DTGgain - 20 nmi) / (20 nmi) 

Because the operational envelope for this algorithm can include high altitude Mach portions, both the 

trajectory calculations and the TBO control law accommodate Mach. If the aircraft is operating in a Mach 

regime, then the Mach value from the trajectory speed, converted to CAS, is used in the control law. The 

commanded CAS from the control law is then converted to a Mach command for output. Using this 

technique, with no spacing error and no ground speed compensation input, the control law provides a single 

speed command during a constant Mach descent. 

Finally, if the planned path terminates at the runway, there comes a point on final approach when the 

ownship needs to decelerate to its final approach speed and speed changes to correct spacing errors are no 

longer appropriate. The earlier subsection titled ‘Final Approach Speed’ describes the operational 

techniques for terminating active spacing and transitioning to the aircraft's planned final approach speed. 

An example of how this capability is supported in ASTAR is shown in figure 11. In a purely nominal 

situation, i.e., where there was no spacing error, the speed command would simply follow the nominal 

trajectory speed profile with the deceleration to the aircraft's final approach speed beginning at the nominal 

point on the trajectory. If the commanded speed were faster than the nominal speed (fig. 11), then the 

deceleration to the final approach speed would need to occur earlier. To accommodate this situation, 

ASTAR projects the final approach speed deceleration backwards from the nominal beginning of the final 

deceleration segment. Once the commanded speed point intercepts this deceleration line, ASTAR 

transitions into a final speed mode and provides a speed command that equals the appropriate speed along 

this deceleration line. An analogous technique is used for the situation where the commanded speed prior 

to the final deceleration is slower than the nominal speed (fig. 12). In this case, ASTAR would again 

maintain the original commanded speed until the commanded speed point intercepts this deceleration line, 

with the intercept point being after the nominal beginning of the deceleration segment. 

  



 

 

 

 

 

 

 

Figure 11. Final approach speed deceleration from an initially faster commanded speed. 

 

 

 

 

 

Figure 12. Commanded speed profile from an initially slower commanded speed. 

TBO Speed Change Minimization and Lag Compensation 

One of the most significant design requirements for the last three versions of ASTAR was the ability to 

support a low cost, aircraft retrofit option with very minimal integration with other aircraft systems. In this 

option, it was assumed that the speed command value would be presented to the pilot and the pilot would 

then change the speed target of the autothrust system to match the commanded speed from ASTAR or, less 

likely, directly track the speed command through manipulation of the thrust levers. While this option is 

probably less than ideal from both a human factors and speed tracking performance perspective, there has 

been interest from the aviation community in providing a relatively low cost option (ref. 26) for airborne 

self-spacing. To support this option, from a pilot workload standpoint it was deemed beneficial to minimize 

the number of speed command changes presented to the pilot. Several capabilities are provided within the 

algorithm that attempt to balance the number of speed changes against the spacing performance. The 

implementation of these capabilities has led to a considerable increase in complexity of the ASTAR 

algorithm. 

TBO End Speed Estimation 

In this implementation of ASTAR, the pilot is expected to implement the algorithm's speed command by 

matching the aircraft's autothrust command to the ASTAR speed command. During a programmed 

deceleration segment without any spacing error, e.g., a change in the nominal speed profile from 210 kt to 

170 kt (fig. 13), the ASTAR speed command would change continuously during the deceleration segment, 

with the command speed following the nominal speed profile. To reduce pilot workload so that the pilot 

did not need to continuously monitor the speed command and continuously change the input to the 

autothrust system, a secondary speed command is output by ASTAR for display to the pilot. This secondary 

speed command, termed the end speed command, is an estimate of the speed command at the end of the 

speed change. In the example of figure 13, the end speed command would change from 210 kt to 170 kt as 

the aircraft reaches the start of the 210 to 170 kt deceleration segment. For long deceleration segments, the 

end speed command could be used first by the pilot to set the autothrust speed target and then the basic, 
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instantaneous speed command could be used to modulate the thrust or aircraft's drag devices to better follow 

the decelerating speed command profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Example speed change with no spacing correction. 

A similar situation would occur in the presence of a required speed correction due to a spacing error or 

RTA adjustment. In figure 14, the nominal speed profile is the same as in figure 13, but there is now a 

positive 10 kt spacing correction. Prior to the start of the nominal 210 to 170 kt deceleration segment, both 

the speed command and the end speed command would be 220 kt. At the start of the deceleration segment, 

the speed command would be 220 kt while the end speed command would change to 180 kt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Example speed change with a positive 10kt spacing correction. 

TBO Nominal Deceleration Roll-In Logic 

During the initial evaluation of ASTAR10 (ref. 27), it was determined that the lag in response to a speed 

command change by the simulated aircraft was problematic and contributed to undesirable spacing 

performance, especially during situations where several aircraft were spacing one after another, i.e., a 

spacing string. To reduce this problem at the start of a planned deceleration segment in the nominal profile, 

where this response lag was most apparent, predictive, nominal speed roll-in logic was added to the speed 

command. An example of a deceleration in the nominal profile without this roll-in logic is shown in figure 

15. In this example, there is no speed error, so the instantaneous speed command would match the nominal 

speed profile. Additionally, the change in the end speed command would occur at the deceleration point on 

the nominal speed profile. Therefore, at 300 seconds TTG in the example of figure 15, the end speed 

command would change from 210 kt to 170 kt and the instantaneous speed command would begin to 



 

 

decrease at a rate equal to the change in the nominal speed profile. Using a 3 second initial look-ahead and 

a 12 second roll-in half period for the end speed command, the equivalent situation is shown in figure 16 

with the roll-in logic. In this figure, the end speed command would change from 210 kt to 170 kt 15 seconds 

earlier relative to the basic profile. The instantaneous speed command would begin changing speed 3 

seconds after the end speed change and would change in a manner such that the nominal deceleration rate 

and speed would just match the nominal command speed and deceleration rate 24 seconds later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Nominal speed change without roll-in logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Nominal speed change with roll-in logic. 

