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ABSTRACT
We analyze data from simulated aircraft encounters to validate
and inform the development of a prototype aircraft collision avoid-
ance system. The high-dimensional and heterogeneous time series
dataset is analyzed to discover properties of near mid-air colli-
sions (NMACs) and categorize the NMAC encounters. Domain
experts use these properties to better organize and understand
NMAC occurrences. Existing solutions either are not capable of
handling high-dimensional and heterogeneous time series datasets
or do not provide explanations that are interpretable by a domain
expert. The latter is critical to the acceptance and deployment of
safety-critical systems. To address this gap, we propose grammar-
based decision trees along with a learning algorithm. Our approach
extends decision trees with a grammar framework for classifying
heterogeneous time series data. A context-free grammar is used
to derive decision expressions that are interpretable, application-
specific, and support heterogeneous data types. In addition to
classification, we show how grammar-based decision trees can also
be used for categorization, which is a combination of clustering and
generating interpretable explanations for each cluster. We apply
grammar-based decision trees to a simulated aircraft encounter
dataset and evaluate the performance of four variants of our learn-
ing algorithm. The best algorithm is used to analyze and categorize
near mid-air collisions in the aircraft encounter dataset. We de-
scribe each discovered category in detail and discuss its relevance
to aircraft collision avoidance.

CCS CONCEPTS
•Information systems → Clustering; •Mathematics of com-
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1 INTRODUCTION
Airborne collision avoidance systems are mandated worldwide
on all large transport and cargo aircraft to help prevent mid-air
collisions. Their operation have played a crucial role in the high
level of safety in the national airspace [14]. To address the growing
needs of the national airspace, the Federal Aviation Administration
(FAA) has decided to develop a new aircraft collision avoidance
system. The next-generation Airborne Collision Avoidance System
(ACAS X) is currently being developed and tested and promises a
number of potential improvements over current systems including
a reduction in collision risk while simultaneously reducing the
number of unnecessary alerts [11].

One of the primary safety metrics of airborne collision avoid-
ance systems is the likelihood of near mid-air collision (NMAC),
defined as two aircraft coming closer than 500 feet horizontally
and 100 feet vertically. Efficient algorithms have been developed to
generate large datasets of NMAC and non-NMAC instances in sim-
ulation [17]. However, while it is straightforward to observe that an
NMAC has occurred, discovering and categorizing relevant prop-
erties of NMACs is much more challenging. Understanding how
NMAC events occur is important for both validation and informing
development of ACAS X.

We face a combination of challenges in this problem. One chal-
lenge is the complexity of the dataset since simulated aircraft en-
counters produce high-dimensional and heterogeneous time series
data. A second challenge is the need for interpretability. That is,
humans must be able to understand and reason about the informa-
tion captured by the model. Interpretability is essential for domain
experts to validate the model’s output and build trust in the system.
It is critical to the acceptance and deployment of safety-critical
systems like ACAS X. Existing solutions, however, either are not
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capable of handling such datasets or do not provide explanations
that are intuitive to a domain expert. Because no suitable solutions
currently exist, encounter data is routinely categorized manually
by a domain expert. However, as datasets become large, the time
and cost of this approach become prohibitive.

In this paper, we present grammar-based decision tree (GBDT),
a framework for interpretable classification of high-dimensional
and heterogeneous time series data. GBDT combines decision trees
and a grammar framework for classification. In contrast to tradi-
tional decision trees that use simple rules for partitioning, GBDT
partitions the data using expressions derived from a user-supplied
context-free grammar (CFG). This approach offers the flexibility to
define expressions that support a wide range of data types and are
interpretable and tailored to the user. In addition to classification,
GBDTs can also be used for categorization, which is the combined
task of clustering data into similar groups and providing intuitive
labels for them. Categorizations are produced naturally by the
decision tree at no additional cost.

We present an induction algorithm for GBDTs that employs
grammar-based expression search (GBES) as a subroutine to search
for good partitioning expressions. Four existing GBES algorithms
are considered resulting in four variations of the GBDT induction
algorithm. We evaluate the performance of these algorithms on
an aircraft encounter dataset and discuss the properties of each
category discovered by the algorithm.

The remainder of the paper is organized as follows. Section 2
reviews related literature on interpretablemodels. Section 3 reviews
notation and terminology, CFGs as well as four GBES algorithms.
Section 4 presents GBDT and shows how the model can be used for
both classification and categorization. Section 5 presents a general
induction algorithm for GBDTs. Finally, Section 6 evaluates four
variants of the GBDT induction algorithm on a simulated aircraft
encounter dataset and presents results of applying GBDT to study
near mid-air collisions.

