
NASA/TM-2017-219669

An Efficient Universal Trajectory
Language

George E. Hagen, Nelson M. Guerreiro, Jeffrey M. Maddalon, Ricky W. Butler,
Langley Research Center, Hampton, Virginia

September 2017

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM-2017-219669

An Efficient Universal Trajectory
Language

George E. Hagen, Nelson M. Guerreiro, Jeffrey M. Maddalon, Ricky W. Butler,
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

September 2017

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

Abstract

The Efficient Universal Trajectory Language (EUTL) is a language for specifying
and representing trajectories for Air Traffic Management (ATM) concepts such as
Trajectory Based Operations (TBO). In these concepts, the communication of a
trajectory between an aircraft and ground automation is fundamental. Historically,
this trajectory exchange has not been done, leading to trajectory definitions that
have been centered around particular application domains and, therefore, are not
well suited for TBO applications. The EUTL trajectory language has been defined
in the PVS formal specification language, which provides an operational semantics
for the EUTL language. The hope is that EUTL will provide a foundation for
mathematically verified algorithms that manipulate trajectories. Additionally, the
EUTL language provides well-defined methods to unambiguously determine position
and velocity information between the reported trajectory points. In this paper, we
present the EUTL trajectory language in mathematical detail.

iii

Contents

1 Introduction 1

2 Related Work 3

3 Trajectory Overview 6

3.1 Trajectory Abstraction . 7

3.2 Well-Formed Plans . 9

3.3 Consistent Plans . 10

3.3.1 Turn TCP Constraints . 10

3.3.2 Ground Speed TCP Constraints 10

3.3.3 Vertical Speed TCP Constraints 11

3.4 Velocity-Continuous Plans . 11

4 Language Elements 11

4.1 The Plan Data Structure . 11

4.2 EUTL Syntax . 12

5 Informal Semantics of Position and Velocity Functions 13

5.1 Non-accelerating Segments . 13

5.2 Multiple Acceleration Zones . 15

5.3 Path Distance Between Index Points 15

5.4 Interpolating Within Acceleration Zones 17

5.4.1 Computing Ground Speeds at Index Points 17

5.4.2 Determining Distance From a Time Within a Segment 18

5.4.3 Advancing a Specified Distance Within a Segment 18

5.5 Velocity at a Time . 18

5.6 Vertical Component of Position . 19

5.7 Summary of Calculation Steps . 20

6 Operational Semantics 20

6.1 Notation . 20

6.2 Summary of Utility Functions . 21

6.3 Calculating Path Distance . 23

6.3.1 Straight Path . 23

6.3.2 Circular Turn . 23

6.3.3 Combined Function . 24

6.4 Ground Speed Within a Segment . 24

6.5 Determining Distance From a Time in a Segment 25

6.6 Advancing a Calculated Distance Within a Segment 26

6.6.1 Straight Linear Segment . 26

6.6.2 Turn Segment . 27

6.7 Full Position and Velocity Function 28

6.8 The posVelWithinSeg Function . 28

iv

6.9 The initialVelocity Function . 29
6.10 The interpolateAltVs Function . 29
6.11 Consistent Plans, Revisited . 30

6.11.1 Track TCP Constraints . 30
6.11.2 Ground Speed TCP Constraints 31
6.11.3 Vertical Speed TCP Constraints 31

6.12 Velocity-Continuous Plans, Revisited 32

7 TCP Generation 34
7.1 TrajGen.makeKinematicPlan . 35
7.2 DistPlan.makePlan . 37

8 Generation of Medium Fidelity Trajectories 38

9 Concluding Remarks 47

A Support Functions 50
A.1 TCP Functions . 50
A.2 The getSegment Function . 51
A.3 In Acceleration Zone Functions . 51

B Great Circle Functions 52
B.1 angular distance . 52
B.2 distance . 52
B.3 initial course and final course 52
B.4 angle between . 53
B.5 velocity initial . 54
B.6 linear initial . 55

C Chordal Radius 56
C.1 Function chord distance . 56

D Ground Speed vs. Airspeed 58

v

Abbreviations

2D 2-Dimensional
3D 3-Dimensional
4D 4-Dimensional
AIDL Aircraft Intent Description Language
ATN Aeronautical Telecommunications Network
ATM Air Traffic Management
BGS Beginning of Ground Speed acceleration
BOT Beginning Of Turn
BVS Beginning of Vertical Speed acceleration
CAS Calibrated Airspeed
EGS End of Ground Speed acceleration
EOT End Of Turn
EPP Extended Projected Profile
EUTL Efficient Universal Trajectory Language
EVS End of Vertical Speed acceleration
FAA Federal Aviation Administration
FMS Flight Management Systems
IAS Indicated Airspeed
RTA Required Time of Arrival
RTCA Radio Technical Commission for Aeronautics
TAS True Airspeed
TBO Trajectory Based Operations
TIGAR Toolkit for Integrated Ground/Air Research
TCP Trajectory Change Point

vi

1 Introduction

In this paper we present a language for representing aircraft flight trajectories in a
manner that allows for precision, simplicity, and efficiency. Although hundreds of
papers have been written about trajectories and trajectory generation [1–8], we will
not seek to provide a comprehensive treatment of the subject or even to develop a
taxonomy of the plethora of approaches that have been proposed. Instead we will
start from the desired basic mathematical properties and then proceed to develop
the language along with a practical data structure that provides all of the needed
functionality. We call this language the Efficient Universal Trajectory Language
(EUTL). It is efficient because trajectories can be stored and communicated in a
way that is reasonably compact and positions and velocities can be quickly calcu-
lated. The language is universal in that it does not require other aircraft systems or
components, such as the flight management computer or flight control computer, to
re-construct the trajectory for an aircraft. Universality is a important requirement
because it allows trajectories to be exchanged between aircraft and ground-based
systems without ambiguity. This paper presents a detailed, mathematical descrip-
tion of the EUTL language, which can be used to precisely define the trajectory for
an aircraft. This paper does not focus on the problem of how to generate a trajec-
tory to meet specified objectives or how to use trajectory information from a EUTL
trajectory. Methods for constructing trajectories for different types of aircraft and
various levels of fidelity are also not addressed here. This paper is only concerned
with the problem of how to represent a trajectory in an unambiguous and efficient
manner.

A moving object follows a path, or a sequence of positions, through space. When
this path is augmented with a time for each position, it is referred to as a trajectory or
a four dimensional trajectory (4DT). In the literature, a path is sometimes referred
to as a “3D trajectory.” We avoid this terminology due to an intrinsic ambiguity.
Does this 3D trajectory mean three spatial dimensions, without time or two spatial
dimensions (typically latitude and longitude) and time? For this reason, we will
refer to a sequence of positions, without reference to time, as a path and a path, of
any dimension, that is augmented with times, as a trajectory.

Although the aviation and Air Traffic Management (ATM) communities have
produced a large amount of work on trajectory generation and trajectory repre-
sentation, there is a surprising lack of unity among the approaches. This could be
because trajectories are fundamental to many different types of operations, each
having a different focus. For instance, a pilot enters a sequence of waypoints into a
flight management system (FMS), then adds a cruise speed and altitude. With this
information, the flight management system can compute a reference path and/or a
set of guidance commands necessary to meet the pilot’s instruction. It is therefore
not surprising that trajectories are sometimes defined as a series of these guidance
commands along with their associated execution times. This approach works well
if one is only concerned with communicating a trajectory between the flight man-
agement system and the flight guidance system. However, if a recipient external
to this aircraft were to receive this sequence of guidance commands, it would have

1

to have a fairly detailed model of the flight guidance system of the sending aircraft
to determine where the aircraft will be at any time. In other words, this abstract
version of the trajectory must be converted to a more concrete version before it can
be effectively used by the recipient. This process is typically called trajectory pre-
diction.1 All recipients of the abstract trajectory must have a detailed model of the
aircraft dynamics in order to perform this trajectory prediction process. We believe
that trajectories that will be communicated to external agents should be represented
in a form that does not require a complex trajectory prediction process. It is for this
reason that we introduce the EUTL language. Trajectories generated by any agent
in the ATM system can be accurately translated to EUTL and then communicated
consistently to all other participants. And these participants can interpret EUTL
through use of the unambiguous mathematical semantics given in this paper. We
have, therefore, sought to provide sufficient details so that readers of this paper
could create their own implementation of EUTL on any desired platform.

A trajectory defined using EUTL only models the position and velocity state
variables of an aircraft. Conceptually, a trajectory language could also model other
state variables such as the attitude angles of the aircraft, the angular rates of these
variables, or even higher order derivatives, such as positional or angular acceleration.
We have deliberately chosen to not include these state variables in our language. The
EUTL language is intended to be used for air traffic management systems that will
be necessary for Trajectory Based Operations (TBO). In such systems, the accurate
representation and communication of trajectories is the essential capability. Other
state variables may be used in generating a trajectory, but we do not believe (at this
time) that they will be needed by other systems that receive the trajectory. Future
research can investigate if there is benefit to including other state variables in an
air traffic management trajectory language.

In this paper we present a method for defining a relatively small set of data
and associated functions, such that the trajectories can be computed in an accurate
and efficient manner. Although many of these derivations may seem obvious, the
choice was made to describe the data and functions completely instead of leaving
often significant details unstated. This work builds on [9], where our trajectory
definition did not allow ground speed acceleration zones to overlap with turns. The
previous version also relied heavily on the use of Euclidean calculations and the use
of mathematical projections to geodesic coordinates. Instead of projections, the new
approach described in this paper uses spherical trigonometry because we have found
this to be computationally faster and more accurate.

A formal semantics for EUTL has been developed in the PVS specification lan-
guage [10, 11], which is presented in Section 6. We believe that this language can
provide a foundation for mathematically verified algorithms that manipulate trajec-
tories. There is much evidence that a major obstacle to the deployment of advanced
software systems in the National Airspace (NAS) is the current lack of suitable

1Historically, the trajectory prediction process generates a trajectory from an aircraft’s flight
plan, its current state, and from wind and temperature data. A sequence of guidance commands
provides additional information and enables better prediction.

2

verification technology that can establish the safety of software-intensive advanced
systems [12]. Java and C++ implementations of EUTL have also been developed
and have been used to store and manipulate trajectories in the Stratway program [13]
and for fast-time conflict-detection studies [14,15].

2 Related Work

In this section we will look at some of the past methods used to describe trajectories.
We will not delve into the massive and complex set of approaches to trajectory gen-
eration. Instead, we will restrict our attention to methods used to specify the output
from a trajectory generation process, whether by a person or a machine. According
to the International Civil Aviation Organization, a trajectory is, “a description of
the movement of an aircraft, both in the air and on the ground, including position,
time and, at least via calculation, speed and acceleration” [16]. In the air traffic
management literature, a wide number of approaches to trajectory representation
have been described:

• a sequence of 3D points (latitude, longitude, altitude) with a small, fixed time
interval between them (e.g., 1 second) and a start time. Trajectories like this
are referred to as trajectory traces or raw trajectories and may be represented
as a sequence of uniformly-sampled 4D points [17];

• a sequence of 4D points (latitude, longitude, altitude, time) with large and
irregular time intervals between them (e.g., 15 minutes). There are many dif-
ferent approaches to interpolating between them including straight-line, La-
grange, Hermite, Bezier, homotopy, and various spline methods [18];

• a sequence of timed guidance commands [19];

• a sequence of 2D points with a separate speed profile and vertical profile that
are functions of path distance [1];

• a sequence of 2D points with speed/altitude constraints and perhaps a final
required time of arrival (RTA) [20];

• a sequence of 4D points (latitude, longitude, altitude, time) that has a contin-
uous velocity vector by adding information about accelerations (e.g. EUTL);

Probably the most basic notion of a trajectory for air traffic management is
the flight plan that is filed with the Federal Aviation Administration (FAA) for
a particular flight. This flight plan route defines a set of waypoints that will be
sequenced by the aircraft during its flight. This is augmented with some information
about the expected departure time, cruise altitude, and target airspeed for that
flight. This provides a very crude prediction of where an airplane will be at any
given time in the future. At the other end of the spectrum is the reference trajectory
that is calculated by a flight management system. This is the most precise, most
detailed representation of the trajectory of any entity in the system. However, this

3

trajectory is contained in an internal data structure of the FMS and is traditionally
not exported to other agents in this form.

Another notion of a trajectory is a sequence of guidance commands such as
HOLD TO AN ALTITUDE, CONSTANT RADIUS TO A FIX, COURSE TO AN INTERCEPT, or
DIRECT TO FIX. These guidance commands are expected to be generated by an
FMS and sent to a flight guidance system/flight control system [21]. This notion
of a trajectory can also be used to communicate aircraft trajectory information to
other airspace users [22]. Determining the exact trajectory represented by these
guidance commands requires a detailed model of the guidance and control systems
of the aircraft. Without corresponding precise models, the exact trajectory is not
known. This can be considered an advantage in that the guidance commands are
independent of a specific manufacturer’s implementation. Unfortunately this leads
to a greater error between the trajectory as flown and the trajectory represented by
the guidance commands. Depending on the intended purpose of the trajectory, this
error may or may not be acceptable.

