
Enhancing Application Performance using Mini-Apps:
Comparison of Hybrid Parallel Programming Paradigms

Gary Lawson
Old Dominion University

1300 Engineering & Computational Sciences Building
Norfolk, VA, USA 23529

glaws003@odu.edu

Masha Sosonkina
Old Dominion University

1300 Engineering & Computational Sciences Building
Norfolk, VA, USA 23529

msosonki@odu.edu

Robert Baurle
NASA Langley Research Center

1 Nasa Dr.
Hampton, VA, USA 23666
robert.a.baurle@nasa.gov

Dana Hammond
NASA Langley Research Center

1 Nasa Dr.
Hampton, VA, USA 23666

dana.p.hammond@nasa.gov

ABSTRACT
In many fields, real-world applications for High Performance Com-
puting have already been developed. For these applications to stay
up-to-date, new parallel strategies must be explored to yield the best
performance; however, restructuring or modifying a real-world ap-
plication may be daunting depending on the size of the code. In this
case, a mini-app may be employed to quickly explore such options
without modifying the entire code. In this work, several mini-apps
have been created to enhance a real-world application performance,
namely the VULCAN code for complex flow analysis developed
at the NASA Langley Research Center. These mini-apps explore
hybrid parallel programming paradigms with Message Passing In-
terface (MPI) for distributed memory access and either Shared MPI
(SMPI) or OpenMP for shared memory accesses. Performance test-
ing shows that MPI+SMPI yields the best execution performance,
while requiring the largest number of code changes. A maximum
speedup of 23× was measured for MPI+SMPI, but only 11× was
measured for MPI+OpenMP.

KEYWORDS
Mini-apps, Performance, VULCAN, Shared Memory, MPI,
OpenMP

ACM Reference format:
Gary Lawson, Masha Sosonkina, Robert Baurle, and Dana Hammond. 2017.
Enhancing Application Performance using Mini-Apps:
Comparison of Hybrid Parallel Programming Paradigms. In Proceedings
of ACM EuroMPI/USA conference, Chicago, IL USA, September 2017 (Eu-
roMPI/USA’17), 5 pages.
DOI:

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.
EuroMPI/USA’17, Chicago, IL USA
2017. . . . $15.00
DOI:

1 INTRODUCTION
In many fields, real-world applications have already been developed.
For established applications to stay up-to-date, new parallel strate-
gies must be explored to determine which may yield the best perfor-
mance, especially with advances in computing hardware. However,
restructuring or modifying a real-world application incurs increased
cost depending on the size of the code and changes to be made. A
mini-app may be created to quickly explore such options without
modifying the entire code. Mini-apps reduce the overhead of ap-
plying new strategies, thus various strategies may be implemented
and compared. This work presents the authors experiences when
following this strategy for a real-world application developed by
NASA.

VULCAN (Viscous Upwind Algorithm for Complex Flow Anal-
ysis) is a turbulent, nonequilibrium, finite-rate chemical kinetics,
Navier-Stokes flow solver for structured, cell-centered, multiblock
grids that is maintained and distributed by the Hypersonic Air Breath-
ing Propulsion Branch of the NASA Langley Research Center [13].
The mini-app developed in this work uses the Householder Reflector
kernel for solving systems of linear equations. This kernel is used
often by different workloads, and is a good candidate to decide what
strategy type to apply to VULCAN. VULCAN is built on a single-
layer of MPI and the code has been optimized to obtain perfect
vectorization, therefore two-levels of parallelism are currently used.
This work investigates two flavors of shared-memory parallelism,
OpenMP and Shared MPI, which will provide the third-level of par-
allelism for the application. A third-level of parallelism increases
performance, which decreases the time-to-solution.

MPI has extended the standard to MPI version 3.0, which includes
the Shared Memory (SHM) model [11, 12], known in this work as
Shared MPI (SMPI). This extension allows MPI to create memory
windows that are shared between MPI tasks on the same physical
node. In this way, MPI tasks are equivalent to threads, except Shared
MPI is more difficult for a programmer to implement. OpenMP is
the most common shared-memory library used to date because of
its ease-of-use [14]. In most cases, only a few OpenMP pragmas
are required to parallelize a loop; however, OpenMP is subject to
increased overhead, which may decrease performance if not properly
tuned.