2 RELATEDWORK
A variety of interpretable models for static data have been proposed
in the literature. However, we are not aware of any work that si-
multaneously addresses high-dimensional and heterogeneous time
series data and provides a high-degree of interpretability. Regres-
sion models [29], generalized additive models [9][19], and Bayesian
case models [10] have been recently proposed as models with in-
terpretability. These models improve interpretability by stating
decision boundaries in terms of basis functions or representative
instances (prototypes). Bayesian networks have also been used for
prediction and data understanding [1].

Rule-based models, such as decision trees [3][27], decision lists
[28], and decision sets [15], are easy to understand because decision
boundaries are stated in terms of input attributes and simple logical
operators. Decision trees partition the data using a tree structure
and decision lists use an if-then-else branching structure. Decision
sets use independent decision rules to reduce coupling between
rules. Efficient algorithms have been proposed for inducing these
models by first using associative rule mining (ARM) to mine a set of
interesting rules from the data, then optimizing over combinations
of these rules to induce classifiers [2][18][15].

Genetic programming (GP) has been studied extensively for
classification problems [6]. GP is particularly well-suited to evolve
tree structures [13][32]. A number of studies have used GP to
evolve interpretable models for analyzing medical datasets [24][7].
Grammar-guided genetic programming (GGGP) uses a grammar
to guide the evolution of genetic programs [34][21]. A variety of
classification structures, including decision trees, have been evolved
using GGGP [33].

Our work is most similar to the work of Marmelstein et al. [20],
where a GP classifier is used as a subroutine to incrementally build
a decision tree. However, their work did not use a CFG to guide
the search and their work did not consider heterogeneous time
series data. We also differ in the choice of fitness function and the
consideration of non-evolutionary search techniques.

Inductive Logic Programming (ILP) uses logic programming to
find a set of logical implications (Horn clauses) that best explains
the data given a set of known facts [22][23]. ILP has been previ-
ously used for interpretable classification of static data. Shapelets
[35] and subsequences based on the symbolic aggregate approx-
imation (SAX) discretization [30] have been proposed for single-
dimensional time series classification. The approach searches for
simple patterns that are most correlated with the class label. In-
terpretability comes from identifying a prototype of the recurring
subsequence pattern.

3 PRELIMINARIES
3.1 Notation and Terminology
A multi-dimensional time series dataset D consists ofm records,
where each record is a two-dimensional matrix of n attributes by T
time steps. A trace of an attribute xi is denoted ®xi and is a vector of
length T that represents the time series of that attribute. A label is
associated with each data record. Logical and comparison operators
are given broadcast semantics where appropriate. For example, the
comparison operator in ®xi < c compares each element of ®xi to c
and returns a vector of the same size as ®xi . Similarly, the logical
operator in ®xi ∧ ®x j operates elementwise. The temporal operators F
andG are eventually and globally, respectively. Eventually returns
true if any value in the input vector is true. Globally returns true if
all values in the input vector are true.

3.2 Context-Free Grammar
A context-free grammar (CFG) defines a set of rules that govern how
to form expressions in a formal language, such as linear temporal
logic (LTL) [8]. The grammar defines the syntax of the language as
well as provides a direct means to generate valid expressions.

A CFG G is defined by a 4-tuple (N,T,P,S), where
• N is a set of nonterminal symbols, which are symbols that

can be replaced by other symbols,
• T is a set of terminal symbols, which are symbols that will

appear in the final expression generated by the grammar,
• P is a set of productions, which are rules for replacing a

nonterminal symbol with other nonterminal or terminal
symbols, and

• S is the start symbol, which is a special nonterminal sym-
bol that serves as the starting expression of a derivation.
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To generate an expression from the grammar, we begin with the
start symbol, then repeatedly apply production rules to rewrite the
expression until no more nonterminals remain. When applying a
rule, a nonterminal in the expression is replaced with a substitution
defined in a production rule. The rules can be applied any number
of times and in any order. The expression is complete when the
expression consists of only terminal symbols. The derivation is
commonly represented as a tree structure called a derivation tree.

Formally, grammars define only the syntax and not the semantics
of expressions. However, for convenience, we shall assume that the
semantics of the language are defined and use the term “grammar”
loosely to refer to both the grammar and its associated semantics.