There have been many proposed mechanism to specify a trajectory in a manner
that enables its communication to other agents in the ATM system. We will look at
only a few. We begin with Paielli’s approach presented in [1] because this approach
provides a set of requirements that they believe should be met by any method that
seeks to specify a trajectory for air traffic operations. They state that the basic
requirements of a trajectory representation should be:

1. able to precisely specify any reasonable 4D reference trajectory;

2. able to precisely specify error tolerances relative to the reference trajectory;

3. based on a global earth-fixed coordinate system (e.g., the WGS84 geodetic
coordinate system);

4. parametric and reasonably compact;

5. based on a text format readable by humans; and

6. suitable for an international standard.

We concur that these requirements move the field of trajectory specification towards
a more solid foundation. We also add to that list the following requirement:

7. the method for calculating position and velocity at any point in the trajectory
should be specified in detail.

Paielli then presents an XML-based language that can be used to specify a trajec-
tory in a way that meets all of these requirements. The horizontal path of such a
trajectory is specified using a sequence of straight, great circle segments connected
by turns of a specified radius. The along-track position is specified as a polynomial
function of time; altitude is a polynomial function of along-track position. These
polynomials are obtained from trajectory traces by curve fitting and are not lim-
ited to any particular order of polynomial. This method is similar to ours in that

4

it enables a mathematically precise determination of where an aircraft is at any
time. There is a close connection between his approach and ours for the 2D path;
however, altitude and speed are handled very differently. He makes the following
observation [1]:

“Suppose, for example, that an aircraft is on approach for landing and
is one minute behind schedule (but still within tolerance). If altitude
is specified as a function of time, the aircraft will be required to land
several miles before it reaches the runway! On the other hand, if altitude
is a function of along-track position, the aircraft will be required to land
at the runway regardless of its status with respect to its schedule.”

This design choice has some domain specific advantages. However, there are some
trade-offs. For example, one cannot perform conflict detection without having a
precise mapping from time to 3D position. We also note that in his approach,
along-track position is specified as a polynomial function of time. So this part of
his trajectory specification must be recalculated in the very context he is describ-
ing. Nevertheless, this decomposition approach may provide some computational
efficiencies. Here we see why there are so many different approaches to trajectory
specification. What is given priority or what is ignored in a specification is depen-
dent upon where it is used. Tools can be constructed that generate trajectories
given a myriad of different combinations of constraints. But in the end, that result-
ing trajectory should be a mathematical function from time to position2. One of
the uses for the EUTL is described later in this paper, where we developed a tool
that takes altitude as a function of path distance and speed as a function of path
distance and generates a trajectory in our specification language.

The next approach to trajectory specification that we would like to consider
is the Aircraft Intent Description Language (AIDL) [19, 23]. AIDL is essentially
an abstraction of the most common guidance commands that are available on a
transport class aircraft. It is therefore the input to a guidance or control system
and so does not meet requirement (1) of the Paielli requirements. This language
is suitable for describing the output of an FMS, but reconstructing an accurate
trajectory of the aircraft requires a detailed model of the guidance and/or control
system of the aircraft.

Another example of a trajectory description that has been defined for air traffic
operations is the Extended Projected Profile (EPP). The EPP has been defined in
the RTCA Data Communications standards for the Aeronautical Telecommunica-
tions Network (ATN), Baseline 2 as a method for the exchange of trajectory infor-
mation between an aircraft and ground automation [24,25]. Appropriately-equipped
aircraft are expected to be able to translate their FMS reference trajectory into the
EPP specification and provide that EPP trajectory to ground automation as needed
or as required.

The EPP specification calls for a set of up to 128 trajectory points with infor-
mation such as the 2D reference position, the reference altitude, the predicted time,

2The closely related function from time to velocity is also defined in our operational semantics.

5

the predicted airspeed, as well as other optional information, such as turn radius
and speed, altitude, or time constraints. Although this specification is intended to
be a detailed description of the planned trajectory for an aircraft, it has inherent
ambiguities. First, the points provided in the EPP trajectory provide estimates for
the times at those reference points but assumptions have to be made in order to
estimate the position of the aircraft at times between available trajectory points.
Even though the EPP points provide estimated speed information, these speeds are
indicated airspeeds, which require the use of wind and temperature forecast tables
to properly convert to ground speeds that can be used to estimate the positions
between points. As a consequence, significant along-track errors may be present
in an EPP-described trajectory, especially in trajectories containing long segments
between turns. Lateral turn points are provided in terms of the reference 2D point
(e.g., the sequenced waypoint), an estimated altitude and time, an expected air-
speed, and the predicted turn radius. Depending on the coordinate system used,
the computations to estimate other points of the turn, such as the expected start
and end of turn, which are important when the aircraft is using a fly-by maneuver to
sequence a waypoint, can produce somewhat different positions and estimated times.
Because of potential significant along-track error and a lack of rigorous mathemat-
ical definition and the ambiguities it creates, the EPP trajectory specification may
not be the best suited trajectory description for performing certain air traffic system
functions, such as conflict detection.

In the following sections we describe EUTL as well as its associated mathemat-
ical properties and functions, which make EUTL a mathematically unambiguous
description of a trajectory.

3 Trajectory Overview

A trajectory in EUTL is modeled as a function of time into position and denoted,
s(t). The velocity is also defined along all points of the trajectory and it is denoted
as v(t). Trajectories can come in one of two forms, one where the positions are in
Euclidean coordinates (x, y, z) or one where the positions are in geodesic coordinates
(latitude, longitude, and altitude). Euclidean coordinates are often more appropri-
ate when modeling trajectories of aircraft that fly in small localized areas, such as
small unmanned aircraft. Geodesic coordinates are more appropriate when model-
ing long distance trajectories in the National Airspace System. The specification
of many of the properties of a trajectory does not rely on a particular coordinate
system; however, the low-level functions that compute positions and velocities do.

The position and velocity functions are, in some sense, the essence of the specifi-
cation of a trajectory. Nevertheless, the equations that define these functions, given
a sequence of 3D positions and time, are non-trivial and hence are developed in two
steps. First, we define a path function as a function from distance along the path to
position and denote this function as p3D(d). Next, we define a function d3D(t) that
maps time to total path distance. These functions can then be composed to obtain
s(t) = p3D(d3D(t)). One advantage of this decomposition is that the path of the air-

6

craft can be specified separately from the speed of the aircraft. With the complete
specification of these two functions, then s(t) and ultimately v(t) can be defined.
We note that this decomposition also enables us to use distance as an alternative
index for trajectories.

Typically, navigation is divided between horizontal planning and vertical plan-
ning. Therefore, a single three dimensional path distance function is usually not the
focus of ATM service providers. They typically measure distance between points on
a map (horizontal path distance), which does not include distances obtained from
altitude changes. We therefore separate the horizontal and vertical dimensions. The
vertical dimension is simpler than the horizontal, so a decomposition into two sub-
functions is not necessary. The vertical position z(t) is defined directly as a function
of time.

s(t) = (p(d(t)), z(t))

We make the assumption that the horizontal path of the aircraft only consists of
combinations of straight and circular segments, so the horizontal path function, p,
can be defined in a straightforward manner (details are provided in Section 5.7).

Next we turn our attention to the horizontal path distance function, d(t). This
function fundamentally relies on the horizontal speed. As an example, if the ground
speed is constant, then the path distance function could be defined as

d(t) = vgs min(t, T)

where, vgs is the ground speed and T is the end time of the trajectory. A realistic
trajectory with many speed changes has a much more complicated d(t) function.
With this background, we can turn to how to encode the key information of a
trajectory.

3.1 Trajectory Abstraction

Instead of arbitrary functions s and v, we provide five key assumptions that enable
the encoding of these functions to be efficient in both space (relatively few bytes
of information are required to store or communicate them) and time (they can be
reconstructed quickly). These assumptions, several of which were alluded to in the
discussion above, are:

1. the trajectory is divided into segments—sections of the trajectory partitioned
by time;

2. a segment is either an accelerating segment or a non-accelerating segment;

3. viewed from above, all segments are either straight or circular arcs, and arcs
always have associated angles of less than 180◦;3

4. all changes in ground speed are represented via constant acceleration segments;
and

3Larger arcs can be created using a sequence of consecutive arcs each having associated angles
of less that 180◦.

7

5. all changes in vertical speed are represented via constant acceleration seg-
ments.

Real aircraft are subject to non-constant accelerations and may follow paths that
are neither straight nor circular; however, with a sufficient number of segments,
this structure can model very complex trajectories. Future work will characterize
the accuracy of the EUTL approach in representing trajectories used in different
application domains.

The EUTL trajectory abstraction is a time-sequence of 3D points where some of
these points are labeled as Trajectory Change Points (TCPs). Since the abstraction
relies on points and not functions, we introduce notation to describe these points.
The symbols si,vi, ti represent the position, velocity, and time of the ith point in the
trajectory, respectively. A segment within a trajectory refers to the interval between
points, so the ith segment refers to the interval between the ith and ith +1 points
in the trajectory. The presence of absolute time values in the trajectory implicitly
defines an average ground speed over the segment. Although aircraft performance
fundamentally relies on airspeed, many ATM functions depend on accurate predic-
tions of aircraft locations relative to each other. For a discussion about the issues
associated with ground speed vs. airspeed see Appendix D.

The TCPs represent the start or end of a segment over which there exists a
constant acceleration. There are three types of acceleration: turns, ground speed
(horizontal) acceleration, and vertical speed acceleration. Furthermore, we must
indicate whether a TCP is the beginning or end of an acceleration segment.4 To
summarize, the TCPs defined in the EUTL language are:

BOT beginning of turn
EOT end of turn
BGS beginning of ground speed acceleration
EGS end of ground speed acceleration
BVS beginning of vertical speed acceleration
EVS end of vertical speed acceleration

The beginning TCP also encodes the exact acceleration value; in the case of a turn,
this is the turn radius and center of turn position5. The end TCP provides the
duration of acceleration, as well as a position reference for checking the acceleration
calculations. This concept is illustrated in Figure 1. Each of the dots represent a 3D
waypoint. The colored waypoints are TCPs. The black waypoints could represent
established reference navigation fixes or other points of reference such as RTA points,
or could be redundant and optionally eliminated.

In EUTL a trajectory is encoded as a sequence of points, with some designated
as the beginning or end of an acceleration zone. We refer to this structure as a
plan. A trajectory is an abstract concept, whereas a plan is a structure that can be
encoded in software. Much of the discussion in the rest of this paper is about plans.

4The inclusion of both a beginning and end point, as opposed to only a beginning point with a
duration parameter, allows for additional easy consistency checking of an encoded trajectory.

5The center of turn is stored for computational efficiency.

8

BOT

EOT

BOT

EOT

BOT

EOT

BOT

EOT

BVS

EVS

EVS

BVS

EGS

BGS

Figure 1: Example Trajectory with TCPs

If a plan does not contain any acceleration segments we say it is a linear plan. If
it contains at least one acceleration segment, then it is said to be a kinematic plan.
Because there is a time associated with each point in a plan, an average velocity
is implicitly defined for each segment; however, for kinematic plans the velocity
may vary over an accelerating segment. A linear plan typically has a discontinuous
velocity at the index points, whereas a kinematic plan (if constructed properly) will
have a continuous velocity vector throughout the plan.

3.2 Well-Formed Plans

Not all sequences of points form an arrangement that properly defines a trajectory.
Certain restrictions need to be placed on a sequence of points to ensure that a
trajectory can be formed from them. We refer to these conditions as: well-formed,
consistent, and velocity-continuous. These conditions are described in this section
and the next two sections.

A plan is well-formed if:

• there are at least two points in the plan;

• each point is appropriately ordered by time (that is, time(i) < time(i+ 1));

• every beginning TCP has a corresponding ending TCP; and

• there are no two acceleration zones of the same type that are overlapping in
time.

Given the three types of TCP-pair segments (turn, ground speed, and vertical
speed), we allow different segment types to overlap in time, but segments of the
same category cannot overlap. For example, a beginning of turn TCP (BOT) must
be followed at some point later in the plan by a corresponding end of turn TCP
(EOT) and this zone must not overlap another BOT/EOT pair. This must also be true
of all (BGS/EGS) and (BVS/EVS) pairs. As a special case, one acceleration zone can
end at precisely the same point where another acceleration zone of the same type
begins. This is accomplished through use of the special combination TCPs: EOTBOT,
EGSBGS, and EVSBVS.

9

3.3 Consistent Plans

A plan is consistent when:

• it is well-formed; and

• every end TCP point matches the position kinematically-calculated from its
corresponding beginning TCP point and its acceleration value.6

In essence, consistent plans ensure that the mathematical relationship between the
beginning TCP point and the ending TCP point is maintained. The trajectory
generation process can be quite complex and latent errors in this complexity may
cause the formation of inconsistent plans. The mathematical constraints that define
consistency for each of the three types of TCPs are presented in the next three
subsections.

3.3.1 Turn TCP Constraints

The BOT and EOT positions and associated acceleration data must be consistent with
each other. A constant-acceleration turn is described by a radius and center of
turn, which defines the turn arc from the BOT point to the EOT point. The radius
is stored as a signed value, where the sign encodes the turn direction (a positive
radius is clockwise, negative counterclockwise) and the magnitude is the actual
radius value. For a plan to be considered consistent, it is necessary that both the
BOT and EOT points are on this circle. In addition all other points between BOT and
EOT should be on this circle. Each of these tests is accomplished by measuring the
distance from the point to the center of turn and ensuring that this distance is the
same as the radius.