EuroMPI/USA’17, September 2017, Chicago, IL USA Gary Lawson, Masha Sosonkina, Robert Baurle, and Dana Hammond

The major contributions of this work are as follows:
◦ Created mini-apps to solve AX = B using the Householder reflec-

tor kernel from NASA VULCAN real-world code
◦ Applied MPI+OpenMP scheme to create the OpenMP mini-app
◦ Applied MPI+SMPI scheme to create the Shared MPI mini-app
◦ Validated numerical output of each mini-app
◦ Compared execution performance of all mini-apps

1.1 Related Work
As early as the year 2000, the authors in [1] found that latency sensi-
tive codes seem to benefit from pure MPI implementations whereas
bandwidth sensitive codes benefit from hybrid MPI+OpenMP.
Also, the authors found that faster processors will benefit hybrid
MPI+OpenMP codes if data movement is not an overwhelming
bottleneck [1].

Since this time, hybrid MPI+OpenMP implementations have im-
proved, but not without difficulties. In [2, 3], it was found that
OpenMP incurs many performance reductions, including: overhead
(fork/join, atomics, etc), false sharing, imbalanced message passing,
and a sensitivity to processor mapping. However, OpenMP overhead
may be hidden when using more threads. In [15], the authors found
that simply using OpenMP could incur performance penalties be-
cause the compiler avoids optimizing OpenMP loops – verified up to
version 10.1. Although compilers have advanced considerably since
this time, application users that still compile using older versions
may be at risk if using OpenMP. In [2, 3] the authors found that the
hybrid MPI+OpenMP approach outperforms the pure MPI approach
because the hybrid strategy diversifies the path to parallel execution.

More recently, MPI extended its standard to include the SHM
model [12]. The authors in [9] present MPI RMA theory and ex-
amples, which are the basis of the SHM model. In [5], the authors
conduct a thorough performance evaluation of MPI RMA, including
an investigation of different synchronization techniques for memory
windows. In [8], the authors investigate the viability of MPI+SMPI
execution, as well as compare it to MPI+OpenMP execution. It
was found that an underlying limitation of OpenMP is the shared-
by-default model for memory, which does not couple well with
MPI since the memory model is private-by-default. For this rea-
son, MPI+SMPI codes are expected to perform better, since shared
memory is explicit and the memory model for the entire code is
private-by-default.

Most recently, a new MPI communication model has been in-
troduced in [6], which better captures multinode communication
performance, and offers an open-source benchmarking tool to cap-
ture the model parameters for a given system. Independent of the
shared memory layer, MPI is the de facto standard in data movement
between nodes and such a model can help any MPI program. The
remainder of this paper is organized into the following sections: 2
introduces the Householder mini-apps, 3 presents the performance
testing results for the mini-apps considered, and 4 concludes this
paper.

2 HOUSEHOLDER MINI-APP
The mini-apps use the householder computation kernel from VUL-
CAN, which is used in solving systems of linear equations. The
householder routine is an algorithm that is used to transform a square

matrix into triangular form, without increasing the magnitude of each
element significantly [7]. The Householder routine is numerically
stable, in that it does not lose a significant amount of accuracy due to
very small or very large intermediate values used in the computation.

The routine works through an iterative process of utilizing House-
holder transformations to annihilate elements from the column-
vectors of the input matrix. The Householder reflector H is applied
to a system as:

(HA)x = Hb, where H = (I −2vvT)ai. (1)

The Householder operates on ai, which is a column of A, and
v, which is a unit-vector perpendicular to the plane by which the
transform is applied. A more detailed discussion of the Householder
routine can be found in [7]. In this work, the problem to be solved is
AX = B, where A is a 3-dimensional matrix of size m×n×n, and
X and B are 2-dimensional matrices of size m× n. Each system,
represented by m, is independent of all other systems; therefore, this
algorithm is embarrassingly parallel.

2.1 Mini-App Design
Mini-apps are designed to perform specific functions. In this work,
the important features are as follows:
◦ Accept generic input,
◦ Validate the numerical result of the optimized routine,
◦ Measure performance of the original and optimized routines,
◦ Tune optimizations.