TBO Speed Command Quantization 

Another means for reducing the number of speed changes in ASTAR was to use a quantization technique 

on the end speed command and, except during speed changes, on the instantaneous speed command. By 

applying a quantization to the speed command prior to its output, the end speed command changes only 

occur in discrete intervals, thus reducing the number of commanded speed changes. For example, if the 

speed command (fig. 8) was to change from 210 kt to 172 kt and a 5 kt quantization value was used, then 

the following would occur: 

 

 Immediately prior to the speed change, the output values for both the speed command and the end speed 

command would be 210 kt. 
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 At the start of the speed change, the output value for the speed command would slowly begin to 

decrease, e.g., 209, 208, 207 kt. The output value for the end speed command, because it is being 

discretized in 5 kt increments by the quantization process, would change to 170 kt. 

 

 At the end of the speed change, the output values for both the speed command and the end speed 

command would be 170 kt. 

 

Hysteresis was included in the quantization logic to reduce dithering of the end speed command when the 

command speed is near the breakpoint for the quantization value. The quantization value used in the ATD-

1 implementation is either 5 kt or 10 kt, with the value determined as follows: 

 

 The default value is 10 kt. 

 

 If the FIM aircraft is within 5 nmi of the planned termination point and the absolute value of the time 

error is less than 9 sec, then the quantization value is 5 kt. 

 

 Once the quantization value is 5 kt, it is locked at that value. 

Look-Ahead Speed Change Inhibit 

To eliminate a speed command increase prior to a programmed deceleration segment, i.e., where the 

planned trajectory specifies a deceleration, a look-ahead speed change inhibit option was used. For example, 

if a 10 second look-ahead interval was used, the algorithm would look ahead by 10 seconds in the nominal 

speed profile (fig. 17) to determine if a change onto a deceleration segment would occur. Within this 10 

second interval, any speed command increase would be inhibited. If the nominal deceleration roll-in logic, 

described in the previous section, is used, its 12 second roll-in interval would be added to the 10 second 

look-ahead interval. Thus, the speed change inhibit logic would be applied 22 seconds prior to the 

deceleration point on the basic, nominal speed profile. The look-ahead inhibit interval was calculated as 

follows: 

 
if  (DTGownship > 120 nmi) then t = 60 sec,  

otherwise if  (DTGownship > 40 nmi) then t = 30 sec + 30 sec  ((DTGownship - 40 nmi) / 80 nmi), 

otherwise if  (DTGownship > 10 nmi) then t = 15 sec + 15 sec  ((DTGownship - 10 nmi) / 30 nmi), 

otherwise t  = 10 sec, 

then the look-ahead interval = t + roll-in interval, with roll-in interval = 12 sec for CAS 

commands, 0 sec for Mach commands. 

 

 

 

 

 

 

 
Figure 17.  Look-ahead speed-up inhibit. 

  



 

 

Stated-Based, Constant-Time Delay Algorithm 

The fundamental concept used for the state-based algorithm in ASTAR13 was derived from previous 

work at NASA Langley (refs. 13, 15, and 16). The state-based algorithm in ASTAR13 is a type of time-

history algorithm referred to as a constant-time delay (CTD) algorithm. This CTD algorithm was originally 

designed to minimize the measured time spacing interval, which is defined as the difference in time between 

when the TTF crossed the ownship’s current along-path position and the current time. This fundamental 

concept is shown in figures 18 and 19. In these figures, the TTF is ahead of the FIM or ownship aircraft. 

The TTF is continuing to reduce its speed and the assigned spacing goal is such that the FIM aircraft is 

behind its nominal position. In figure 19, the state-based, CTD algorithm would, for this situation, calculate 

the spacing error, calculate an appropriate speed correction value (i.e., the speed correction due to spacing 

error), and add this correction value to the traffic's speed history value that occurred at the ownship's current 

position. This new value would be the resulting intermediate speed command. With no spacing error, the 

intermediate speed command would obviously be the same as the traffic's speed at that point on the path. 

 

 

 

 

 

 

 

 

Figure 18. CTD nominal profile data. 
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Figure 19. Time-based, CTD spacing error and speed correction. 

This latest adaptation of the CTD algorithm includes several new innovations that better support the near-

term operational environment and the RTCA FIM MOPS. As part of this MOPS adaptation, the previous 

portion of the CTD software that supported a distance-based ASG was extensively modified. When the 

ASG is distance-based, the CTD control is basically a station-keeping algorithm, with the speed correction 

added to the traffic's current speed to calculate a speed command (fig. 20). It can be thought of as two 

aircraft connected by a string, with the string length being equal to the desired spacing distance. In this 

situation, when the TTF changes speed, the FIM aircraft should make the exact corresponding speed 

change. Unlike the TBO control law or the CTD control law with a time-based ASG, all of which use a 

nominal or reference speed that is relative to the ownship's position, the nominal speed is simply the traffic's 

current speed. With no spacing error, the intermediate speed command would be the same as the traffic's 

current speed. 

 

 

 

 

 

 

 

 

 

Figure 20. Distance-based, CTD spacing error and speed correction. 

A flow diagram of this CTD algorithm is shown in figure 21. The subsequent text will briefly describe 

several general design considerations for each block in this diagram. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. CTD block diagram. 

CTD Design Considerations and General Implementation Notes 

One of the more significant differences between the original design of ASTAR and the CTD portion of 

ASTAR13 is the derivation of when speed changes occur. In the original design, which was only TBO, it 

was assumed that the actual speed control would be conducted in a manner such that ASTAR would be 

directly driving the aircraft's autothrust system, i.e., that the ASTAR speed command would be directly 

integrated in some manner with the aircraft's speed control system. Because of this, what is considered the 

intermediate or instantaneous speed command is continually calculated, where this speed command could 

then continuously adjust the autothrust speed. Since the initial development of ASTAR, however, the 

industry focus and operational testing has moved toward a low cost solution with the FIM equipment no 

longer expected to be integrated with the aircraft systems. Because of this move from an integrated solution 

toward a federated, stand-alone implementation, an additional speed command was added to the last two 

versions of ASTAR (see the End Speed Estimation section in this document). The additional speed 

command was the end commanded speed, which is the projected or expected speed command at the end of 

a change in the commanded speed. The end commanded speed is expected to reduce pilot workload in the 

stand-alone implementation if it is changed in discrete increments (see the Speed Command Quantization 

section in this document). It is the determination of the point at which the end command speed quantization 
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(end command speeds in discrete increments) occurs and the calculation of the CTD algorithm’s end 

commanded speed that is innovative in this solution. These capabilities will be further described in the 

speed change description sections. A representative plot of the end commanded speed is given in figure 22. 