Because the only information stored about a turn is the radius and turn center,
not all information contained in the BOT and EOT is tested in this consistency check.
Specifically, neither the altitude, nor the time components are checked because these
values are not constrained by the turn structure.

3.3.2 Ground Speed TCP Constraints

The information stored for a ground speed change in segment i is the ground speed
acceleration value, denoted agsi . The path distance between BGS and EGS must
satisfy the following equation:

path distance = vgsi∆t +
1

2
agsi∆

2
t ,

where ∆t is the time between BGS and EGS and vgsi is the ground speed at the
beginning of the segment, that is, the ground speed coming out of BGS. The path
distance refers to the two-dimensional path distance and this path distance is defined
assuming the plan is turn consistent, per Section 3.3.1.

6We note that this calculation can be complicated if this TCP pair overlaps with other TCP
pairs of a different type.

10

3.3.3 Vertical Speed TCP Constraints

The information stored for a vertical speed change is the vertical speed acceleration
value, denoted avsi . The vertical path distance between the BVS/EVS pair must
satisfy the following equation:

vertical distance = vvsi∆t +
1

2
avsi∆

2
t ,

where ∆t is the time between BVS and EVS and vvsi is the vertical speed at the
beginning of the segment, that is, the vertical speed coming out of BVS. The vertical
distance is simply the change in altitude from BVS to EVS.

3.4 Velocity-Continuous Plans

A linear plan can contain instantaneous velocity changes at the index points; how-
ever, conventional aircraft cannot make instantaneous velocity changes. Although
low momentum vehicles, such as rotorcraft or quadcopters, can perform nearly in-
stantaneous velocity changes (i.e., direction changes with no turn radius), we con-
strain our discussion in this section to trajectories with continuous velocity vectors
at all points. We call such plans kinematic plans. We note, however, that the
trajectories of low momentum vehicles can easily be be described using the EUTL
language.

The velocity of a trajectory is said to be continuous at some point i provided
the velocity into point i is the same as the velocity coming out of point i. The
requirement that the velocity be the same means that every component of velocity
(track angle, ground speed, and vertical speed) must be the same.

We note that linear plans typically have many velocity discontinuities whereas
properly-constructed kinematic plans are velocity-continuous. Observe that plan
consistency is primarily a restriction on the positions of points, sometimes called the
structural aspects of the plan, whereas velocity-continuous plans are a restriction
on the velocity at points, and velocity relates to times of the points.

4 Language Elements

Section 3 provides an overview of trajectories and how trajectories can be encoded
into a form that is suitable for storing in a computer or communicating between
computers. This section provides a more detailed description of how a plan is stored
and the basic functions used with a plan. The key functions of position and velocity
are given sections of their own. This section provides many of the important details
necessary to understand the sections describing position and velocity.

4.1 The Plan Data Structure

We will now use Plan to refer to the pseudo-code operational specification of a plan.
The notation used here is based on the PVS specification language. A Plan consists
of these lists:

11

points: [nat -> NavPoint]

data: [nat -> TcpData]

A NavPoint is a data structure that consists of 3D position, a time, and a string
name. It can be defined as follows:

(p:Position, time: real, name: String)

A Position can be defined with either Euclidean coordinates, with the function
newPositionXYZ, or geodesic coordinates, with the function newPositionLLA, which
thus provides a common interface and allows most other software to ignore the detail
of the true nature of a position. Position is effectively a disjoint union of the two
types. In the software, the type coercions to the appropriate type are needed, but
in this paper, we leave these out to simplify the presentation. Similarly, given a
NavPoint np, the expression position(np) is often just written as np. However,
time(np) will always be explicit. The method isLatLon(p) returns a boolean
value indicating whether the position is geodesic (latitude, longitude) or not. If a
position p is Euclidean the accessors x(p), y(p) and z(p) can be used to retrieve
the components. If the position is geodesic, then the accessors lat(p), lon(p),
alt(p) are used.

In addition to the NavPoint, each point also has a TcpData data structure. This
structure contains the information about whether the point is a TCP point or not.
Furthermore, if the point is a TCP point, then this structure stores whether it is
a beginning or ending TCP, and what type of TCP it is (track, ground speed, or
vertical speed). Finally, if the point is a BOT, then the radius and center of turn are
also stored, if the point is a BGS then the ground speed acceleration is stored, and
if the point is a BVS then the vertical speed acceleration is stored in TcpData.

One observation made from this definition of Plan is that the velocity is not
explicitly stored. Instead, each point contains a time and, given knowledge of the
acceleration regions in a Plan, the velocity is implicitly defined for all positions
between these points. The computations used for velocity are foundational to the
definition of a trajectory and thus the specification of these equations becomes
critical to the definition of the trajectory.

4.2 EUTL Syntax

In this section we present a simple syntax of the Efficient Universal Trajectory
Language. While we are not concerned with a particular encoding of the elements
of the language, we provide a representative syntax to illustrate the main aspects of
this information. The syntax of EUTL is extremely simple: a semicolon-separated
list of points, with point names and TCP data being included if appropriate. The
language grammar is shown in Figure 2.

Quoted terms along with parentheses, semicolons, and commas indicate literal
values. Terms in all capital letters represent numeric or string values. Expressions
contained in square brackets ([and]) are optional. This data can easily be rep-
resented in various formats, a human-readable one being a simple text table. An
example of such is shown in Section 8 and Figure 20.

12

plan ::= LATLON? point list
point list ::= point point list

::= point point
point ::= navpoint tcpdata
navpoint ::= TIME (position) [NAME]
position ::= LAT, LON, ALT | X, Y, Z
tcpdata ::= [(trk data)] [(gs data)] [(vs data)]
trk data ::= trk type RADIUS | “EOT”
gs data ::= gs type GS_ACCEL | “EGS”
vs data ::= vs type VS_ACCEL | “EVS”
trk type ::= “BOT” | “EOTBOT”
gs type ::= “BGS” | “EGSBGS”
trk type ::= “BVS” | “EVSBVS”

Figure 2: EUTL Grammar.

5 Informal Semantics of Position and Velocity Func-
tions

In this section we provide an informal introduction to defining position and velocity
as functions of time for any point within a trajectory. This section is intended to
provide the high-level mathematical overview, whereas in Section 6 detailed descrip-
tions of algorithms that can be used to compute position and velocity are presented.

5.1 Non-accelerating Segments

In non-accelerating segments, the velocity is constant over the segment. Recall that
accelerating sections of a plan begin and end with TCP points. These sections can
extend over several segments. Any segments of well-formed plans that do not fall
within any TCP regions are non-accelerating segments.

In a non-accelerating segment, for all points within the segment, the velocity is
constant. As observed in Section 4.1, the velocity is not explicitly stored, so it must
be computed. The velocity is defined as follows:

vi =
si+1 − si
ti+1 − ti

when ti < ti+1. Since the velocity is constant over the segment, velocity as a function
of time is defined as

v(t) = vi, for ti ≤ t < ti+1. (1)

In a similar way, for a segment with a constant velocity, the position s(t) at absolute
time t within segment i is given as follows

s(t) = si + (t− ti)vi, for ti ≤ t < ti+1. (2)

13

These definitions are valid when the positions are Euclidean. If the coordinates
are geodesic, then spherical trigonometry must be used instead of conventional vec-
tor algebra. In this formulation, aircraft travel in great circle paths. The position
s(t) is given by

LET

∆t = ti+1 − ti
vi = velocity initial(si, si+1,∆t),

d = (t− ti) · gs(vi)

IN

linear initial(si, trk(vi), d)

(3)

assuming, ti ≤ t < ti+1. This definition relies on several other functions, including:

• trk(v) is the track component of velocity v;

• gs(v) is the ground speed component of velocity v;

• velocity_initial is the initial great circle velocity coming out of the initial
point (see definition in Appendix B); and

• linear_initial is the position starting at the initial point and traveling d
distance along the great circle in the given direction (see definition in Ap-
pendix B).

We note that the ground speed and vertical speed components of the velocity
are constant (i.e., the same as vi above), but the track will vary over the great circle
path (in essence, over time). The velocity, v(t), at time t assuming, ti ≤ t < ti+1 is
given by

LET

trk = final course(si, s(t))

IN

(trk, gs(vi), vs(vi))

This definition relies on two other functions:

• vs(v) is the vertical speed component of velocity v; and

• final_course is the final track angle7 going into the given point (see definition
in Appendix B).

7For the purposes of this paper, the navigational concepts of a course angle and a track angle
are interchangeable.

14

5.2 Multiple Acceleration Zones

Determining the position and velocity for segments within acceleration zones is
more challenging and quite complicated in the presence of overlapping acceleration
regions. Consider the trajectory shown in Figure 3. We want to find the position and
velocity at any arbitrary time t in the plan. If time t falls within segment 3 (indicated
by the dashed arrow), then one must deal with three different accelerations at the
same time. Each of the points contains a 3D position and a time, though in the

BOT

BVS

EOT
EVS

t

BGS

EGS

3
4 5

6

2

1

0

Figure 3: Overlapping Acceleration Zones

figure the altitude profile is not shown. It is clear from the figure that point t
falls within segment 3; however, an algorithm must determine the segment number
by scanning the times at the points. The order of computation is critical when
determining the position and velocity at time t when there are multiple overlapping
acceleration regions in the plan. A straightforward calculation, similar to equation 2
is not possible because the position in a turn is based on the path distance, the path
distance is based on time and ground speed profile, and the ground speed profile
is a function of path distance. To break this circular dependency, we start with a
function that computes the circular path distance between the index points, rather
than at an arbitrary point t. Next, we define a function for path distance by time,
based on the initial ground speed at the beginning index point and the given ground
speed acceleration. Combining these two results gives the horizontal position; the
vertical position can be overlaid on this position. This method will only work within
the segment containing the time point of interest. This calculation is described in
more detail in the following sections.

5.3 Path Distance Between Index Points

If the points are straight (i.e., non-turning) segments, then the distance is simply
the Euclidean distance or the great circle distance between two 2D points. If the
segment is a turn segment, the path distance can be calculated as shown in Figure 4.
The path distance is di = θR where θ is the angle at the center of the turn. Recall
that the turn radius and center position are stored for each turn. We note that the
positions si and si+1 may be points within a turn and therefore can be points other

15

i

R

R

center

θ

s

s

i

i+1

d

Figure 4: Path Distance of a Turn Segment

than a BOT or EOT.

There are two different notions of radius that arise when dealing with geodesic
coordinates. They are:

• Surface Radius: the along-surface radius that is calculated using the great
circle distance from the center of the turn to a point on the turn; and

• Chordal Radius: the part of a chord that is in the plane of the turn itself (which
is an arc of a small circle) and hence passes through the sphere’s volume.

For small-radius turns these are approximately the same, but for very large ra-
dius turns (on the order of hundreds of nautical miles), there can be a significant
difference between the two values. These are illustrated in Figure 5.

R’

R

θ

Figure 5: Example Surface Radius, R, and Chordal Radius, R′.

The surface radius is labeled R and the chordal radius is labeled R′ in the figure.
The turn circle is shown in blue. Note that turn circle is on the surface of the sphere
but it is not a great circle (it may be referred to as a small circle). This small circle
is also on the same plane as the two R′ segments. Therefore the length (i.e., path
distance) of the blue turn is θR′.

The radius used in the path distance calculation above should be the chordal
radius. Appendix C provides the equations that can be used to convert the surface
radius to the chordal radius and vice versa.

16

5.4 Interpolating Within Acceleration Zones

Next, we need a means to interpolate within two specified points. This requires that
we develop a method to translate from distance to time. First we establish a way to
compute the ground speed at each index point, see Section 5.4.1. If the segment is
not within a BGS-EGS region, the speed over this segment is simply the path distance
between the end points divided by the difference in times at the end points, as in
equation 1.

5.4.1 Computing Ground Speeds at Index Points

We begin by recognizing that the ground speed in an EUTL plan is not necessarily
continuous. In particular, the ground speed can be discontinuous at the segment
boundaries in a linear plan. Therefore, we cannot rely on any ground speed infor-
mation outside of the segment of interest. We distinguish between the ground speed
at the beginning of the segment, denoted, vgsi , and the ground speed at the end of
the segment, denoted, vfinali . An example of these is shown in Figure 6. The speed
vgsi can be thought of as the speed coming out of segment i and vfinali−1

can be
thought of as the speed coming into segment i.

G
ro

u
n
d

 S
p
ee

d

gsv

i
final

v

time

t
i

i

Figure 6: Relationship between Ground Speeds

If we define

Di = horizontal path distance between point i and i+ 1,

∆t = ti+1 − ti, and
agsi = ground speed acceleration (possibly 0) over segment i,

then the ground speed at the beginning of segment i is:

vgsi =
Di

∆t
− 1

2
agsi∆t, (4)

and the ground speed at the end of segment i is:

vfinali =
Di

∆t
+

1

2
agsi∆t .

17

These equations are easily obtained by solving for vgsi and vfinali in the fundamental
distance and velocity kinematic equations:

Di = vgsi∆t +
1

2
agsi∆

2
t ,

vfinali = vgsi + agsi∆t,

where vgsi is the initial velocity and vfinali is the final velocity. In section 6, these
functions are given longer, textual names: gsOut(i) and gsIn(i):

gsOut(i) = vgsi ,

gsIn(i) = vfinali−1
.