The generic input is read in from a file, where the file must
contain at least one matrix A and resulting vector b. Should only one
matrix and vector be supplied, the input will be duplicated for all
instances of m. Validation of the optimized routine is performed by
taking the difference of the output from the original and optimized
routines. The mini-app will first compute the solution of the input
using the original routine, and then the optimized routine. This way
the output may be compared directly, and relative performance may
also be measured using execution time. Should the optimized routine
feature one or more parameters that may be varied, they are to be
investigated such that the optimization may be tuned to the hardware.
In this work, there is always at least one tunable parameter.

One feature that should have been factored into the mini-app
design was modularizing the different versions of the Householder
routine. In this work, two mini-apps were designed because each
implements a different version of the parallel Householder routine;
however, it would have been better to design a single mini-app that
uses modules to include other versions of the parallel Householder
kernel. With this functionality, it would be less cumbersome to work
on each version of the kernel.

2.2 Parallel Householder
To parallelize the Householder routine, m is decomposed into sepa-
rate, but equal chunks that are then solved by each thread – shared
MPI tasks are equivalent to threads in this work for brevity. However,
the original routine varies over m inside the inner-most computa-
tional loop (an optimization that benefits vectorization and caching),
but the parallel loop must be the outer-most loop for best perfor-
mance. Therefore, loop blocking has been invoked for the parallel
sections of the code. Loop blocking is a technique commonly used to

Enhancing Application Performance using Mini-Apps:
Comparison of Hybrid Parallel Programming Paradigms EuroMPI/USA’17, September 2017, Chicago, IL USA

(a) MPI+OpenMP - 1 Node (b) MPI+SMPI - 1 Node

Figure 1: 1 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with only 1 MPI task.

(a) MPI+OpenMP - 2 Nodes (b) MPI+SMPI - 2 Nodes

Figure 2: 2 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with only 1 MPI task per
node.

reduce the memory footprint of a computation such that it fits inside
the cache for a given hardware. Therefore, the parallel Householder
routine has at least one tunable parameter, block size.

In this work, two flavors of the shared memory model are in-
vestigated: OpenMP and SMPI. The difference between OpenMP
and SMPI lies in how memory is managed. OpenMP uses a public-
memory model where all data is available to all threads by default.
Public-memory makes it easy to add parallel statements, since the
threads will all share this data, but threads are then susceptible to
false-sharing, where variables that should otherwise be private are in-
advertently shared. Shared MPI uses a private-memory model where
data must be explicitly shared between threads, and all data is private
by default. Private-memory makes any parallel implementation more
complicated, because threads must be instructed to access specific
memory for computation. Further, OpenMP creates and destroys
threads over the course of execution which is handled internally and

is costly to performance. SMPI threads are created upon execution
start and persist throughout. This makes managing SMPI threads
more difficult, since each parallel phase must be explicitly managed
by the programmer. However, the extra work by the programmer
may pay off in terms of performance, since less overhead is incurred
by SMPI.

3 PERFORMANCE EVALUATION
This section presents the procedure and results of performance test-
ing for the MPI+OpenMP and MPI+Shared MPI Householder Re-
flector kernel optimizations. For performance testing, it was of
interest to vary the number of nodes used for the calculation be-
cause many nodes are often used when executing VULCAN with
real-world simulations. Up to four nodes have been investigated in
this work on a multinode HPC cluster. The number of MPI tasks and

EuroMPI/USA’17, September 2017, Chicago, IL USA Gary Lawson, Masha Sosonkina, Robert Baurle, and Dana Hammond

(a) MPI+OpenMP - 4 Nodes (b) MPI+SMPI - 4 Nodes

Figure 3: 4 Node Performance Evaluation: Speedup of the optimized mini-apps vs. the original routine with only 1 MPI task per
node.

OpenMP threads are varied, as well as block size for loop-blocking
in the parallel section.

For each mini-app, the optimized version of the Householder
routine was validated against the original version by calculating the
numerical difference in output. The validation found OpenMP to
provide exact numerical solutions (a difference of zero) and SMPI
had small numerical discrepancies (10−9).

Computing Platforms. The performance evaluation has been con-
ducted on a multinode HPC system Turing located at Old Dominion
University [10]. Each node on Turing has dual-socket E5-2670 v2
(Ivy-Bridge) CPU’s, each socket has 10 cores @ 2.5 GHz and 25
MB cache. A total of 64 GB RAM memory is available on each
node. Up to four nodes are used and the network interconnect is
Infiniband FDR (Fourteen Data Rate).