This may be compared with the plot of intermediate speed command given in figure 19. Similar to the TBO 

control law, the CTD control law can accommodate Mach commands. If the aircraft is operating in a Mach 

regime, then Mach values, converted from their respective CAS values, are used in the control law. For 

simplicity, these Mach conversions are not shown in this document. 

 

 

 

 

 

 

 

 

Figure 22. CTD end speed command. 

A conversion process that was found to be beneficial during early testing of the CTD algorithm is in 

regard to how the traffic's ground speed is both averaged and converted to airspeed (CAS). Because the 

resulting speed commands are required to be CAS values, attention must be taken in the conversion of the 

ground speeds derived from the traffic's ADS-B data into a CAS values for use by the control law. All 

ground speed to CAS conversions used by the CTD algorithm use the following method, where the ground 

speed is from a position p in the traffic's time history data: 

CAS = CAS conversion( averaged ground speedp + headwindp , 
  altitude, 

  temperature), 

where CAS conversion is a standard true airspeed to CAS conversion; averaged ground speed is a derived 

and averaged ground speed value from the traffic's time history data at position p (see section Process and 

Record Traffic Data); the headwindp is the current wind speed for the ownship, adjusted for the difference 

between the current wind angle and the traffic's ground track angle at position p, such that: 

headwindp = ownship's current wind speed *  

 cosine(ownship's current wind angle - traffic's ground track at p); 

altitude = altitudep + altitude bias,  

where altitudep is the altitude value from the traffic's time history data at position p and the altitude bias is 

the ownship's altitude minus the traffic's altitude (ownship's altitude - traffic's altitude) at the ownship's 

position, and temperature is the air temperature for the ownship. 



 

 

Data values for variables are retained between iterations of the CTD algorithm. If the initial values for 

these data values are not explicitly described, then it should be assumed that they are initialized to some 

reasonable value. Because of the complexity in describing several sections of this CTD algorithm, pseudo-

code is included to enhance understandability. Nesting levels in the pseudo-code description are denoted 

by the level of indentation of the document formatting. Additionally, long sections of logic may end with 

end of statements to enhance the legibility of the text. Key data variables for the CTD in the pseudo-code 

descriptions are: 

CAS1: the intermediate speed command prior to any limiting or quantization. 

CAS2: a quantized value of CAS1. 

CAS Step Size: the quantization size or grain size in the quantization of the command speed. 

Deceleration Start Speed: the speed at the start of a deceleration segment. 

End Speed Command: the output end speed command that includes speed limiting. 

Interim Speed Command: the interim, intermediate speed command prior to speed limiting. 

Interim End Speed Command: the interim, end speed command prior to speed limiting. 

In Deceleration: a status variable indicating that the changes to the intermediate speed command are 

occurring along a decelerating portion of the traffic's speed history profile. 

Nominal History Speed: the CAS value used as the current nominal speed in the calculation of the 

Interim Speed Command. 

Speed Command: the output intermediate speed command that includes speed limiting. 

Speed Error: the CAS correction that is applied to the nominal or profile CAS to calculate the 

intermediate speed command. 

A discussion for using a distance-based clearance is presented at the end of this section. Unless otherwise 

stated, the subsequent text addresses time-based clearance. 

Ownship State and TBO Data 

The ownship state data and trajectory data are inputs from the imbedded TBO algorithm. Valid TBO 

data are required for variables such as the DTG to the PTP and the nominal TBO profile CAS to the 

ownship's current position. 

FIM Clearance 

The FIM clearance information defines the information that uniquely specifies the clearance and 

specifically includes the assigned spacing goal (ASG), which is defined in either time or distance. 

All Traffic State Data 

The RTCA FIM MOPS allows the traffic aircraft’s time history information to be extrapolated when the 

IM clearance is initiated. This technique, however, will initially introduce large speed command errors if 

the traffic has not been in constant steady-state flight. One of the innovations in ASTAR13 is that it 

continuously monitors and records the traffic records for all of the surrounding aircraft. At the initiation of 
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the FIM clearance, the algorithm locates the basic ADS-B data for the aircraft that is now specified as the 

TTF in the FIM clearance and populates the CTD traffic history data records with these time-based data 

sets. 

Process and Record Traffic Data 

The CTD algorithm requires time history data from the TTF in order to calculate the measured spacing 

interval and calculate the speed that the TTF had when it was at the ownship’s current position. To ensure 

that the TTF’s time-history information is available when a new IM clearance initiates, ASTAR13 stores 

time history information for all aircraft that are broadcasting ADS-B data. Traffic data are normally stored 

at the reception of new ADS-B data, which occurs at approximately 1 Hz. In addition to the traffic's basic 

state data (data time, latitude, longitude, altitude, ground speed, and ground track), a pseudo distance-flown 

and an averaged ground speed variable are added to each record. The pseudo distance-flown variable is 

initialized to 0, with the distance correlated to the first, oldest data point for the traffic. The averaged ground 

speed variable is an averaging of the past 4 seconds of ground speed data. In lieu of the basic ground speed 

value, this value is used for all of the ground speed computations in ASTAR13 requiring the traffic's ground 

speed. 