The plan is continuous at index point i if gsOut(i) = gsIn(i).

5.4.2 Determining Distance From a Time Within a Segment

With the ground speed at the start of the segment (see Section 5.4.1), we can define
the path distance d within segment i relative to si as follows

di(t) = vgsi · (t− ti) +
1

2
agsi · (t− ti)

2, (5)

where vgsi is defined by equation 4. This relative path distance in a segment can
be used to find the final position by moving this distance from si. If time t is not
within a ground speed acceleration zone, then agsi = 0.

5.4.3 Advancing a Specified Distance Within a Segment

Finding a point within a straight segment by a specified distance is essentially an
interpolation function. In the Euclidean case, linear interpolation accomplishes the
task. In the geodesic case, there are great circle functions that interpolate between
points on a great circle arc. The challenge is to define a function to find a point
from a distance in a turn. Consider the turn segment shown in Figure 7. Here the
distance di(t) is the relative path distance, defined by equation 5, from the start
of segment i to the point at time t. The angle α is simply di(t)/R

′ and hence the
direction from the center is easily determined. If one then calculates the point that
is R units away from the center in the direction determined by α, then the final point
is obtained. We note that the radius used in the angle calculation is the chordal
radius R′, while the distance from the center calculation uses the surface radius, R.
See section 6.6.2 for details about this turnByDist method.

5.5 Velocity at a Time

Next, we turn to defining velocity as a function of time. Clearly it should be equal to
the time-derivative at time t. However, we do not calculate it as a formal derivative.
Instead we calculate the velocity components separately. That is, we calculate the
track, ground speed, and vertical speed at point t.

18

di(t)

center

α

s i

t
s i+1

R

R

Figure 7: Advancement Within a Turn Segment.

The ground speed at t is derived from the kinematic function for velocity with
a constant acceleration. Since we have the ground speed at the start of segment i
(see section 5.4.1) the ground speed at time t is defined as:

gsi(t) = vgsi + agsi · (t− ti),

where vgsi is defined by equation 4. Recall that vgsi is based on the current segment
number, i, and it is assumed that ti ≤ t < ti+1.

The track at time t is computed differently for the two cases. In straight seg-
ments, the final track is defined by the track angle when si is moved linearly by
path distance d. In turn segments, the track angle is defined by the perpendicular
to the line from the turn center to the point at t (see Figure 7).

The vertical speed at time t within segment i is given by:

vsi(t) = vvsi + avsi · (t− ti)

where

vvsi =
zi+1 − zi

∆t
− 1

2
avsi∆t

and zi+1 and zi are the altitudes at the segment end points and ∆t = ti+1 − ti. It
is assumed that ti ≤ t < ti+1. If the segment is not a vertical speed acceleration
segment, then the vertical acceleration is zero, i.e., avsi = 0.

5.6 Vertical Component of Position

The definition of position in Section 5.4 only computes the 2D position (x and y or
latitude and longitude). The vertical component of position is computed separately
from the 2D position and then the components are integrated together. Since the
vertical component is independent of the horizontal components, the function to
perform the vertical calculations can be a linear interpolation. Given a time t

19

within a segment i (i.e., ti ≤ t < ti+1), the altitude at this time is

zi(t) = zi + vvsi · (t− ti) +
1

2
avsi · (t− ti)2,

where avsi is the vertical acceleration.

5.7 Summary of Calculation Steps

The approach for finding the position and velocity at time t can be summarized as
follows, given a time t:

• find the segment number which contains time t;

• calculate the ground speed at the beginning of the segment and determine the
value of the ground speed acceleration of this segment (possibly 0);

• using the ground speed data, determine the distance that will be traveled from
the starting location of the segment;

• advance this distance into the segment to obtain the horizontal 2D position
(the two cases are: (1) straight path and (2) circular path);

• calculate the altitude and vertical speed; and

• combine the horizontal and vertical components of position.

6 Operational Semantics

Section 5 provides a high-level, conceptual overview of how position and velocity
functions are defined. In this section, we provide detailed definitions of these func-
tions and thus provide an operational semantics for EUTL plans. By defining these
functions in detail, we hope that our readers should be able to produce their own
software implementation in a relatively straightforward manner.

The operational semantics of EUTL has been captured in the PVS formal spec-
ification language [10, 11]. We are also in the process of verifying our Java and
C++ versions of EUTL against this formal specification using the model animation
technique [26].

6.1 Notation

The basic syntax for expression definition is typical of functional programming lan-
guages and is as follows:

LET

<id_1> = <expression_1>

<id_2> = <expression_2>

.

20

.

.

<id_n> = <expression_n>

IN

<expression>

The <expression> after the keyword IN defines the body of the function. It must be
a function of previously defined functions and local values <id_X> that are defined
between the relevant keywords LET and IN. The following illustrates how this is used
to define a function:

circumference(radius): real =

LET

pi = 3.14159

IN

2.0*pi*radius

In this case the definition of the function circumference(radius) =
2.0*3.14159*radius. Additionally, a function may return a tuple value consisting
of more than one element:

f(r: real): [real,real] =

LET

a = 100

b = 200

IN

(5*a*r, b*r*r)

Subvalues of a tuple are extracted by implicit functions referring to their position
in the tuple. In this case the value of f(10).first = 5 · 100 · 10 = 5000 and
f(1).second = 200 · 1 · 1 = 200.

6.2 Summary of Utility Functions

The algorithms in Chapter 6 depend upon several utility functions whose meaning
is straightforward, so only a short description is presented in this section. More
complete definitions are given in Appendix A or B.

The set of utility methods in Table 1 retrieve information out of the Plan data
structures.

The set of utility methods in Table 2 check if a point is of a particular TCP
type.

The methods of Table 3 are those that search a plan for points of a particular
type.

The final section of utility functions (Table 4) relate a particular time to the
corresponding segment. All such functions return a negative value if no such segment
exists within the given plan.

21

time(p: Plan, i: int) : real Time of point i
point(p: Plan, i:int) : NavPoint NavPoint at the given index
signedRadius(p: Plan, i: int): real Chordal radius of turn, sign

indicates turn direction
turnCenter(p: Plan, i: int): Position Center of turn at point i
gsAccel(p: Plan, i: int): real Ground speed acceleration
vsAccel(p: Plan, i: int): real Vertical speed acceleration
isLatLon(p: Plan): bool True iff plan is a geodesic plan
size(p: Plan): int Number of points in the plan

Table 1: Basic Plan Functions.

isTrkTCP(p:Plan,i:int):bool Is this point a turn change point?
isBOT(p:Plan,i:int):bool Is this point a beginning of turn?
isEOT(p:Plan,i:int):bool Is this point an ending of turn?
isGsTCP(p:Plan,i:int):bool Is this a ground speed change point?
isBGS(p:Plan,i:int):bool Is this a beginning of ground speed change pt?
isEGS(p:Plan,i:int):bool Is this an ending ground speed change point?
isVsTCP(p:Plan,i:int):bool Is this a vertical speed change point?
isBVS(p:Plan,i:int):bool Is this a beginning vertical speed change point?
isEVS(p:Plan,i:int):bool Is this an ending vertical speed change point?

Table 2: Determining Point Type.

prevBOT(p: Plan, i: int): int Previous BOT strictly before point i
prevBGS(p: Plan, i: int): int Previous BGS strictly before point i
prevBVS(p: Plan, i: int): int Previous BVS strictly before point i

Table 3: TCP Navigation Functions.

getSegment(p:Plan,t:real):int Return the segment # that contains t
inTrkChange(p:Plan,double t):bool True iff time t falls within a BOT-EOT
inGsChange(p:Plan,double t):bool True iff time t falls within a BGS-EGS
inVsChange(p:Plan,double t):bool True iff time t falls within a BVS-EVS

Table 4: Basic Plan Functions.

22

We note that our algorithms operate on plans defined with either Euclidean or
geodesic coordinates. Although this complicates the implementation of our position
and velocity functions, the resulting flexibility for higher level algorithms more than
compensates for this complexity.

6.3 Calculating Path Distance

Based on the discussion in Section 5.3, there are two cases that must be covered to
define the horizontal path distance, denoted di, between index points: straight path
and circular turn.

6.3.1 Straight Path

The Euclidean distance is given by

pathDistance(i) = ||si+1 − si||.

The geodesic distance is given by

pathDistance(i) = GreatCircle.distance(si, si+1).

The great circle functions are defined in Appendix B. The combined function is:

distanceH(p1: Position, p2: Position): nnreal =

IF isLatLon(p1) THEN

GreatCircle.distance(lla(p1),lla(p2))

ELSE

norm(vect2(p1) - vect2(p2))

ENDIF

6.3.2 Circular Turn

We seek to calculate the horizontal path distance di of the segment shown in Figure
4. The path distance is given by:

di = pathDistance(i) = θR′,

where R′ is the chordal radius and θ = angle_between(si, center, si+1) is defined
by:

angle_between(p1: Position, p2: Position, p3: Position): real =

IF isLatLon(p1) THEN

GreatCircle.angle_between(lla(p1), lla(p2), lla(p3))

ELSE

LET A = p2.vect2() - p1.vect2()

B = p2.vect2() - p3.vect2()

IN

acos((A*B)/(norm(A)*norm(B)))

ENDIF

23

We note that the geodesic case is handled using the GreatCircle function
angle_between defined in Appendix B.

6.3.3 Combined Function

The function that combines the linear and circular cases is

pathDistance(p: Plan, i:int, linear: bool): real =

IF i < 0 OR i+1 >= size(p) THEN 0

ELSE

IF NOT linear AND inTrkChange(p, time(p,i)) THEN

LET

ixBOT = prevBOT(p, i+1)

center = turnCenter(p, ixBOT)

R’ = signedRadius(p,ixBOT)

theta = angle_between(point(p,i), center, point(p,i+1))

IN

abs(theta * R’)

ELSE

distanceH(point(p,i), point(p,i+1))

ENDIF

ENDIF

The function inTrkChange determines whether this segment is within a turn. See
Appendix A for its definition. The chordal radius is retrieved using the
signedRadius function.

6.4 Ground Speed Within a Segment

In Section 5.4.1, equation 4, we developed the semantics of ground speed at an
index point. In a full algorithm we must deal with a few technicalities. First, if
i is the last point in a plan, we assume that the future velocity vector is equal to
the previous ground speed in, that is, gsIn(i). Also, an algorithmic implementation
must determine whether the segment is in a ground speed acceleration zone or not
(i.e., between a BGS-EGS pair). If the segment is in such a zone, then the acceleration
must be recovered from an earlier BGS point. More complete versions of gsFinal
and gsOut are:

gsFinal(p: Plan, i:int, linear: bool): real =

IF i < 0 OR i > size(p)-1 THEN -1

ELSE

LET

dist = pathDistance(p, i, i+1, linear)

dt = time(p,i+1) - time(p,i)

24

a = IF inGsChange(p, time(p,i)) AND NOT linear THEN

gsAccel(p,prevBGS(p,i+1))

ELSE

0.0

ENDIF

IN

dist / dt + 0.5 * a * dt

ENDIF

gsOut(p: Plan, i:int, linear: bool): real =

IF i < 0 OR i > size(p)-1 THEN -1

ELSIF i = size(p) - 1 THEN

gsIn(p, i)

ELSE

LET dist = pathDistance(p, i, i+1, linear)

dt = time(p, i+1) - time(p, i)

a = IF inGsChange(p, time(p, i)) AND NOT linear THEN

gsAccel(p, prevBGS(p,i+1))

ELSE

0

ENDIF

IN

dist / dt - 0.5 * a * dt

ENDIF

We note that numerical inaccuracies may lead to small negative ground speeds
when implementing this function in floating point arithmetic. It may be necessary
to guard against these undesirable return values. For convenience we define GsIn as
follows:

gsIn(p: Plan, i:int, linear: bool): real =

Gsfinal(p,i-1,linear);

6.5 Determining Distance From a Time in a Segment

Based on the discussion in Section 5.4.2, our approach to finding distance within a
segment is based upon using path distance within a trajectory. Since we ultimately
want to find the position and velocity in a plan at a specific time, we need to find
the distance from the start of a segment to that time point. This is accomplished
with the distFromPointToTime function:

distFromPointToTime(p: Plan, seg: int, t: real, linear: bool):real=

LET gs0 = gsOut(p, seg, linear)

dt = t - time(p, seg)

IN

25

IF inGsChange(p, t) AND NOT linear THEN

LET a = gsAccel(p,prevBGS(p, seg + 1)) IN

gs0 * dt + 0.5 * a * dt * dt

ELSE

gs0 * dt

ENDIF

6.6 Advancing a Calculated Distance Within a Segment

To find a new point d distance from a given point, and based on the discussion in
Section 5.4.3, there are two cases that must be covered: the segment is linear, and
the segment is a turn.