Results and Evaluation. The performance evaluation varies the
size n for the input matrix and the number m of linear systems
investigated. Two values of n, 10 and 23, are investigated, which are
common sizes based on the VULCAN sample inputs. A third input,
nicknamed Cauchy, for n is investigated, which is a square Cauchy
matrix [4] of size 10. The number of linear systems m depends on
the number of nodes. For the single-node performance tests, m is set
to 10k, 100k, 1m, and 5m. For the multinode performance tests, m is
set to 100k, 1m, 5m, 10m, 50m, and 100m. The number of threads
was varied using powers of two: 1, 2, 4, 8, 16, and 20, because each
node on Turing has a total number of 20 cores. The block size is
varied using the values 10, 25, 50, 75, 100, 250, 500, 750, and 1000,
in order to observe effects on the cache performance and memory
latency.

The speedup for the single-node performance tests are shown
in Fig. 1. Fig. 1a presents the MPI+OpenMP speedup and Fig. 1b
presents the MPI+SMPI speedup where m, n, and Block Size are
varied. Speedup is shown on the y-axis, block size on the x-axis, n
is represented using a triangle for 10, square for 23, and diamond
for Cauchy, and m is represented using colors as shown in the plot
legend. Speedup for the multinode performance tests is shown

in: Fig. 2 (2-node) and Fig. 3 (4-node). Notice that the workloads
(m) are different for the multinode tests than for the single-node
tests; 100k-50m vs. 10k-5m respectively.

Speedup is a measure of execution performance. A value of one
means both versions have equal performance. A value less than one
means the optimized version is worse than the original routine, and
a value greater than one means the optimized version is better.

The workload, m=10k, is only investigated for the single-node
case. Notice in Fig. 1 that speedup is consistently one or less. There-
fore, the parallel Householder routine must have a sufficient work-
load to attain any speedup.

In all performance tests conducted, Figs. 1 to 3, Shared MPI con-
sistently attains the greatest speedup over the original Householder
routine. Speedup is normalized against the one thread per node per-
formance for each respective workload (n and m) and block size. The
maximum speedup for OpenMP is 12×, 9×, and 10×, and Shared
MPI is 18×, 19×, and 23× for 1, 2, and 4 nodes, respectively. From
the performance results, it is apparent that SMPI benefits from less
overhead as a result of increased cost to the programmer.

It is interesting to note that the best performing input n varies
for SMPI as the number of nodes varies. For one-node and the
maximum number of threads, n of 10 has the best speedup. For two
nodes, n of 23 has the best speedup, and n of Cauchy has the best
speedup for the four-node case. This was an unexpected result, and
one that is not obtained when using OpenMP. Further investigation
is needed to determine if this is coincidence or a meaningful result.

Blocking performance, without shared memory parallelism, is
captured by the one thread tests in Figs. 1 to 3. A max speedup of
3× is consistently measured no matter the mini-app and number
of nodes. This finding shows that optimizing the algorithm for
cache performance is mildly beneficial and should be considered for
performance-bounded computational kernels.

4 CONCLUSION
In this work, mini-apps were developed to optimize the Householder
Reflector kernel within NASA real-world application, VULCAN.

Enhancing Application Performance using Mini-Apps:
Comparison of Hybrid Parallel Programming Paradigms EuroMPI/USA’17, September 2017, Chicago, IL USA

Two programming paradigms for shared memory parallelism were
investigated, OpenMP and Shared MPI, and performance testing
was conducted on a multinode system Turing for up to four nodes.
Speedup, the measure of performance, was found to be higher for
the Shared MPI version of the Householder mini-app than that for
the OpenMP version. Specifically, the speedup for SMPI was up to
2× that of OpenMP. With the maximum number of threads, SMPI
obtains 23x speedup with sufficiently large workloads (m=50m).
OpenMP was only able to achieve a speedup of 11×, which is about
half of the expected speedup based on the number of threads used.

ACKNOWLEDGMENT
This effort was supported by NIA subaward activity 2B87 funded
through the NASA Langley Computational Digital Transformation
initiative and, in part, by the Turing High Performance Computing
cluster at Old Dominion University. The authors would like to thank
Nathan Gonda and Michael Poteat of Old Dominion University for
their contribution.