Compute the Nominal Speed and the CAS Chunk Size 

Previous CTD concepts computed the speed command as: 

Intermediate Speed Command = Nominal History Speed + 

      speed correction due to the spacing error, 

where the Nominal History Speed is the traffic's speed history at the ownship's current position. What was 

found in previous ASTAR experiments, however, was that some speed command anticipation was required 

to overcome the time lag in the ownship's response to a change in the speed command. Based on previous 

experimental data, a 15 second lead compensation was found to be adequate. The computation of the 

Nominal CAS History Speed for a time-based ASG is then: 

Nominal CAS History Speed = CAS conversion(p),  

where p is traffic's time history data from 15 seconds in front of the ownship's current position. For a 

distance-based ASG, the Nominal History Speed is simply the traffic's current speed, with no lead 

compensation (fig. 20). 

The quantization value, used in the majority of the subsequent CAS calculations, is: 

CAS Step Size = 10kt, which is the default value, 

Determine if the FIM aircraft is within 60 sec of the PTP, 

if (TTGownship < (TTGPTP + 60 sec) then  

if (CtdChunkFlag = true) CAS Step Size = 5kt 

otherwise if (|SpcE| < 3 sec) then 

CtdChunkFlag = true 

CAS Step Size = 5kt, 



 

 

where CtdChunkFlag is initialized to false. 

Compute the Spacing Error 

If the ASG is time-based, the time spacing error is simply the difference between the MSI and the spacing 

goal: 

SpcE = MSItime  - ASGtime ,  

where the MSI is computed as 

MSItime = current time - history time when the TTF was at the FIM aircraft's proximate position. 

If the ASG is distance-based, a conversion for distance to time is used in the error calculation. The 

derived time spacing error is calculated as: 

pseudo-ASG time = current time - history time when the TTF was at a history distance equal to 

the ASG distance behind its current position, 

and the spacing error, using the TTG data from the TBO trajectory, is then: 

SpcE = TTGownship  –  (TTGTTF  +  pseudo-ASG time) 

 

The MSI is computed as 

MSIdistance = DTGownship to PTP – DTGTTF to PTP . 

Compute and Limit the Speed Error 

The calculation of the speed error value is based on the time spacing error, SpcE, and the gain schedule 

is based on the FIM aircraft's distance to the planned termination point (PTP) and the magnitude of the 

spacing error. This gain scheduling, as in the TBO portion of ASTAR13, is designed to reduce the 

sensitivity of the control law when the FIM aircraft was far from the PTP but provide a highly increased 

sensitivity when close to the PTP. This sensitivity adjustment is designed to reduce the number of speed 

command changes while providing high spacing accuracy at the PTP and ensuring that the spacing error is 

maintained within the required tolerance once captured. The actual gain scheduling logic contains heuristics 

to eliminate gain value flip-flopping at the schedule break points. The basic gain values are: 

if (|SpcE| > 30 sec) then gain = 0.5 

otherwise if (|SpcE| > 10 sec) then 

if (the FIM aircraft's distance to the PTP > 7.5 nm) gain = 0.5 

otherwise gain = 1.0 

otherwise 

if (the FIM aircraft's distance to the PTP > 7.5 nm) gain = 1.0 

otherwise gain = 1.5 

The speed error value is then: 
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if the ASG is time-based, Speed Error = gain(kt / sec) * SpcE , 

otherwise Speed Error = 2 * gain(kt / sec) * SpcE , 

To ensure that the speed correction meets the FIM MOPS requirement to capture the spacing error at a 

minimum rate 3 sec per minute, the following test is performed: 

if ((Ctd3SecFlag = true) and (|SpcE| < 15 sec)) then Ctd3SecFlag = false 

otherwise if ((Ctd3SecFlag ≠ true) and (|SpcE| > 20 sec) then Ctd3SecFlag = true, 

where Ctd3SecFlag is initialized to false. Then, 

MopsSpd = 0.05 * Nominal TBO Profile Speedownship's position  + 0.5 * CAS Step Size 

if ((Ctd3SecFlag = true) and (|Speed Error| < MopsSpd)) then 

if (Speed Error ≥ 0) Speed Error = MopsSpd 

otherwise Speed Error = -MopsSpd 

To prevent saturating the calculated speed command, this value for Speed Error is then limited to ±33% 

of the Nominal CAS History Speed. 

Determine if a Speed Change is Required 

In the ASTAR13 CTD algorithm, as in the TBO portion, a significant part of the design was focused on 

minimizing the number of speed command changes while maintaining an accurate spacing interval. A large 

part of this design feature occurs in the determination of the need for a speed change, and if a speed change 

is not required, either provides a smooth transition to or maintains the previously calculated command 

speed. This process of only changing the speed command if that change is larger than some threshold value, 

relative to the previous command, is an innovative feature of ASTAR13. The following process is used to 

determine the speed change requirement: 

Initialize the variable for the time that a planned deceleration would end. 

Decel End Time = -1 

If the In Deceleration flag is false, determine if a speed change is needed. 

if  (In Deceleration ≠ true) then 

CAS1 = Nominal CAS History Speed + Speed Error 

Determine the direction of the difference. 

if (CAS1 > Saved CAS1) then Up = true 

otherwise Up = false, 

Quantization test to determine if there is a change using a 5 kt directional bias if the direction 

of change and the error are in opposite directions. 



 

 

if ((Up = true) and (Speed Error < -5 kt)) then 

CAS2 = round((CAS1 - 5 kt) / CAS Step Size) * CAS Step Size 

otherwise if ((Up = false) and (Speed Error > 5 kt)) 

CAS2 = round((CAS1 + 5 kt) / CAS Step Size) * CAS Step Size 

otherwise 

Use a 2 kt offset to prevent flip-flopping. 

if (Up = true) then CAS2 = round((CAS1 - 2 kt) / CAS Step Size) * CAS Step Size 

otherwise CAS2 = round((CAS1 + 2 kt) / CAS Step Size) * CAS Step Size 

Now determine if a speed change should occur, with logic to reduce the number of speed 

changes. 