6.6.1 Straight Linear Segment

linearDist2D(so: Position, track:real, d: real, gsAt_d: real):

[Position,Velocity] =

IF isLatLon(so) THEN

LET sEnd = GreatCircle.linear_initial(so, track, d)

finalTrk = IF d > minDist THEN

GreatCircle.final_course(so, sEnd)

ELSE

track

ENDIF

vEnd = Velocity.mkTrkGsVs(finalTrk, gsAt_d, 0.0)

IN

(newPositionLLA(sEnd),vEnd)

ELSE

LET sNew = linearByDist2D(so,track,d)

vNew = Velocity.mkTrkGsVs(track,gsAt_d,0.0)

IN

(newPositionXYZ(sNew),vNew)

ENDIF

We note that for small distances d, the GreatCircle computations may produce
inaccurate results. We have left out the details of how this is compensated for in the
Java and C++ implementations. We also note that the 2D in the name indicates
that altitude and vertical speed are not computed by this function. These values
are computed by the interpolateAltVs function. The function linearByDist2D

is defined as follows

linearByDist2D(s : Vect3, track: real, d : real) : Vect3 =

(sx + d · sin(track), sy + d · cos(track), sz).

It calculates the 2D position after moving distance d units in the direction track

and the altitude is not calculated.

26

6.6.2 Turn Segment

The parameters to the turn are:

• so: the position at the start of the turn (i.e., the BOT);

• center: the center of the turn stored in the BOT point;

• dir: the direction of the turn; and

• gsAtd: the ground speed at the end of the turn.

The last parameter gsAtd is passed in as a parameter because it usually has already
been computed and this prevents a redundant calculation. The geodesic turn by
path distance function is:

turnByDist2D(so, center: Position, dir:int, d: real, gsAtd: real):

[Position,Velocity] =

LET R = GreatCircle.distance(so, center)

R’ = GreatCircle.to_chordal_radius(R)

alpha = dir*d/R’

trkFromCenter = GreatCircle.initial_course(center,so)

nTrk = trkFromCenter + alpha

sn = LatLonAlt.mkAlt(GreatCircle.linear_initial(center,

nTrk,R),0)

final_course = GreatCircle.final_course(center,sn)

finalTrk = final_course + dir*PI/2

vn = Velocity.mkTrkGsVs(finalTrk,gsAtd,0.0)

IN

(sn,vn)

It returns a pair containing the final position and velocity. We note that the conver-
sion of the radius to a chordal radius is optional, unless high accuracy is necessary.
The Euclidean function is:

turnByDist2D(so, center: Vect3, dir: int, d: real, gsAtd: real):

[Vect3, Velocity] =

LET R = distanceH(so, center) IN

IF R = 0 THEN (so, INVALID)

ELSE

LET alpha = dir*d/R

trkFromCenter = track(center, so)

nTrk = trkFromCenter + alpha

sn = mkZ(linearByDist(center, nTrk, R), 0.0)

finalTrk = nTrk + dir*PI/2

vn = Velocity.mkTrkGsVs(finalTrk,gsAtd, 0.0)

IN

27

(sn,vn)

ENDIF

The function track(center, so) returns the track angle from point center to
so. The function LatLonAlt.mkAlt(lla,z) returns a geodesic coordinate with
latitude and longitude the same as in lla, but with altitude z. The function mkZ

performs the same operation on a Euclidean coordinate frame.

6.7 Full Position and Velocity Function

positionVelocity(p: Plan, t: real, linear: bool):

[Position, Velocity] =

IF (t < time(p,0)) THEN (INVALID, Velocity.ZEROV)

ELSE

LET seg = getSegment(p,t)

np1 = point(p,seg)

IN

IF (seg + 1 > size(p) - 1) THEN

LET v = finalVelocity(p, seg - 1) IN

(np1, v)

ELSE

LET gs0 = gsOut(p,seg, linear)

gsAt_d = gsAtTime(p, seg, gs0, t, linear)

adv = posVelWithinSeg(p, seg, t, linear, gsAt_d)

altPair = interpolateAltVs(p,seg,t-time(p,seg),linear)

sNew = mkAlt(adv.first, altPair.first)

vNew = Velocity.mkVs(adv.second, altPair.secong)

IN

(sNew, vNew)

ENDIF

ENDIF

This key function relies on two subfunctions: posVelWithinSeg and interpolateAltVs

described below. The function Velocity.mkVs(v,z) returns a velocity with the
same horizontal information as v, but with vertical speed z.

6.8 The posVelWithinSeg Function

The function posVelWithinSeg determines if the horizontal motion is linear or a
turn and then calculates the appropriate new 2D position:

posVelWithinSeg(p: Plan, seg:int, t:real, linear:bool, gsAt_d: real):

[Position, Velocity] =

LET np1 = point(p,seg)

so = position(np1)

IN

28

IF NOT linear AND inTrkChange(p,t) THEN

LET ixPrevBOT = prevBOT(p, seg + 1)

center = turnCenter(p, ixPrevBOT)

dir = turnDir(p, ixPrevBOT)

distFromSo = distFromPointToTime(p, seg, t, linear)

IN

turnByDist2D(so, center, dir, distFromSo, gsAt_d)

ELSE

LET np2 = point(p, seg+1)

vo = initialVelocity(np1,np2)

distFromSo = distFromPointToTime(p, seg, t, linear)

IN

linearDist2D(so, trk(vo), distFromSo, gsAt_d)

ENDIF

6.9 The initialVelocity Function

The initialVelocity function calculates the initial velocity between two NavPoints

initialVelocity(s1: NavPoint, s2: NavPoint): Velocity =

LET pp = position(s1)

tt = time(s1)

dt = time(s2) - tt

IN

IF dt = 0 THEN

zero

ELSIF dt > 0 THEN

IF isLatLon(s1) THEN

GreatCircle.velocity_initial(s1, s2, dt)

ELSE

(1/dt)*(s2 - s1)

ENDIF

ELSE

IF isLatLon(s1) THEN

GreatCircle.velocity_initial(s2, s1, -dt)

ELSE

(-1/dt)*(s1 - s2)

ENDIF

ENDIF

6.10 The interpolateAltVs Function

The interpolateAltVs function makes the vertical calculations of altitude and
vertical speed:

29

interpolateAltVs(p: Plan, seg: int, dt: real, linear: bool):

[real,real] =

LET tSeg = time(p,seg)

vsAccel_d = IF (NOT linear AND inVsChange(p, tSeg)) THEN

vsAccel(p, prevBVS(p, seg+1))

ELSE

0.0

ENDIF

alt1 = alt(point(p,seg))

vsInit = vsOut(p,seg,linear)

newAlt = alt1 + vsInit*dt + 0.5 * vsAccel_d*dt*dt

newVs = vsInit + vsAccel_d*dt

IN

(newAlt,newVs)

6.11 Consistent Plans, Revisited

Consistent plans must first be well-formed. Furthermore, all TCP begin and end
locations must be consistent with the acceleration values in order for a plan to
be usable. When the calculations are done using floating point arithmetic, the
agreement will not be perfect. Therefore, approximate agreement within bounds
is used. This section provides a formal description of plan consistency that was
introduced in Section 3.3. To allow for floating point implementations, the functions
in this section contain a tolerance parameter distH_Epsilon that specifies how
accurate the calculated positions must be.

6.11.1 Track TCP Constraints

The function isTurnConsistent is applied to a BOT to test whether all the points
in the turn (until the EOT) are the proper distance from the center of turn. Recall
that the radius of the turn represents the surface distance from the center of the
turn to the BOT, or the curved distance over the earth. The mathematical definition
of isTurnConsistent, split over two functions, is:

isTurnConsistent(p:Plan, i:int, distH_Epsilon: double): bool =

IF p.isBOT(i) THEN

LET

center = p.turnCenter(i)

radius = p.getTcpData(i).turnRadius()

IN

isTurnConsistentRec(p,i,distH_Epsilon,radius,center)

ELSE false

ENDIF

30

isTurnConsistentRec(p:Plan, i:int, distH_Epsilon: double,

radius: double, center: Position): bool =

LET

dist = p.point(i).position().distanceH(center)

rtn = abs(dist - radius) > distH_Epsilon

IN

IF i >= p.size() THEN false

ELSIF p.isEOT(i) THEN rtn

ELSE rtn AND

isTurnConsistentRec(p,i+1,distH_Epsilon,radius,center)

ENDIF

6.11.2 Ground Speed TCP Constraints

The function isGsConsistent is applied to a BGS to test whether the ground speed
acceleration into the next EGS is properly defined. Its mathematical definition is:

isGsConsistent(p: Plan, ixBGS: int, distEpsilon: double): bool =

IF p.isBGS(ixBGS) THEN

LET BGS = p.point(ixBGS)

ixEGS = p.nextEGS(ixBGS)

EGS = p.point(ixEGS)

gsOutBGS = p.gsOut(ixBGS)

dt = time(EGS) - time(BGS)

a BGS = p.gsAccel(ixBGS)

ds = gsOutBGS*dt + 0.5*a_BGS*dt*dt

distH = p.pathDistance(ixBGS,ixEGS)

absDiff = abs(ds-distH)

IN

absDiff < distEpsilon

ELSE

true

ENDIF

6.11.3 Vertical Speed TCP Constraints

The function isVsConsistent is applied to a BVS to test whether the ground speed
acceleration into the next EVS is properly defined. Its mathematical definition is:

isVsConsistent(p: Plan, ixBVS: int, distEpsilon: double): bool =

IF p.isBVS(ixBVS) THEN

LET

ixEVS = p.nextEVS(ixBVS)

VSCBegin = p.point(ixBVS)

VSCEnd = p.point(ixEVS)

a = p.vsAccel(ixBVS)

31

dt = time(VSCEnd) - time(VSCBegin)

ds = p.vsOut(ixBVS)*dt + 0.5*a*dt*dt

deltaAlts = VSCEnd.alt - VSCBegin.alt()

absDiff = abs(ds-deltaAlts)

IN

absDiff <= distEpsilon

ELSE

true

ENDIF

6.12 Velocity-Continuous Plans, Revisited

We define the function isVelocityContinuous:

isVelocityContinuous(p: Plan, i:int): bool =

trkIn(p,i) = trkOut(p,i)

AND gsIn(p,i) = gsOut(p,i)

AND vsIn(p,i) = vsOut(p,i)

which checks for continuity at index i. This function depends upon the following
subfunctions which have not been defined yet:

trkInTurn(p: Plan, pos:Position, center: Position, dir:int): real =

IF isLatLon(pos) THEN

LET final_course = GreatCircle.final_course(center,pos) IN

final_course + dir*PI/2

ELSE

LET trkFromCenter = track(center, pos)

nTrk = trkFromCenter

IN

nTrk + dir*PI/2

ENDIF

track(p1:Vect3, p2:Vect3): real =

atan2(p2.x-p1.x, p2.y-p1.y)

trkFinal(p: Plan, seg: int, linear: bool): real =

IF seg < 0 OR seg >= size(p) - 1 THEN -1

ELSE

IF inTrkChange(p, time(p,seg)) AND NOT linear THEN

LET ixBOT = prevBOT(p,seg+1)

dir = turnDir(p,ixBOT)

center = turnCenter(p, ixBOT)

IN

trkInTurn(p, point(p,seg+1), center, dir)

ELSE

32

IF isLatLon(p) THEN

GreatCircle.final_course(point(p, seg), point(p,seg+1))

ELSE

trk(finalVelocity(point(p, seg), point(p, seg+1)))

ENDIF

ENDIF

ENDIF

trkOut(p: Plan, seg:int, linear: bool): real =

IF (seg = size(p) - 1) THEN

trkFinal(p, seg-1, linear)

ELSE

IF inTrkChange(p, time(p,seg)) AND NOT linear THEN

LET ixBOT = prevBOT(p, seg + 1)

center = turnCenter(p, ixBOT)

dir = turnDir(p, ixBOT)

IN

trkInTurn(p, point(p, seg), center, dir)

ELSE

IF isLatLon(p) THEN

GreatCircle.initial_course(point(p,seg),point(p,seg+1))

ELSE

trk(initialVelocity(point(p, seg), point(p, seg+1))

ENDIF

ENDIF

ENDIF

trkIn(p: Plan, seg:int): real =

trkFinal(p,seg-1,false);

trkOut(p: Plan, seg:int): real =

trkOut(p,seg,false);

vsFinal(p: Plan, i: int, linear: bool): real =

IF i < 0 OR i > size(p) - 1 THEN -1

ELSE

LET

dist = alt(point(p,i+1)) - alt(point(p,i))

dt = time(p, i+1) - time(p, i)

a = IF inVsChange(p, time(p,i)) AND NOT linear THEN

vsAccel(p, prevBVS(p, i + 1))

ELSE

0.0

ENDIF

33

IN

dist / dt + 0.5 * a * dt

ENDIF

vsFinal(p: Plan, i: int): real = vsFinal(p,i,false)

vsOut(p: Plan, i: int, linear: bool): real =

IF i < 0 OR i >= size(p) - 1 THEN -1

ELSIF i = size(p) - 1 THEN

vsFinal(p, i - 1)

ELSE

LET

dist = alt(point(p,i+1)) - alt(point(p,i))

dt = time(p, i+1) - time(p, i)

a = IF inVsChange(p, time(p, i)) AND NOT linear THEN

vsAccel(p, prevBVS(p,i + 1))

ELSE

0

ENDIF

IN

dist / dt - 0.5 * a * dt

ENDIF

vsIn(p: Plan, i: int): real =

vsFinal(p,i-1,false)

vsOut(p: Plan, i: int): real =

vsOut(p,i,false)

7 TCP Generation

The plan data structure efficiently stores the information needed to retrieve the
position and velocity of a trajectory at any time point t. We have described this
functionality in detail. However, we have not yet explained how one creates a well-
defined consistent trajectory. A linear trajectory is easy to construct; however, a
consistent and velocity-continuous kinematic plan with multiple TCP regions (pos-
sibly overlapping) can be challenging. We have developed two major algorithms for
doing this:

• TrajGen.makeKinematicPlan

• Distplan.makePlan

We note that these algorithms are not used in the operational semantics of the
EUTL language. These algorithms produce EUTL trajectories as an output. As

34

these algorithms are outside the scope of this paper, they are only broadly described
here.