3.3 Grammar-Based Expression Search
Grammar-based expression search (GBES) is the problem of finding
expressions from a grammar that minimize a given fitness function
[21]. The formulation is extremely general due to the flexibility
and expressiveness of grammars and the arbitrary choice of fitness
function. Owing to this generality, the GBES approach has been
applied to a wide variety of applications, including image and signal
processing, modeling of medical and economic data, and industrial
process control [26]. A number of GBES algorithms have been
proposed in the literature. We review four of these algorithms in
the following sections.

3.3.1 Monte Carlo. Monte Carlo is a simple algorithm that gen-
erates expressions by repeatedly selecting nonterminals in the ex-
pression and randomly choosing substitutions to apply. Substitu-
tions are chosen uniformly from all available possibilities. When
no nonterminals remain, the fitness of the generated expression is
evaluated and the expression with the best fitness is reported.

Since Monte Carlo search is undirected, identical expressions
may be evaluated many times, which can be expensive. Further-
more, due to the nature of the sampling, shallower paths will get
sampled more frequently than deeper paths. Deep paths may have
a vanishingly small probability of being reached [26].

3.3.2 Monte Carlo Tree Search. Monte Carlo tree search (MCTS)
is a heuristic search algorithm that is used to optimize certain
sequential decision-making problems [12][4]. MCTS is based on
reinforcement learning, the idea of improving behavior through
experience and interaction with an environment [31].

Expression search is formulated as a sequential decision-making
problem by transforming the decisions in the derivation tree so that
they occur in sequential order, for example, by assuming depth-
first traversal order [5]. The “state” of the system is the expression
derived so far and the “action” is the selection of which substitution
to apply to the selected nonterminal. MCTS is then applied to
optimize the resulting sequential decision-making problem [5].

3.3.3 Grammatical Evolution. Grammatical evolution (GE) [25]
is a GGGP algorithm that is based on a sequential representation of
the derivation tree. Specifically, GE defines a transformation from
a variable-length binary string to a sequence of rule selections in a
CFG. Then it uses a standard genetic algorithm (GA) to search over
binary strings [26]. Our implementation uses one-point crossover
and uniform mutation [26].

3.3.4 Genetic Programming. Genetic programming (GP) is an
evolutionary algorithm for optimizing trees [34]. Genetic opera-
tors are defined specifically for trees and thus do not require any
transformations of the derivation tree. Our implementation uses a
crossover operator that exchanges compatible subtrees between two
individuals and a mutation operator that replaces entire subtrees
with randomly-generated ones. We also use tournament selection
for selecting individuals.

4 GRAMMAR-BASED DECISION TREES
We present grammar-based decision tree (GBDT) as a framework
that extends decision trees with a grammar framework for the in-
terpretable classification of high-dimensional and heterogeneous
time series data. Traditional decision trees partition the input space
using simple logical rules, such as (x1 < 2) [3][27]. However, these
rules have limited expressiveness and cannot be used to express
more complex logical relationships, such as those between hetero-
geneous attributes or across time. To address this problem, GBDT
allows arbitrary logical expressions as decision rules. Any logical
expression can be used so long as the evaluation of it produces
a Boolean result. The domain of the logical expressions is con-
strained using a user-supplied CFG, where the user can introduce
domain knowledge and application-specific tailoring. The decision
expressions are organized as nodes in a tree where partitions are
performed in a top-down fashion as in a traditional decision tree.

Class label prediction works as in a traditional decision tree. To
predict a label for a given record, we recursively evaluate each
decision expression on the record starting at the root of the tree
and following the corresponding branch conditions down the tree.
When a leaf node is reached, the most frequent label seen in the
training data at that leaf node is returned. In this manner, predic-
tions can be made for both previously seen and unseen data.

An added benefit of using a decision tree structure is the ability
to extract a categorization from the model at no additional cost.
Categorization can be helpful in building intuition and explaining
data. A GBDT can be used to categorize data by considering each
leaf node of the tree to be a separate category. To describe the
category, a global expression for a node can be derived by forming
the conjunction of all branch expressions along the path that con-
nects the root and the node of interest. The members of the cluster
are the records where the cluster’s global expression holds. Since
partitions are mutually exclusive, the clusters do not overlap.