Speed Change = false 

if (((Up = true) and (CAS2 > Interim Speed Command)) or  

     ((Up ≠ true) and (CAS2 < Interim Speed Command))) Speed Change = true 

Determine if it is desirable to inhibit a normal speed change.  

if (Speed Change) then 

limit test = 0.15 * Nominal CAS History Speed 

Do not allow the speed change test value to exceed 22 kt. 

if (speed change test > 22 kt) speed change test = 22 kt 

Do not change the speed command to a slower value if: 

- the proposed speed change is to decrease speed and 

- the calculated, proposed speed is slower that the saved commanded speed and  

- the spacing error is greater than 10 seconds and 

- the absolute value of the difference between the profile CAS value at the time of the 

 saved commanded speed and the current profile speed is less than or equal to speed 

 change test. 

 

if ((Up ≠ true) and  

     (CAS2 < Interim Speed Command) and 

     (SpcE > 10 sec) and 

     (|Ctd Last Profile CAS - Nominal CAS History Speed| <= speed change test) ) then 

          Speed Change = false 

Do not change the speed command to a faster value if: 

- the proposed speed change is to increase and 

- the calculated, proposed speed is faster that the saved commanded speed and  
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- the spacing error is less than -10 seconds and 

- the absolute value of the difference between the profile CAS value at the time of the 

 saved commanded speed and the current profile speed is less than or equal to speed 

 change test. 

 

if ((Up = true) and  

     (CAS2 > Interim Speed Command) and 

     (SpcE < -10 sec) and 

     (|Ctd Last Profile CAS - Nominal CAS History Speed| <= speed change test) ) then 

          Speed Change = false 

where Ctd Last Profile CAS is initialized to the value of Nominal CAS History Speed. 

end of statement if  (In Deceleration ≠ true) 

To enhance the spacing precision near the PTP, a speed change update may be forced if the spacing 

error is relatively large. There are two condition sets that will force a speed change update: 

- if the control law has been in a deceleration for more than 60 sec and the absolute value of the 

spacing error is greater than 10 sec or 

- if the control law has been in a deceleration for more than 30 sec, the absolute value of the spacing 

error is greater than 5 sec, and the ownship is within 10 nmi of the PTP. 

if ((In Deceleration = true) and 

    ( ( (current clock time - Deceleration Start Time1) > 60 sec) and 

        (|SpcE| > 10 sec) ) or 

      ( (current clock time - Deceleration Start Time1) > 30 sec) and 

         (|SpcE| > 5 sec) and 

         (DTGownship ≤ (DTGPTP + 10 nmi)) ) ) then  

   In Deceleration = false 

Calculate the Speed Change 

If a speed change is required, based on the state of the Speed Change variable determined in the previous 

subsection, then values for both the interim intermediate speed command, Interim Speed Command, and 

the interim end speed command (see the section End Speed Estimation), Interim End Speed Command, are 

calculated. If a speed change is not required, then the previously computed values are retained. The speed 

command values are computed as follows: 

if  ((In Deceleration ≠ true) and (Speed Change)) then 

Saved CAS1 = CAS1 

Ctd Last Profile CAS = Nominal CAS History Speed 

Save the speed value before it is changed. 

Deceleration Start Speed = Interim Speed Command 

Interim Speed Command = CAS2 

Interim End Speed Command = CAS2 



 

 

Determine if a large deceleration is occurring and if so, estimate the end speed command at the 

end of the deceleration. This deceleration evaluation process is an innovation designed to 

minimize the number of speed commands presented to the flight crew. 

if (Up = false) then 

Beginning at the same point used in Compute the Nominal Speed for determining the 

Nominal History Speed value, i.e., 15 seconds in front of the ownship's position, determine 

if the changes in the traffic's history average ground speed values indicate that a 

deceleration by the TTF is occurring. If so, determine the point in the traffic's history data 

when the deceleration ends (fig. 23). 

 

 

 

 

 

 

 

 

Figure 23. CTD end of deceleration estimation. 

This deceleration estimation uses the following process: 

The test conditions are initialized such that the data record position in the traffic's history 

record, p, is set to the 15 second lead position and the end of the deceleration CAS value, 

Deceleration End CAS, is calculated using the previously described CAS conversion at 

position Deceleration Position. 

Valid Deceleration = false 

i = Deceleration Position 

ibegin = Deceleration Position 

last = Deceleration Position 

Finished = false 

If the final approach speed option requires crossing the FAF at the FAF crossing speed, 

break the deceleration estimation at the FAF. This situation would be a result of either of 

the first two options from the Final Approach Speed section. If this is the case, then the 

variable LimitAtFaf is set true, otherwise it is set to false. 
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iterate until (Finished = true) 

i = i + the position 4 history records closer to the traffic's current position 

if (i > traffic's current position) then Finished = true 

otherwise 

Test CAS = CAS conversion(i) 

If the difference between the current test CAS value and the previous minimum 

CAS value is greater than an average of 0.8 kt / sec, i.e., the traffic’s speed has 

increased, then the deceleration has ended. 

if (Test CAS > (Deceleration End CAS + 0.8 kt/sec * (traffic history record time 

at position i - traffic history record time at position last))) then Finished = true 

If the current test CAS value is 0.333 kt / sec slower than the previous minimum 

CAS value, then the deceleration has started or is continuing. 

if (Test CAS < (Deceleration End CAS - 0.333 kt/sec * (traffic history record 

time at position i - traffic history record time at position last))) then 

Valid Deceleration = true 

Deceleration Position = i 

ibegin = i 

Deceleration End CAS = Test CAS 

last = i; this is the end of the deceleration estimation process. 