7.1 TrajGen.makeKinematicPlan

The makeKinematicPlan algorithm accepts a linear plan as input and creates a
consistent and velocity-continuous plan from it. This trajectory generator is a low-
fidelity generator and does not use aircraft performance data or wind data as input.
This is a multi-pass algorithm that first marks significant vertical speed change
points. It then generates circular turns between non-collinear segments. It next
calculates areas of horizontal acceleration between segments with different velocities.
Because changing ground speed can also alter the vertical profile, it then corrects
the vertical profile to have a similar behavior to the original based on the previously
marked points. It finally calculates vertical acceleration zones. More details on how
this is achieved can be found in [9].

Consider the horizontal view of a linear plan show in Figure 8.

-72.58 -72.56 -72.54 -72.52 -72.5 -72.48 -72.46 -72.44

Longitude [deg]

41.64

41.65

41.66

41.67

41.68

41.69

41.7

La
tit

ud
e

[d
eg

]

245 kts

274 kts

Figure 8: Horizontal View of Linear Plan.

Point Latitude (◦) Longitude (◦) Altitude (ft) Time (s)

1 41.690007 -72.573280 5000.0 36130.0
2 41.641105 -72.547418 6000.0 36176.3
3 41.678012 -72.441028 6000.0 36245.4

Table 5: Linear Plan Input

This linear plan was generated by the input from Table 5. In this case the
generation used default acceleration values of 4 m/s horizontal and 2 m/s vertical.
The bank angle used to calculate turns was 25 degrees.

35

-72.58 -72.56 -72.54 -72.52 -72.5 -72.48 -72.46 -72.44

Longitude [deg]

41.65

41.655

41.66

41.665

41.67

41.675

41.68

41.685

41.69

41.695

La
tit

ud
e

[d
eg

] 245 kts

245 kts

245 kts 245 kts 245 kts260 kts

274 kts

START,END
BOT,EOT
BVS,EVS
BGS,EGS

Figure 9: Horizontal View of Generated Plan.

The horizontal profile of the generated kinematic plan is show in Figure 9. The
yellow waypoints are the BOT and EOT TCPs. The magenta waypoints are the
BGS and EGS TCPs. The red waypoints are the BVS and EVS TCPs. The vertex
point of the turn has been replaced with a turn section. In this figure, the ground
speed change that occurs at the vertex in the linear plan has been deferred until
after the completion of the turn. This makes the maneuver a constant bank-angle
turn, which may be easier to fly. Alternatively, the generator can make the ground
speed change occur at the mid point of the turn. Note that there are red vertical
TCPs within the turn and that the speed values displayed are average speeds in
each segment. The vertical profile of this kinematic plan is show in Figure 10.

3.612 3.614 3.616 3.618 3.62 3.622 3.624

Time [sec] 104

5000

5200

5400

5600

5800

6000

A
lti

tu
de

 [f
t]

START,END
BOT,EOT
BVS,EVS
BGS,EGS

Figure 10: Vertical View of Generated Plan.

36

7.2 DistPlan.makePlan

The TrajGen algorithm is a means of transforming a linear plan into a kinematic
plan. In it, speeds are inferred from point times and acceleration values are user-
specified. The DistPlan utility synthesizes a kinematic plan from a 2D profile (a
distance-indexed speed profile and a distance-indexed altitude profile) using a multi-
pass process. With the DistPlan utility, speeds and distances are specified and
speed changes are assumed to be gradual; acceleration values and times are inferred.
It is intended to facilitate incorporating non-constant wind data and higher fidelity
aircraft dynamic models, allowing these to be abstracted into kinematic plans, such
as presented in Section 8.

More formally, the function DistPlan.makePlan receives three inputs and pro-
duces a consistent and velocity-continuous, kinematic plan from them as output.
The three inputs are:

• a list of 2D waypoints with radius information (i.e., a route);

• ground speeds as a function of path distance; and

• altitudes as a function of path distance.

The speed profile indicates the boundaries of acceleration zones.
The route is transformed into a kinematic plan that describes all turns and

horizontal segments using the standard turn generation algorithm and a default
ground speed. This plan (Plan 1) defines the turns and distances for the final
kinematic plan. This allows us to directly map speed and altitude data to it using
path distance as a reference.

Each point in the ground speed profile indicates the desired speed at that path
distance in the route, and it is assumed that between points there is a constant
(possibly zero) acceleration. It is required that the first point, at distance 0, is
always assigned an initial speed.

The ground speed profile may be divided into 3 sections representing take-
off/climb, cruise, and descent/landing. If this is so, then the various sections are
combined into a single unified profile before it is processed. If the distances are
consistent with the total distance defined by Plan 1 and the sections do not overlap,
they are simply concatenated into a single list, indexed from the start of the plan.8

If there is some overlap, then the cruise section is truncated or expanded to allow
the climb and descent portions to fit within Plan 1 exactly.

Vertical profile points are considered “fixed altitude” points, with vertical speeds
inferred between them. For greater accuracy, additional points may be included to
better describe an actual climb or descent profile. Similar to the speed profile, it is
assumed that the first point will have a specified altitude.

If the vertical profile is provided in three parts, it is processed in a similar way
to the three-part ground speed profile, though altitudes are indexed against path
distance. Any major mismatch in altitude between sections is registered as an error.

8For ease of computation, the climb and cruise sections are indexed from the start of the trajec-
tory, while the descent portion is initially calculated backwards from the end of the trajectory.

37

During processing, ground speeds are not calculated using the normal trajectory
generation algorithm. Instead, the unified ground speed profile is applied to Plan
1. At each distance a new, marked point is added (if necessary), and the speed of
each section between marked points is modified to match the profile’s speeds. This
results in a Plan 2, with regions of constant speed.

Plan 2 is scanned, searching for speed-marked points. At each of these points,
the previous segment speed is compared to the next segment speed. If there is a
discontinuity, then the segments between the previous two speed-marked points is
interpreted as a non-zero acceleration zone and its start and end are marked as
BGS and/or EGS, and an appropriate acceleration value is calculated. If there is
no change, then the region simply retains the previously defined constant ground
speed. When complete, each segment will have been assigned a constant ground
speed acceleration, possibly zero. This results in a new Plan 3.

Next, the vertical profile is applied. All points in the vertical profile are added
to Plan 3 as “fixed altitude” points. This results in Plan 4. Finally the normal
vertical TCP generation algorithm is applied to Plan 4, resulting in the output of a
final consistent kinematic plan.

8 Generation of Medium Fidelity Trajectories

In this section we describe the use of the EUTL within a low- to medium-fidelity
trajectory generator. The purpose of this trajectory generator is to generate rea-
sonable, consistent and velocity-continuous trajectories for commercial aircraft given
the flight plan information, the filed cruise true airspeed (TAS) and cruise altitude,
and an aircraft performance model. The trajectory generator uses the DistPlan

utility described in Section 7.2 . These trajectories have been used within the
TBO Toolkit for Integrated Air/Ground Research (TBO-TIGAR), which is a tool
intended for early-stage TBO concept exploration. We illustrate the trajectory gen-
erator using the following flight:

Call Sign: NASA001

Aircraft Type: B712 (Boeing 717)

Flight Plan: KBWI.TERPZ.WONCE.JIMME.ADDEK.HAFNR.GVE.LYH.KELLS

.MAYOS.MAJIC.SUDSY.GIZMO.AMOBE.INNOR.JATAB.KCLT

Cruise TAS: 455 kts

Cruise Altitude: 34000 ft (FL340)

The flight plan defines the origin airport (KBWI), the destination airport (KCLT),
and the waypoints that must be sequenced between them. The cruise altitude
and cruise speed provide the target states for the cruise portion of the flight but
the trajectory generator still needs to compute the full vertical speed and altitude
profiles for this flight. To do so, we make assumptions about how the aircraft
will execute the vertical profile, primarily in terms of indicated airspeeds (IAS)
within certain altitude regions. Using a performance model for the B712 aircraft
type, a standard atmosphere table, the nominal range for this flight, and the speed

38

constraints below 10,000 feet, we end up with the climb, cruise, and descent speed
profile in Table 6, in terms of calibrated airspeed (CAS)9 or Mach number.

Table 6: Calibrated/Mach Speed Profile Versus Altitude.

Phase Starting Altitude (ft) Ending Altitude (ft) Target CAS (kts/Mach)

Climb 0.0 10000.0 250.0
Climb 10000.0 30160.6 270.0
Climb 30160.6 34000.0 0.72
Cruise 34000.0 34000.0 0.786

Descent 34000.0 33221.1 0.74
Descent 33221.1 10000.0 260.0
Descent 10000.0 0.0 250.0

The speed profile shown in Table 6 provides the calibrated airspeed targets within
an altitude region for this flight. These speeds are useful for describing the profile
from the aircraft operational point-of-view but are not sufficient for generating the
full vertical profile for this flight. Even though the calibrated speed is being held
constant within these regions, the true airspeed is changing with altitude due to
the changing atmosphere (pressure, density and temperature). Also, as the aircraft
climbs or descends, the climb or descent rate is also variable with altitude. Addi-
tionally, the effects of wind will impact the ground speed (GS) of this trajectory.
Thus, the next step in this trajectory generation is to compute the vertical speed
and altitude profile that takes all of these effects into account.

The calibrated airspeed profile is converted into a ground speed and altitude
profile as a function of range. We begin with the reference linear plan generated
from the flight plan waypoints, as seen in Figure 1110. This reference linear plan is
used as a way to query a given wind field for the magnitude and direction of the
wind vector at any given location and altitude along this flight plan. The trajectory
generator computes climb ground speed and altitude profiles in 3000 foot altitude
increments from the departure airport until reaching the cruise airspeed and cruise
altitude using the following algorithm:

1. determine the target calibrated airspeed based on the current altitude;

2. determine the target true airspeed at the current range given the target cali-
brated airspeed and the current range altitude;

3. determine the ground speed at the current range given the true airspeed and
the wind at the current range;

4. determine the climb rate for this aircraft at the current altitude from the
performance data;

9Calibrated airspeed is indicated airspeed that has been corrected for instrumentation error.
10The point “$IF” is a virtual point inserted by the trajectory generator that lines up the tra-

jectory with the final approach segment.

39

5. compute the target true airspeed and target altitude at the next altitude
increment;

6. use the current vertical rate to determine the time required to execute the step
change in altitude;

7. use the time estimate to determine the range required to execute the step
change in altitude;

8. update the current range, current altitude, and current true airspeed based on
the step change; and

9. repeat above steps until reaching cruise altitude and cruise airspeed.

Note that the change in indicated airspeed executed at 10,000 feet is done via a short
level segment. Also, after crossover altitude, the target speed becomes a constant
indicated Mach instead of a constant indicated airspeed.

KCLT

$IF

KBWI
TERPZ

WONCE

JIMME

ADDEK

HAFNR

GVE

LYH

KELLS

MAYOS

MAJIC

SUDSY

GIZMO

AMOBE
INNOR

JATAB

US Map

1dump-test-EUTL-example-linear.txt

Figure 11: Reference Linear Plan Generated from the Flightplan.

The descent profile is computed using the same algorithm as the climb profile
generator with two exceptions. First, the descent rate is broken up into three ver-
tical rate regions; vertical rates above 30,000 feet; vertical rates above 10,000 feet;
and vertical rates below 10,000 feet. The vertical rates within these regions target a

40

geometric descent path of roughly 3 degrees, 2.5 degrees, and 2 degrees, respectively.
Second, the descent profile is generated in reverse from the destination airport back
to cruise altitude in order to properly account for the wind as a function of range
distance from the destination11. The computed speed and altitude profiles versus
range for the example flight can be seen in Figure 12. When generating a trajec-
tory in the presence of winds, the trajectory generator will also generate a ground
speed profile from the end of the climb profile to the start of the descent profile, in
increments of five nautical miles of range, to take into account the winds along the
en route portion of the trajectory.

0 20 40 60 80 100 120

Range From Origin Airport [NM]

200
225
250
275
300
325
350
375
400
425
450
475
500

S
pe

ed
 [k

ts
]

Climb Speed Profile

IAS
TAS
GS

0 20 40 60 80 100 120

Range From Origin Airport [NM]

0

1

2

3

4

A
lti

tu
de

 [f
t]

104 Climb Altitude Profile

-140 -120 -100 -80 -60 -40 -20 0

Range From Destination Airport [NM]

200
225
250
275
300
325
350
375
400
425
450
475
500

S
pe

ed
 [k

ts
]

Descent Speed Profile

IAS
TAS
GS

-140 -120 -100 -80 -60 -40 -20 0

Range From Destination Airport [NM]

0

1

2

3

4

A
lti

tu
de

 [f
t]

104 Descent Altitude Profile

Figure 12: Speed and Altitude Profiles as a Function of Range.