Figure 1 shows an example of a GBDT with accompanying CFG
expressed in Backus-Naur Form (BNF). The CFG in this example
describes a simple temporal logic. It assumes that the data has four
attributes ®x1, ®x2, ®x3, ®x4, where the attributes ®x1 and ®x2 are Boolean
time-series vectors and ®x3 and ®x4 are time-series vectors of real
numbers. The grammar contains two types of rules. Expression
rules, such as Ev ::= F (VB), contain partially-formed expressions
that contain terminal and non-terminal symbols. Non-terminal
symbols are substituted further using the appropriate production
rules. Or Rules, such as B ::= Ev | Gl, contain the symbol |, which
is used to delineate the different possible substitutions.

Each non-leaf node of the decision tree contains a logical ex-
pression that governs which child branch is followed. Leaf nodes
show the predicted class label. For example, a data record where
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F (®x1 ∧ ®x2) is true and G(®x3 < 5) is false would be predicted to
have class label 2. The example also shows the unique cluster num-
bers for each leaf node. For example, the righmost leaf node in
Figure 1a is labeled as cluster 4. The global expression for cluster 4
is ¬F (®x1 ∧ ®x2) ∧ ¬F (®x1 ∧ (®x3 < 2)) and the members of cluster 4
are those records in the data where that global expression holds.

F (~x1 ∧ ~x2)

F (~x1 ∧ (~x3 < 2))

Cluster 4
Class 1

Cluster 3
Class 2

true false

G(~x3 < 5)

Cluster 2
Class 2

Cluster 1
Class 1

true false

true false

(a) Tree

Start ::= B
B ::= Ev | Gl

Ev ::= F (VB)
Gl ::= G(VB)
VB ::= ®x1 | ®x2 | And | Lt

And ::= VB ∧ VB
Lt ::= VR < C

VR ::= ®x3 | ®x4
C ::= 1 | 2 | 3 | 4 | 5

(b) Grammar

Figure 1: Grammar-Based Decision Tree Example

4.1 Grammars for Heterogeneous Time Series
Grammar design is crucial to the effectiveness of GBDT. The ideal
grammar should produce expressions that are interpretable, tailored
to the application, and support the attribute types present in the
dataset. This section aims to offer design suggestions to the user to
achieve these goals. The exact details of the grammar will depend
on the specific needs of the user.

In the GBDT framework, expressions are evaluated on a data
record and produce a Boolean output. The symbols of the expression
can refer to fields of the record, constants, or functions. We adopt a
subset of linear temporal logic (LTL), a formal logic with temporal
operators often used in the analysis of time-series data [8]. We
have found grammars similar to the one presented in Figure 1 to
be particularly effective for heterogeneous time series data. The
grammar produces expressions that integrate Boolean, categorical,
and real-valued data types nicely and the expressions use simple
well-known operators, which are very intuitive.

When designing a grammar, it is important to manage data types.
For example, the grammar in Figure 1 is organized by the data
type of its non-terminals. The production rule B selects amongst
functions that return a Boolean, whereas the production rule VB
selects amongst functions and expressions that return a vector of
Booleans. Similarly, the non-terminal VR represents a vector of
real values while C represents a constant. Organization of types is
not only important to provide functions with valid inputs but also
key to meaningfully nest and combine heterogeneous types.

To keep the example simple, Figure 1 included only a small
number of operators. The grammar can be readily extended to
include a much wider set of operators including disjunct ∨, greater
than >, equals =, where the equality operator is important for
datasets with categorical attributes, and even arbitrary user-defined
functions.

4.2 Natural Language Descriptions
Logical expressions can sometimes be dense and hard to parse. In
many cases, we can improve interpretability by additionally pro-
viding natural language descriptions of the expressions to the user.
One method to automatically translate expressions into English
sentences is to map expression rules and terminal symbols in the
CFG to corresponding sentence fragments and then use the struc-
ture of the expression’s derivation tree to assemble the fragments.
Figure 2 shows an example of a mapping from expressions and sym-
bols to sentence fragments that could be used with the grammar
in Figure 1. As an example, we have given English descriptions to
each data attribute as well.

F (VB) := “at some point, VB”
G(VB) := “for all time, VB”

VB ∧ VB := “VB and VB"
VR < C := “VR is less than C”

®x1 := “advisory is active”
®x2 := “pilot is responding”
®x3 := “vertical rate”
®x4 := “airspeed”

Figure 2: Natural Language Map Example

Applying this mapping, the decision rules in Figure 1 can be
transformed into the following natural language descriptions: F (®x1∧
®x2) is translated to “at some point, [advisory is active] and [pilot is
responding]”;G(®x3 < 5) is translated to “for all time, [vertical rate]
is less than 5”; and F (®x1 ∧ (®x3 < 2)) is translated to “at some point,
[advisory is active] and [[vertical rate] is less than 2]”. We include
square brackets in the sentence to help the reader disambiguate
nested sentence components.