If LimitAtFaf is true, test to keep from looking past the FAF during a 

deceleration. 

if (LimitAtFaf and  

((traffic history record distance at position i -  

traffic history record distance at the Ownship's position) ≥ 

(DTGownship - DTGFAF to end-of-path))) Finished = true 

If no changes after 10 tests, i.e., ~40 sec., terminate. 

if (i > (ibegin + 10)) Finished = true 

If a profile deceleration exists, then initialize the variables used to calculate the interim 

speed command during the deceleration. 

if (Valid Deceleration = true) then 

In Deceleration = true 



 

 

Deceleration Start Time1 = current clock time 

Deceleration Start Time2 = traffic's history data time at ownship's proximate position 

Saved CAS1 = Deceleration End CAS + Speed Error 

end of statement if (Up = false) 

end of statement if ((In Deceleration ≠ true) and (Speed Change = true)) 

If In Deceleration, calculate the interim speed values. 

if (In Deceleration = true) then 

Calculate the deceleration initial values at the start of the deceleration. 

if (Deceleration Start Time1 = current clock time) then 

s1 = Deceleration End CAS + Speed Error 

s2 = round((s1 + 2 kt) / CAS Step Size) * CAS Step Size 

Interim End Speed Command = s2 

Calculate the deceleration time interval. 

t = traffic history time at Deceleration Position - Deceleration Start Time2 

Decel End Time = Deceleration Start Time1 + t 

Calculate the required deceleration rate, r. 

if (t > 0) then 

r = (Deceleration Start Speed - Interim End Speed Command) / t 

Low limit to at least 0.5 kt / sec. 

if (r < 0.5 kt/sec) then r = 0.5 kt/sec. 

d = (current clock time - Deceleration Start Time1) * r 

Interim Speed Command = Deceleration Start Speed - d 

Limit the calculated speed so that it is no slower than the end speed command. 

if (Interim Speed Command < Interim End Speed Command) then 

  Interim Speed Command = Interim End Speed Command 

Has the end of the deceleration time been reached? 
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if (current clock time ≥ Decel End Time) then 

In Deceleration = false 

Saved CAS1 = Interim End Speed Command 

Ctd Last Profile CAS = Nominal CAS History Speed 

otherwise, the case where t ≤ 0 

Interim Speed Command = Interim End Speed Command 

In Deceleration = false 

end of statement if (In Deceleration = true) 

Determine if the speed command values that are output from the algorithm should be updated. 

if ((Speed Change ≠ true) or (In Deceleration = true) or  

    (End Speed Command ≠ Interim End Speed Command)) then 

Speed Command = Interim Speed Command 

End Speed Command = Interim End Speed Command 

Apply Profile and Configuration Speed Limits 

The CTD speed commands, Speed Command and End Speed Command, may be limited by various speed 

restrictions, including procedural and airframe limitations. These limiting functions are similar to the 

comparable functions in the TBO algorithm. The limiting factors in this algorithm include: 

Limits based on the nominal profile speeds 

The CTD speed commands are limited by the TBO nominal profile speeds such that the CTD command 

speeds remain within ±15% of the related TBO nominal profile speeds. For the Speed Command, its value 

is limited to ±15% of the ownship's current trajectory CAS. For the End Speed Command, its value is 

usually limited to ±15% of the ownship's projected trajectory CAS at the end of a planned deceleration, if 

one exists, or the ownship's current trajectory CAS otherwise. If this latter limitation is applied, then the 

resulting End Speed Command value will be quantized using CAS Step Size. The determination of the limit 

value, s, used in the End Speed Command calculation is determined as follows: 

if  (In Deceleration ≠ true) then s = Nominal TBO Profile Speedownship's position  

otherwise if (Nominal TBO Profile InDecel = true) then 

Both profiles have decelerations. If the CTD deceleration ends before the TBO deceleration, 

calculate the TBO profile speed at the CDT end point and use that CAS value as the limit. 

d = DTGownship - Distance from ownship to CTD deceleration end, 

where d is the DTG to the CTD deceleration point. 

if (d > DTGend of TBO deceleration) then s = Nominal TBO Profile Speedat DTG = d , 



 

 

otherwise s = Nominal TBO Profile SpeedCTD deceleration end. 

otherwise s = Nominal TBO Profile SpeedCTD deceleration end. 

Airframe limits 

Airframe limits such as the maximum operating limit, Vmo, or maximum flaps limits may be input in 

ASTAR13. If airframe limits are used, then both the Speed Command and the End Speed Command values 

may be limited by these limit values. If these limitations are applied, then the resulting End Speed Command 

value will be quantized using CAS Step Size. 

Procedural limits 

Procedural limits are imposed for RNAV segments that include maximum speeds. If either the Speed 

Command or the End Speed Command is projected to be above the RNAV speed limit for a waypoint, based 

on the maximum of the current deceleration rate or a 0.75 kt / sec deceleration, then a speed reduction is 

implemented so that the speed at the waypoint does not exceed the speed limit. In this situation, the End 

Speed Command is set to the RNAV speed limit and the Speed Command is linearly reduced from the speed 

at the initiation of this deceleration to the limit speed at the waypoint. 

Linearize Intermediate Speed Command 

To aid the pilot in transitioning to a new commanded speed, the intermediate speed command, Speed 

Command, is designed to provide a smooth and continuous series of speed commands as the algorithm 

transitions between different values of End Speed Command. As such, the Speed Command may be 

modified under the following two conditions: 

Condition 1 

If the Speed Command is not equal to the End Speed Command and the value of the Speed Command is 

not changing, e.g., In Deceleration ≠ true, then apply a change at a constant rate. This condition is applied 

for the situation where the changed in the Speed Command has "stalled." This process would be performed 

as follows: 

Assume that the value NeedLinearization is initialized to false, timeprevious is the time at the previous 

iteration of the algorithm, time is the time at the current iteration of the algorithm, Speed 

Commandprevious is the value of the Speed Command at the previous iteration of the algorithm, and 

Speed Command is the current value of the intermediate speed command. Then, 

if ((In Deceleration ≠ true) and 

    (Speed Command ≠ End Speed Command) and  

    (Speed Commandprevious = Speed Command)) then NeedLinearization = true 

Condition 2 

If the Speed Command is not equal to the End Speed Command and the value of the Speed Command 

has changed by more than 2 kt/sec, then apply a change at a smaller rate. This process is to eliminate impulse 

changes in the speed and would be performed as follows: 