The final step in trajectory generation is to use the DistPlan method described
in Section 7.2 to generate a trajectory in the EUTL Plan format. A 2D Route is
generated using the linear flight plan and annotated with the turn radii at each

11The top of descent location or range is not known until the full descent profile has been calcu-
lated, making it difficult to determine the appropriate wind information to use within the profile;
this motivates the reverse computation of the descent profile.

41

waypoint, using the speed and altitude estimates at the range for those waypoints;
turn radii are calculated using a default assumed bank angle (25 degrees is used in
this example). The ground speed and altitude profiles as a function of range, along
with this 2D Route, are used to compute a kinematic plan. The final kinematic
trajectory for the example flight can be seen in Figures 13 and 14.

KCLT

KBWI
TERPZ

WONCE

JIMME

ADDEK

HAFNR

GVE

LYH

KELLS

MAYOS

MAJIC
SUDSY

GIZMO

AMOBE
INNOR

JATAB$IF

US Map

trajectory

TRK TCP

VS TCP

SPD TCP

Figure 13: Kinematic Trajectory Showing the TCP Points.

The resulting altitude, vertical speed, ground speed, and track angle profiles
for this example kinematic trajectory can be seen in Figures 15-18. The headwind
experienced along this plan can also be seen in Figure 19. The textual version of
the first 17 points of the generated plan is shown in Figure 20 with time in seconds,
latitude and longitude in degrees, and altitude in feet. Turn radii are in nautical
miles and horizontal and vertical accelerations are in meters per second. The total
plan has 95 points.

In future work we hope to document the generation algorithm in more detail.
We note that it is also possible to generate lower fidelity trajectories into the EUTL
language. The trajectory shown in Figure 21 was created by a simpler trajectory
generator for the same route. This trajectory has half the number of points in its
Plan.

42

ADDEK

KBWI
TERPZ

WONCE

JIMME

US Map

trajectory
TRK TCP
VS TCP
SPD TCP

KCLT

AMOBE

INNOR

JATAB

$IF

US Map

trajectory

TRK TCP

VS TCP

SPD TCP

Figure 14: Kinematic Trajectory Detail for Departure (Left) and Arrival (Right).

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

A
lti

tu
de

 [f
t]

104

Figure 15: Kinematic Trajectory Altitude Profile with Time.

43

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-2000

-1000

0

1000

2000

3000

4000

V
er

tic
al

 S
pe

ed
 [f

t/m
in

]

Figure 16: Kinematic Trajectory Vertical Speed Profile with Time.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

240

260

280

300

320

340

360

380

400

420

G
ro

un
d

S
pe

ed
 [k

ts
]

Figure 17: Kinematic Trajectory Ground Speed Profile with Time (in the Presence
of Wind).

44

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

160

180

200

220

240

260

280

300

320

340

360

T
ra

ck
 [d

eg
]

Figure 18: Kinematic Trajectory Track Angle Profile with Time.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

-10

0

10

20

30

40

50

60

70

H
ea

dw
in

d
[k

ts
]

Figure 19: Headwind Along the Plan’s Altitude versus Plan Range.

45

TIME LATITUDE LONGITUDE ALTITUDE NAME TCP_DATA

------ --------------------------------- ---- --------------

0.00 (39.175361, -76.668333, 146.00) KBWI (BGS 0.097) ;

57.81 (39.187720, -76.754260, 3146.00) (EGSBGS -0.051);

119.51 (39.200960, -76.846841, 6146.00) (EGSBGS 0.084) ;

161.99 (39.210048, -76.910704, 8073.00) (EGSBGS 0.082) ;

179.09 (39.213764, -76.936894, 8812.64) TERPZ (BOT -2.152) ;

181.86 (39.214214, -76.941201, 8932.67) ;

184.63 (39.214349, -76.945543, 9052.49) (EOT) ;

199.94 (39.214216, -76.969703, 9714.78) (BVS -1.000) ;

206.53 (39.214157, -76.980177, 9928.69) (EGSBGS 0.317) ;

213.13 (39.214097, -76.990751, 10000.00) (EVS) ;

230.26 (39.213931, -77.018979, 10000.00) (BVS 1.000) ;

236.53 (39.213867, -77.029584, 10064.55) (EGSBGS 0.099) ;

242.81 (39.213801, -77.040284, 10258.22) (EVS) ;

290.62 (39.213258, -77.123337, 12226.44) WONCE (BOT -2.790) ;

307.14 (39.207625, -77.151425, 12906.38) ;

309.41 (39.206032, -77.154924, 13000.00) (EGSBGS 0.055) ;

323.51 (39.192436, -77.172812, 13534.26) (EOT) ;

388.58 (39.116075, -77.237932, 16000.00) (EGSBGS 0.056) ;

...

Figure 20: Textual Version of Generated Plan.

0 500 1000 1500 2000 2500 3000 3500

Time [sec]

0

0.5

1

1.5

2

2.5

3

3.5

A
lti

tu
de

 [f
t]

104

trajectory
TRK TCP
VS TCP
SPD TCP

Figure 21: Vertical Profile of Low Fidelity Trajectory (Altitude versus Time).

46

9 Concluding Remarks

This paper presents a new language for specifying trajectories called the Efficient,
Universal Trajectory Language (EUTL). This language is defined for ATM applica-
tions where trajectories are communicated between air and ground systems. There-
fore, a high priority was placed on efficiently communicating unambiguous trajectory
descriptions. The language defines a trajectory as a sequence of 3D positions and
times where there is a constant velocity or constant acceleration between each point.
The semantics of the language are given in mathematical detail so that position and
velocity are precisely defined for all time points within a plan’s starting and ending
time. The language was also defined in a manner that does not depend upon any
particular control system or aircraft dynamics model. For this reason we consider
it a universal trajectory language.

References

1. Russell A. Paielli. Trajectory specification for high-capacity air traffic control.
Journal Of Aerospace Computing, Information, And Communication, 2, Sept
2005.

2. Intent project: The transition towards global air and ground collaboration in
traffic separation assurance. www.intentproject.org.

3. R.C.J. Ruigrok and M.S.V. Valenti Clari. The impact of aircraft intent in-
formation and traffic separation assurance responsibility on en-route airspace
capacity. In 5th FAA/EUROCONTROL ATM R&D Seminar, Jun 2003.

4. Robert A Vivona, Karen T Cate, and Steven M Green. Abstraction techniques
for capturing and comparing trajectory predictor capabilities and requirements.
In AIAA Guidance, Navigation and Control Conference, Honolulu, HI, 2008.

5. Sip Swierstra and Steven Green. Common trajectory prediction capability for
decision support tools. In 5th USA/Eurocontrol ATM R&D Seminar, Budapest,
Hungary, 2003.

6. Stéphane Mondoloni and Daniel Kirk. Proposed trajectory prediction and ex-
change information items for flight information exchange model (fixm). Techni-
cal report, MITRE, 2012.

7. Bill Gill and Bob Maddock. Prediction of optimal 4D trajectories in the presence
of time and altitude constraints. Technical Report DOC 97-70-09, PHARE,
European Organization For the Safety of Air Navigation, Feb 1997.

8. Ben Musialek, Carmen F. Munafo, Hollis Ryan, and Mike Paglione. Literature
survey of trajectory predictor technology. Technical Report DOT/FAA/TC-
TN11/1, Federal Aviation Administration William J. Hughes Technical Center,
2010.

47

9. George E. Hagen and Ricky W. Butler. Towards a formal semantics of flight
plans and trajectories. Technical Memorandum NASA/TM2014-218662, NASA,
Dec 2014.

10. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag,
June 1992.

11. N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Lab-
oratory, SRI International, Menlo Park, CA, February 1993. Also appears in
Tutorial Notes, Formal Methods Europe ’93: Industrial-Strength Formal Meth-
ods, pages 357–406, Odense, Denmark, April 1993.

12. United States Air Force Chief Scientist. Technology Horizons: A vision for Air
Force science and technology 2010-30. Technical Report AF/ST-TR-10-01-PR,
http://www.af.mil/information/technologyhorizons.asp, May 2010.

13. George E. Hagen, Ricky W. Butler, and Jeffrey M. Maddalon. The Stratway
program for strategic conflict resolution: Users guide. Technical Memorandum
NASA/TM2016-219196, NASA, May 2016.

14. Nelson M. Guerreiro, Ricky W. Butler, George E. Hagen, Jeffrey M. Maddalon,
and Timothy A. Lewis. Parametric analysis of surveillance quality and level and
quality of intent information and their impact on conflict detection performance.
Technical Memorandum NASA/TM-2016-219177, NASA, March 2016.

15. Nelson M. Guerreiro, Ricky W. Butler, Jeffrey M. Maddalon, George E. Hagen,
and Timothy A. Lewis. Conflict detection performance analysis for function
allocation using time-shifted recorded traffic data. In 15th AIAA Aviation Tech-
nology, Integration, and Operations Conference Dallas, TX, June 22-26 2015.

16. ICAO. Global air traffic management operational concept. Technical Report
9854 AN/458, International Civil Aviation Organization, 2005.

17. Samet Ayhan and Hanan Samet. Aircraft trajectory prediction made easy with
predictive analytics. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, August 13-17, 2016.

18. Daniel Delahaye, Stéphane Puechmorel, Panagiotis Tsiotras, and Eric Feron.
Mathematical models for aircraft trajectory design: A survey. Lecture notes in
Electrical Engineering, 10.1007/978-4-431-54475-3:205–247, 2014. hal-00913243.

19. Guillermo Frontera, Juan A. Besada, Ana M. Bernardos, Enrique Casado, and
Javier López-Leonés. Formal intent-based trajectory description languages.
IEEE Transactions On Intelligent Transportation Systems, 15(4), Aug 2014.

48

20. Terence S. Abbott. An overview of a trajectory-based solution for en route and
terminal area self-spacing: Seventh revision. Technical Report NASA/CR2015-
218794, Stinger Ghaffarian Technologies, Hampton, Virginia, August 2015.

21. Randy Walter. Flight management systems. In Cary R . Spitzer, editor, Digital
Avionics Handbook, Second Edition. CRC Press, 2000.

22. RTCA SC-186. Minimum aviation system performance standards for automatic
dependent surveillance broadcast (ADS-B), 2002.

23. J. Lopez-Leones, M. A. Vilaplana, E. Gallo, F. A. Navarro, and C. Querejeta.
The aircraft intent description language: A key enabler for air-ground synchro-
nization in trajectory-based operations. In 26th IEEE/AIAA Digit. Avionics
Systems Conference, 2007.

24. RTCA Inc. Safety and performance requirements standard for baseline 2 ATS
data communications (baseline 2 spr standard). Technical Report Volume 1,
DO-350A, Washington, DC, 2016.

25. RTCA Inc. Interoperability requirements standard for baseline 2 ATS data
communications (baseline 2 interop standard). Technical Report Volume 1 and
2, DO-351A, Washington, DC, 2016.

26. Aaron Dutle, César Muñoz, Anthony Narkawicz, and Ricky Butler. Software
validation via model animation. Lecture Notes in Computer Science, 9254:92–
108, 2015.

27. Ed Williams. Aviation formulary. http://www.edwilliams.org/avform.htm. Ac-
cessed, May 2, 2017.

28. United States Department of Defense. World geodetic system 1984: Its definition
and relationships with local geodetic systems, 2014. NGA.STND.0036 1.0.0 -
WGS84.

49

Appendix A

Support Functions

Functions that calculate position and velocity for a specified time are presented
in Section 6. These functions provide the data structure with a tremendous amount
of utility and are essential to defining the semantics of the trajectory encoded in
the plan. There are many basic utility functions that were presented but not fully
specified.