REFERENCES
[1] F. Cappello and D. Etiemble. 2000. MPI versus MPI+OpenMP on the IBM SP for

the NAS Benchmarks. In Supercomputing, ACM/IEEE 2000 Conference. 12–12.
https://doi.org/10.1109/SC.2000.10001

[2] Martin J. Chorley and David W. Walker. 2010. Performance analysis of a hybrid
MPI/OpenMP application on multi-core clusters. Journal of Computational
Science 1, 3 (2010), 168 – 174. https://doi.org/10.1016/j.jocs.2010.05.001

[3] N. Drosinos and N. Koziris. 2004. Performance comparison of pure MPI vs hybrid
MPI-OpenMP parallelization models on SMP clusters. In 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings. 15–. https:
//doi.org/10.1109/IPDPS.2004.1302919

[4] Miroslav Fiedler. 2010. Notes on Hilbert and Cauchy matrices. Linear Algebra
Appl. 432, 1 (2010), 351 – 356. https://doi.org/10.1016/j.laa.2009.08.014

[5] R. Gerstenberger, M. Besta, and T. Hoefler. 2013. Enabling Highly-scalable
Remote Memory Access Programming with MPI-3 One Sided. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 53, 12 pages.
https://doi.org/10.1145/2503210.2503286

[6] William Gropp, Luke N. Olson, and Philipp Samfass. 2016. Modeling MPI
communication performance on SMP nodes: Is it time to retire the ping pong
test. Vol. 25-28-September-2016. Association for Computing Machinery, 41–50.
https://doi.org/10.1145/2966884.2966919

[7] Per Brinch Hansen. 1992. Householder Reduction of Linear Equations. ACM Com-
put. Surv. 24, 2 (June 1992), 185–194. https://doi.org/10.1145/130844.130851

[8] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp,
V. Kale, and R. Thakur. 2013. MPI + MPI: A New Hybrid Approach to Parallel
Programming with MPI Plus Shared Memory. Computing 95, 12 (Dec. 2013),
1121–1136. https://doi.org/10.1007/s00607-013-0324-2

[9] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and K. Underwood.
2015. Remote Memory Access Programming in MPI-3. ACM Trans. Parallel
Comput. 2, 2, Article 9 (June 2015), 26 pages. https://doi.org/10.1145/2780584

[10] HPC Group. 2016. Turing Community Cluster General Information.
(2016). https://www.odu.edu/facultystaff/research/resources/computing/
high-performance-computing.

[11] Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface
Standard Version 3.0. (2012). http://mpi-forum.org/docs/mpi-3.0/mpi30-report.
pdf.

[12] Mikhail B. (Intel). 2015. An Introduction to MPI-3 Shared Mem-
ory Programming. (2015). https://software.intel.com/en-us/articles/
an-introduction-to-mpi-3-shared-memory-programming.

[13] NASA. 2016. VULCAN-CFD. (2016). https://vulcan-cfd.larc.nasa.gov/.
[14] OpenMP. 2016. OpenMP: The OpenMP API specification for parallel program-

ming. (2016). http://www.openmp.org/.
[15] R. Rabenseifner, G. Hager, and G. Jost. 2009. Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core SMP Nodes. In 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing.
427–436. https://doi.org/10.1109/PDP.2009.43

https://doi.org/10.1109/SC.2000.10001
https://doi.org/10.1016/j.jocs.2010.05.001
https://doi.org/10.1109/IPDPS.2004.1302919
https://doi.org/10.1109/IPDPS.2004.1302919
https://doi.org/10.1016/j.laa.2009.08.014
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.1145/2966884.2966919
https://doi.org/10.1145/130844.130851
https://doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1145/2780584
https://www.odu.edu/facultystaff/research/resources/computing/high-performance-computing
https://www.odu.edu/facultystaff/research/resources/computing/high-performance-computing
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming
https://software.intel.com/en-us/articles/an-introduction-to-mpi-3-shared-memory-programming
https://vulcan-cfd.larc.nasa.gov/
http://www.openmp.org/
https://doi.org/10.1109/PDP.2009.43

	Abstract
	1 Introduction
	1.1 Related Work

	2 Householder Mini-App
	2.1 Mini-App Design
	2.2 Parallel Householder

	3 Performance Evaluation
	4 Conclusion
	References