The same variables as noted in Condition 1 are used here. Then, 

rate = (Speed Command - Speed Commandprevious) / (time - timeprevious) 

if (rate > 2 kt/sec) then NeedLinearization = true 
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Default Condition 

If NeedLinearization is not set to true in either of the two previous test conditions, then a test to determine 

if linearization is no longer required is performed as follows: 

if (Speed Command = Speed Commandprevious) then NeedLinearization = false 

Linearization 

If NeedLinearization is true, then the linearization calculations are performed as follows: 

if (NeedLinearization = true) then 

change the Speed Command by 1 kt / sec starting with the slowing condition. 

if (Speed Commandprevious > End Speed Command) then 

Speed Command = Speed Commandprevious - 1.0 kt/sec * (time - timeprevious) 

Limit any undershoot. 

if (Speed Command < End Speed Command) then  

Speed Command = End Speed Command 

otherwise 

Speed Command = Speed Commandprevious + 1.0 kt/sec * (time - timeprevious) 

Limit any overshoot. 

if (Speed Command > End Speed Command) then  

Speed Command = End Speed Command 

Apply Procedural 10,000 ft / 250 kt Speed Limit 

The 250 kt speed limit below 10,000 ft is implemented such that once the ownship is projected to descent 

below 10,000 ft within the next 60 seconds, a limiting process is applied if the command speeds crossing 

10,000 ft are projected to be above 250 kt. If this condition does exist, the Speed Command is linearly 

ramped such that it reaches 250 kt at the 10,000 ft projection point. The End Speed Command value is 

immediately set to 250 kt. 

Switch to Final Approach Speed 

This uses the same logic that is in the previously described TBO algorithm to determine when to 

terminate the spacing control law and switch into the final deceleration speed logic. If the switch is made 

to the final approach speed logic, then the Speed Command and End Speed Command values will be 

modified to satisfy the final approach speed requirements. 

Distance-Based, Ground Speed Matching 

As a requirement of the RTCA FIM MOPS, there is a special speed control submode for distance-based 

operations that is employed between the times that the TTF reaches the PTP and the ownship reaches the 

PTP. In this situation, the command speed is no longer affected by the spacing error and is based solely on 



 

 

the TTF’s ground speed such that the command speed when the ownship reaches the PTP is within 10 kts 

of the TTF’s ground speed at this point. The speed command for this submode is conceptually calculated 

as follows: 

Initial conditions:  

Speed Commandprevious =  

  Speed Command from the appropriate control law prior to the TTF reaching the PTP 

Last Time = the last clock time value prior to the TTF reaching the PTP 

Calculate a CAS value s that is based on the TTF's ground speed at the time when the TTF reached 

the PTP, using the ownship's current wind speed and direction and at an altitude equal to the TTF's 

altitude at the time when the TTF reached the PTP plus the ownship's current vertical error.  

s = CAS conversion(Ground SpeedTTF at DTG = PTP + headwind , 

   AltitudeTTF at DTG = PTP + Vertical Errorownship, 

   temperature), 

where headwind is the current wind speed for the ownship, adjusted for the difference between the 

current wind angle and the traffic's ground track angle at the PTP. 

Calculate the speed command such that the command is equal to the TTF's ground speed at a time 

no later than 30 seconds prior to the ownship crossing the PTP. 

t = TTGownship - TTGTTF at PTP - 30 sec 

if (t > 0) then 

rate = (Speed Commandprevious - s) / t 

if (Speed Commandprevious > s) then 

This is a deceleration, decelerate at no less than 0.75 kt / sec. 

if  (rate < 0.75) rate = 0.75 

s = Speed Commandprevious - r * (current time - Last Time) 

Speed Command = s 

Speed Commandprevious = Speed Command 

Last Time = current time 

The value of the speed command is then limited and quantized by the means described in the section 

titled Stated-Based, Constant-Time Delay Algorithm. 
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Control Law Selection 

Figure 24 describes the control law selection logic that is used to determine whether the TBO or the CTD 

control algorithm is used to calculate the speed guidance. A description of the input variables and logic for 

the control law selection process are as follows: 

Ownship valid: The ownship's state and trajectory data are valid and the aircraft is on its planned path. 

FIM mode: If the overall control is one of the various FIM clearance options or an RTA. 

TTF valid: The TTF's state and trajectory data are valid and the aircraft is on its planned path. 

Achieve-by and Maintain clearance: If the FIM clearance is the Achieve-by and Maintain option. 

Time-based clearance: The assign spacing goal is in time versus distance. 

Ownship past ABP: The ownship is past the achieve-by point. 

TTF past ABP: The TTF is past the achieve-by point. 

TTF past PTP: The TTF is past the planned termination point. 

Common path: The history data from the TTF's state data and the ownship's current position relative to 

that data are used to determine if the ownship is on a common path with the TTF. The processing for the 

value of this variable is performed external to the control law selection process 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Control law selection diagram 
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Operational Considerations 

Common Speeds After Merging 

The potential for the loss of separation or less than operationally desirable separation distances between 

the ownship and the TTF can be minimized by the design of the speed profiles on the respective 2D paths. 

The speeds specified in the path definitions at and after the point where the paths join in the horizontal 

plane must be the same speeds (fig. 25). That is, common path points must have common speeds. 

 

 

 

 

 

Figure 25. Example of common speeds after the merge point. 

Envelope Protection 

Since the speed command value from ASTAR could be used to directly drive an autothrust system, speed 

envelope limiting can optionally be provided by the algorithm. To invoke this feature, the maximum and 

minimum desired speed values, both Mach and CAS, are input into ASTAR. These input limit speeds are 

usually based on the design limiting speed, the maximum gust penetration speed, the maximum flap 

extended speed for the current flap setting, and minimum maneuvering speed. The algorithm then limits 

the command speed to remain within these values. When the command speed is limited, the algorithm sets 

an output flag indicating this limiting condition. 