A.1 TCP Functions

The methods of Table 2 check if a point is of a particular TCP type.

isBOT(p: Plan, i: int) : bool =

data(p,i).tcp_trk = BOT OR data(p,i).tcp_trk = EOTBOT

isEOT(p: Plan, i: int) : bool =

data(p,i).tcp_trk = EOT OR data(p,i).tcp_trk = EOTBOT

isGsTCP(p: Plan, i: int) : bool =

data(p,i).tcp_gs /= NONE

isBGS(p: Plan, i: int) : bool =

data(p,i).tcp_gs = BGS OR data(p,i).tcp_gs = EGSBGS

isEGS(p: Plan, i: int) : bool =

data(p,i).tcp_gs = EGS OR data(p,i).tcp_gs = EGSBGS

isVsTCP(p: Plan, i: int) : bool = data(p,i).tcp_vs /= NONE

isBVS(p: Plan, i: int) : bool =

data(p,i).tcp_vs = BVS OR data(p,i).tcp_vs = EVSBVS

isEVS(p: Plan, i: int) : bool =

data(p,i).tcp_vs = EVS OR data(p,i).tcp_vs = EVSBVS

The methods of Table 3 search for previous and subsequent occurrences of TCP
types:

prevSearch(p: Plan, property:[Plan,int -> bool], i: int): int =

IF (i < 0) THEN -1

ELSE IF (p.point(i).property) THEN i

ELSE prevSearch(p,property, i-1)

ENDIF

50

prevBOT = prevSearch(p,isBOT,i-1)

prevBGS = prevSearch(p,isBGS,i-1)

prevBVS = prevSearch(p,isBVS,i-1)

A.2 The getSegment Function

Informally, getSegment is a function that, for a given plan p and time t, returns an
integer value in the range [−1, size(p)− 1]. It returns the value −1 if the time falls
outside p’s bounds, or the index in p such that ti ≤ t < ti+1. There are many possible
implementations for this function, e.g., linear search or binary search. Rather than
present a particular search method we specify the output formally. The necessary
conditions for getSegment(t):int for a given plan p are:

getSegment(p, t) < 0 ⇐⇒ t < time(p, 0) ∨ t > time(p, size(t)− 1)

getSegment(p, t) = i ⇐⇒ time(i) ≤ t ∧ t < time(i+ 1)

A.3 In Acceleration Zone Functions

The functions inTrkChange, inGsChange, and inVsChange are true if, for the given
plan p and time t within p, the segment containing time t is in an acceleration zone
of that type. This can be accomplished through the use of the prevBOT function
and a similar nextEOT function (and likewise for horizontal speed and vertical speed
accelerations). The necessary conditions for inTrkChange(p,t):bool for a given
plan p are:

inTrkChange(p, t) ⇐⇒ ∃i∃j∀k : (i ≥ 0) ∧ (j > i) ∧ (i < k) ∧ (k < j)∧
isBOT(p, i) ∧ isEOT(p, j) ∧ ¬isBOT(p, k)∧
getSegment(p, t) ≥ i ∧ getSegment(p, t) < j

Similarly for inGsChange(p,t):bool and inVsChange(p,t):bool:

inGsChange(p, t) ⇐⇒ ∃i∃j∀k : (i ≥ 0) ∧ (j > i) ∧ (i < k) ∧ (k < j)∧
isBGS(p, i) ∧ isEGS(p, j) ∧ ¬isBGS(p, k)∧
getSegment(p, t) ≥ i ∧ getSegment(p, t) < j

inVsChange(p, t) ⇐⇒ ∃i∃j∀k : (i ≥ 0) ∧ (j > i) ∧ (i < k) ∧ (k < j)∧
isBVS(p, i) ∧ isEVS(p, j) ∧ ¬isBVS(p, k)∧
getSegment(p, t) ≥ i ∧ getSegment(p, t) < j

51

Appendix B

Great Circle Functions

The formulae in this section are based on relatively standard developments in
spherical trigonometry. Many are based on an excellent summary of key results
especially relevant to navigation problems presented by Williams in [27].

B.1 angular distance

The angular_distance function computes the great circle distance between the
two points in terms of the angle at the center of the sphere. The calculation applies
to any sphere, not just a spherical Earth. This implementation uses the haversine
formula.

angular_distance(lat1: real, lon1: real, lat2: real, lon2: real):

nnreal =

asin(sqrt(sq(sin((lat1 - lat2) / 2))

+ cos(lat1)*cos(lat2)* sq(sin((lon1-lon2) / 2)))) * 2.0

Using the LatLonAlt data structure we have:

angular_distance(p1: LatLonAlt, p2: LatLonAlt): nnreal =

angular_distance(lat(p1), lon(p1), lat(p2), lon(p2))

B.2 distance

Compute the great circle distance between the two geodesic points. The calculation
assumes the Earth is a sphere. This algorithm ignores the altitudes.

distance(p1: LatLonAlt, p2: LatLonAlt): nnreal =

distance_from_angle(angular_distance(lat(p1),lon(p1),lat(p2),

lon(p2)),0)

distance_from_angle(angle: nnreal, h: nnreal): nnreal =

(spherical_earth_radius + h) * angle

B.3 initial course and final course

The initial true course (course relative to true north) at point p1 on the great circle
route from point p1 to point p2. The value is in internal units of angles (radians),
and is a compass angle [0..2π]: clockwise from true north. If point p1 and p2 are
close to each other, then the initial course may become unstable. In the extreme
case when point p1 equals point p2, then the initial course is undefined.

52

initial_course(p1: LatLonAlt, p2: LatLonAlt): real =

LET d = angular_distance(lat(p1), lon(p1), lat(p2), lon(p2)) IN

initial_course_impl(p1, p2, d);

final_course(p1: LatLonAlt, p2: LatLonAlt): real =

initial_course(p2, p1) + pi;

initial_course_impl(p1: LatLonAlt, p2: LatLonAlt): real =

LET lat1 = lat(p1)

lon1 = lon(p1)

lat2 = lat(p2)

lon2 = lon(p2)

IN

IF cos(lat1) = 0 THEN % at either pole

IF lat1 > 0 THEN

pi % north pole, all directions are south

ELSE

2.0 * pi % south pole, all directions are north

ENDIF

ELSE

to2pi(atan2(sin(lon2-lon1)*cos(lat2),

cos(lat1)*sin(lat2)

- sin(lat1)*cos(lat2)*cos(lon2-lon1)))

ENDIF

Note that in a floating-point implementation it is necessary to include a small buffer
on the test if the first point is at a pole.

B.4 angle between

The angle_between function calculates the angle between two great circles that
intersect at a point b. The first great circle also goes through point a, while the
second great circle goes through point b. Assuming b is not one of the poles, this
function is defined as follows:

angle_between(a:LatLonAlt, b:LatLonAlt, c:LatLonAlt): real =

LET ang1 = initial_course(b,a),

ang2 = initial_course(b,c)

IN

turnDelta(ang1,ang2);

where turnDelta calculates the difference between two angles as follows

53

turnDelta(alpha: real, beta: real): real =

LET a = to2pi(alpha)

b = to2pi(beta)

delta = abs(a-b)

IN

IF (delta<=pi) THEN delta

ELSE 2*pi-delta

ENDIF

and

to2pi(a: real) : real =

LET n = floor(a/(2*pi)) IN

a - 2*n*pi

Note that if the input location b is precisely at one of the poles, an alternate version
of the angle_between function is required:

angle_between(a:LatLonAlt, b:LatLonAlt, c:LatLonAlt): real =

LET

a1 = angular_distance(c,b)

b1 = angular_distance(a,c)

c1 = angular_distance(b,a)

d = sin(c1)*sin(a1)

IN

IF d = 0.0 THEN PI

ELSE

acos((cos(b1)-cos(c1)*cos(a1)) / d)

ENDIF

This function is based on the spherical law of cosines. It depends upon the
angular_distance function.

B.5 velocity initial

The velocity_initial function computes the initial velocity on the great circle
from point p1 to point p2 with the given amount of time.

velocity_initial(p1:LatLonAlt, p2: LatLonAlt p2, double t):

Velocity =

LET d = angular_distance(p1, p2),

gs = distance_from_angle(d, 0.0) / t

crs = initial_course_impl(p1, p2, d)

IN

Velocity.mkTrkGsVs(crs, gs, (alt(p2) - alt(p1)) / t)

where the function Velocity.mkTrkGsVs returns a Velocity with the given track,
ground speed, and vertical speed values. If points p1 and p2 are essentially the same

54

(about 1 meter apart), then a zero vector is returned. Also if the absolute value of
time is less than 1 [ms], then a zero vector is returned. These details have been left
out of the above definition.

B.6 linear initial

The linear_initial function determines a point from the given lat/lon with an
initial angle of track at a distance dist. This calculation follows the great circle.

linear_initial(s: LatLonAlt, track: real, dist: real): LatLonAlt =

linear_initial_impl(s, track, angle_from_distance(dist), 0.0)

where

linear_initial_impl(s: LatLonAlt, track: real, d: real, vert: real):

LatLonAlt =

LET cosd = cos(d)

sind = sin(d)

sinslat = sin(lat(s))

cosslat = cos(lat(s))

lat = asin(sinslat*cosd + cosslat*sind*cos(track))

dlon = atan2(sin(track)*sind*cosslat,

cosd - sinslat*sin(lat))

lon = to_pi(lon(s) + dlon)

IN

LatLonAlt.mk(lat, lon, alt(s) + vert)

The function LatLonAlt.mk is a function that returns a LatLonAlt (geodesic coor-
dinate) based on latitude, longitude, and altitude values.

55

Appendix C

Chordal Radius

There are two different notions of radius that arise when dealing with geodesic
coordinates. They are:

• Surface Radius (R): the along-surface radius that is calculated using the great
circle distance from the center of the turn to a point on the turn.

• Chordal Radius (R′): the part of a chord that is in the plane of the turn itself
(which is a small circle) and hence passes through the sphere’s volume.

For small-radius turns these are approximately the same, but for very large radius
turns (on the order of hundreds of nautical miles), there can be a more noticable
difference between the two values. Here are typical differences as a function of
surface radius R;

R [NM] R−R′ [NM]

1.00 0.00000001
2.00 0.00000011
3.00 0.00000038
4.00 0.00000090
5.00 0.00000176
6.00 0.00000305
7.00 0.00000484
8.00 0.00000722
9.00 0.00001028
10.00 0.00001410
50.00 0.00176281
100.00 0.01410206

The chordal radius can be obtained from the surface, great-circle radius using
the following function:

to_chordal_radius(surface_radius: real): real =

GreatCircle.chord_distance(surface_radius*2)/2

where chord_distance is defined as follows:

chord_distance(surface_dist: real): real =

LET theta = angle_from_distance(surface_dist,0.0) IN

2.0*sin(theta/2.0)*GreatCircle.spherical_earth_radius

C.1 Function chord distance

The function chord_distance returns the straight-line chord distance (through a
spherical earth) from two points on the surface of the earth.

56

chord_distance(double lat1, double lon1, double lat2, double lon2):

real =

LET v1 = spherical2xyz(lat1,lon1)

v2 = spherical2xyz(lat2,lon2)

IN

|| v1 - v2 ||

where

spherical2xyz(double lat, double lon): Vect3 =

LET r = GreatCircle.spherical_earth_radius

theta = PI/2 - lat

x = r*sin(theta)*cos(lon)

y = r*sin(theta)*sin(lon)

z = r*cos(theta)

IN

(x,y,z)

and GreatCircle.spherical_earth_radius is computed as follows

spherical_earth_radius: real =

1/ (0.000539957 * pi / (180.0 * 60.0)) = 6366707.019493707 m

This definition of the radius of a spherical earth in meters assumes one nautical
mile is 1852 meters (as defined by various international committees) and that one
nautical mile is equal to one minute of arc (traditional definition of a nautical mile)
on the Earth’s surface. This value lies between the major and minor axis as defined
by the “reference ellipsoid” in WGS84 [28].

57

Appendix D

Ground Speed vs. Airspeed

Because aircraft fly with respect to airspeed, many trajectory definitions have
been defined with respect to airspeed. However, there is a serious problem with
communicating trajectories based on airspeed: the future location of the aircraft
relative to the ground and most likely to other aircraft, can not be known unless one
has access to the wind field used by the creator of this trajectory.D1 Consequently
important ATM functions such as conflict detection and resolution cannot be per-
formed without first converting the trajectories in terms of airspeed into trajectories
in terms of ground speed. We believe that the original creator of a trajectory should
perform this translation rather than the recipients.

Because times are stored in the internal data structures of EUTL, it is natu-
ral to focus on times rather than speeds. But, if one’s focus is changed to speed
rather than time, then some additional flexibility can be obtained from the EUTL
language. With this focus, the trajectory defined in EUTL can be thought of as
a two-dimensional path augmented by a speed profile and an altitude profile. In
fact, if one suspends the idea of using time in an absolute sense, the speed profile
can be either an airspeed profile or a ground speed profile. Admittedly, this can be
awkward, but with care, some useful additional capabilities can be created.

If we let Pas be a plan where the speeds are interpreted as airspeed and Pgs be a
plan where the speeds are interpreted as ground speed, then the following conversion
can be accomplished.

Pas +W −→ Pgs

where W is a wind field. This conversion can be accomplished by only modifying
the times if one makes the assumption that the wind only affects the along-track
position of an aircraft. This is a reasonable assumption because the control system
and pilot work to maintain lateral conformance to the flight plan. We also note
that W can represent the difference between wind field used to create Pas and the
wind field of the recipient Pgs. This is the approach used in the medium fidelity
trajectory generator in TBO-TIGAR, see Section 8.

D1It would, of course, be possible to transmit this data, but this could introduce a significant
communication bandwidth cost.

58

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-09-2017

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

An Efficient Universal Trajectory Language

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

George E. Hagen, Jeffrey M. Maddalon, Nelson M. Guerreiro, Ricky W.
Butler,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–20870

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM-2017-219669
12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 63
Availability: NASA STI Program(757) 864-9658
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Efficient Universal Trajectory Language (EUTL) is a language for specifying and representing trajectories for Air Traffic Management (ATM)
concepts such as Trajectory Based Operations (TBO). In these concepts, the communication of a trajectory between an aircraft and ground
automation is fundamental. Historically, this trajectory exchange has not been done, leading to trajectory definitions that have been centered
around particular application domains and, therefore, are not well suited for TBO applications. The EUTL trajectory language has been defined
in the PVS formal specification language, which provides an operational semantics for the EUTL language. The hope is that EUTL will provide a
foundation for mathematically verified algorithms that manipulate trajectories. Additionally, the EUTL language provides well-defined methods to
unambiguously determine position and velocity information between the reported trajectory points. In this paper, we present the EUTL trajectory
language in mathematical detail.

15. SUBJECT TERMS

air traffic management, trajectory, flight plan, trajectory specification, trajectory-based operations

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

69

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