Radius-to-Fix Speed Limiting 

ASTAR supports maximum speed limiting for radius-to-fix (RF), constant radius  turn segments. For 

path segments that include this type of speed constraint, ASTAR would project ahead from the ownship's 

current position and determine if a deceleration to the speed constraint value must occur prior to reaching 

this path segment. If a deceleration was required, the speed command would be modified to meet this 

crossing speed. Once the aircraft was within the path segment, the command speeds would be limited to 

this speed constraint value. 

Off-Nominal Mach / CAS Transition 

The algorithm provides both Mach and CAS speed command values and a Mach/CAS flag indicating 

which of these values, Mach or CAS, is appropriate for use relative to the aircraft's current flight conditions. 

While the 4D trajectory data provides the nominal altitude value for the Mach to CAS transition, this altitude 

value is only valid if the aircraft is exactly on the planned vertical path from the 4D trajectory and is at the 

nominal Mach. Because these conditions are not generally true, e.g., the Mach speed command is slower 

than the nominal value to correct a spacing error, ASTAR computes the Mach to CAS transition altitude 

for the current commanded speeds. Once the aircraft descends below this altitude, the algorithm transitions 

to a CAS command for the remainder of the operation. 

Future Design Considerations 

Even with the design requirement to support a low cost, aircraft retrofit option with very minimal 

integration with other aircraft systems, several modifications could be made to ASTAR to reduce its design 



 

 

and implementation complexity along with supporting greater operational viability. Two of these 

modifications involve the calculations for the trajectory data and the third modification involves the speed 

command limiting, lag compensation, and output quantization. 

Estimated Time of Arrival Data from the Traffic to Follow 

In the TBO portion of ASTAR, the assumption is that the TTF may only need minimal equipment, or 

possibly no extra equipment beyond ADS-B Out, to support airborne self-spacing. It was assumed that a 

normal self-spacing operation would start prior to the top of descent and continue through the start of the 

ownship's deceleration to its final approach speed. To compute the trajectory data for the TTF, the ownship 

would need the following data for the TTF: the names describing its full path, i.e., arrival, transition, and 

approach names; its cruise Mach and altitude; and its planned final approach speed. It is also assumed that 

a database that is either local to or part of the ASTAR equipment would interpret the information describing 

the full path into data that are appropriate for the ASTAR trajectory computation. If these data required to 

calculate the TTF trajectory are not available via data link, other means of obtaining these data, or 

eliminating the need for these data, must be found.  

Regardless of how these path data are obtained, the trajectory data calculated for the TTF is only a generic 

"guess" on how the TTF will actually fly the route. Discrepancies between the ASTAR trajectory 

calculation for the TTF and how the TTF actually flies the route, typically dictated by the FMS, would be 

propagated in ASTAR as a spacing error. One obvious option for eliminating a significant portion of the 

trajectory prediction error would be for the TTF to broadcast its ETA, or TTG, via data link. This broadcast 

could be done at a low frequency, e.g., once every 30 seconds, since the ETA value would typically not 

change very rapidly. This option would also eliminate the data requirements to the TTF's trajectory 

generation that were described in the previous paragraph. However, this option would require that the TTF 

have the ability to generate an accurate ETA and, obviously, the ability to data link this information. 

Trajectory Data from the Ownship FMS 

Similar to the issues and benefits for using the TTF's ETA data from a data linked FMS source, the use 

of the ownship's FMS data could significantly reduce the complexity of the spacing algorithm and increase 

its operational viability. The first obvious option in this regard would be to use the ownship's FMS ETA 

data in place of the ASTAR trajectory TTG. While this option may provide a more accurate TTG value, it 

still requires ASTAR to calculate a trajectory for the nominal speed values. As a second option, if the FMS 

could provide the ETA and the current, non-RTA nominal speed values, then ASTAR would not need to 

calculate a trajectory for the ownship. The most extensive option for reduction in ASTAR's complexity 

would come if the speed error value in figure 8 could either be used as an input to the FMS speed 

requirements, e.g., to adjust the next waypoint crossing speed, or superimposed on the FMS speed output 

command. Alternatively, the spacing time error value could be used to calculate a pseudo RTA value and 

this RTA value input into the FMS. 

Speed Prediction, Speed Quantization, and Lag Compensation Functions 

Many of the ancillary functions in the TBO portion of ASTAR, e.g., the aircraft speed response lag 

compensation, were added to the implementation ad hoc to overcome operational or performance issues 

that were observed prior to and during simulation evaluations. Several of these functions were designed to 

compensate for the lack of integration between the FIM algorithm and aircraft avionics in a retrofit 

implementation. As such, the overall design of these numerous functions were not designed "in the large." 

It would be beneficial for both the simplification of the algorithm and potentially better operational 

performance if these functions could be consolidated into one or two coherent functions. 



 

46 

Summary 

This paper provides an overview of the eighth revision to the Airborne Spacing for Terminal Arrival 

Routes (ASTAR) algorithm. This algorithm is an airborne self-spacing tool that uses ADS-B data from a 

leading aircraft assigned by ATC to either achieve or maintain a precise spacing interval behind another 

aircraft. This algorithm places significant emphasis on providing a low cost, retrofit avionics option that 

requires minimal integration with other aircraft systems. In that regard, it was assumed that the speed 

command value would be presented to the pilot and that the pilot would change the speed target of the 

autothrust system to match the commanded speed from ASTAR. Several capabilities are provided within 

the algorithm that attempt to balance the number of speed changes against the spacing performance. The 

current ASTAR design was tailored toward supporting the Air Traffic Management Technology 

Demonstration-1 (ATD-1) and to conform to the industry Flight-deck Interval Management (FIM) 

standards document, with the majority of the modifications made in this revision of the algorithm to align 

with the still evolving FIM standard. The two most significant modifications made in this revision of 

ASTAR were to add a Mach command capability to the state-based control law and considerable changes 

to both control laws in support of distance-based spacing operations. In addition to describing the trajectory 

computations, spacing interval calculations, and both the trajectory-based and state-based speed control 

laws, this paper discusses operational issues that were addressed in the development of the ASTAR 

algorithm. 
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