5 INDUCTION OF GBDTS
Induction of a GBDT follows that of a traditional decision tree,
except that GBES is used as a subroutine to find the best partition
expression. The induction algorithm begins with a single (root)
node containing all data records. GBES is then used to search a
CFG for the partitioning expression that yields the best fitness. The
expression is evaluated on each record and the data is partitioned
into two child nodes according to the results of the evaluation. The
process is applied recursively to each child until all data records at
the node are either correctly classified or a maximum tree depth
is reached. The mode of the training labels is used for class label
prediction at a leaf node. The GBDT induction algorithm is shown
in Algorithm 1.

GBDT is the main entry point to the induction algorithm. It
returns a Tree object containing the root node of the induced deci-
sion tree. Split attempts to partition the data into two parts. It first
tests whether the terminal conditions are met and if so returns a
LeafNode object that predicts the mode of the labels. The partition-
ing terminates if the maximum depth has been reached or if all class
labels are the same, which is tested by the IsHomogeneous func-
tion. ExpressionSearch uses GBES to search for the expression
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Algorithm 1 Grammar-Based Decision Tree Induction

1: function GBDT(G, F ,D,L,d)
2: R ← Split(G, F ,D,L,d)
3: return Tree(R)
4: function Split(G, F ,D,L,d)
5: if IsHomogeneous(L) or d = 0 then
6: return LeafNode(Mode(L))
7: E ← ExpressionSearch(G, F ,D,L)
8: (D+,D−)← SplitData(D,E)
9: (L+,L−)← TruthLabels(D+,D−)
10: child+ ← Split(G, F ,D+,L+,d − 1)
11: child− ← Split(G, F ,D−,L−,d − 1)
12: return Node(E, child+, child−)

that induces the best split. SplitData evaluates the expression on
each data record and partitions the data into two parts according
to whether the expression holds. TruthLabels performs a lookup
for the class labels. Then, Split is called recursively on each part.
Split returns a Node object containing the decision expression and
the children of the node.

5.1 Fitness Function
We evaluate the desirability, or fitness, of an expression according to
two competing objectives. On one hand, we want expressions that
split the data so that the resulting clusters have the same ground
truth class labels. Splits that induce high homogeneity tend to
produce shallower trees and thus shorter global expressions at leaf
nodes. They also produce classifiers with better predictive accuracy
when the maximum tree depth is limited. To quantify homogeneity,
we use the Gini impurity metric following the classification and
regression tree (CART) framework [3]. On the other hand, we
want to encourage interpretability by minimizing the length and
complexity of the expression. Shorter and simpler expressions are
easier to interpret and may better describe reality according to
the Occam’s razor principle. We use the number of nodes in the
derivation tree as a proxy for the complexity of an expression. The
two objectives are combined linearly into a single (minimizing)
fitness function given by

F (E) = w1IG(E) +w2NE

where F is the fitness function, w1 and w2 are weights, and NE
is the number of nodes in the derivation tree of E. The total Gini
impurity, IG(E), is the sum of the Gini impurity of each group that
results from splitting the data using expression E. It is given by

IG(E) =
∑

L∈{L+,L− }

∑
b ∈B

f bL (1 − f bL )

where f bL is the fraction of elements in L that are equal to b, L+ are
the labels of the records where E evaluates to true, L− are the labels
of the records where E evaluates to false, and B = {True, False}.

5.2 Computational Complexity
The most computationally expensive part of GBDT is evaluating
the fitness of an expression since it involves visiting each record in
the dataset then computing statistics. Furthermore, GBES requires

a large number of expression evaluations to optimize the decision
expression at each decision node. The deeper the tree, the more
nodes that need to be optimized. However, as the tree gets deeper,
the nodes operate on increasingly smaller fractions of the dataset.
In fact, while the number of decision nodes grows exponentially
with tree depth, the number of records that must be evaluated at
each level remains constant (the size of the dataset). Overall, the
computational complexity of GBDT induction isO(|D | ·NGBES ·d),
where |D | is the number of records in the dataset, NGBES is the
number of evaluations used in GBES, and d is the depth of the
decision tree.

6 COLLISION AVOIDANCE APPLICATION
ACAS X monitors the airspace of an aircraft and issues alerts to the
pilot if a conflict is detected. A resolution advisory (RA) is issued to
help the pilot resolve the conflict, for example, instructing the pilot
to climb at 1500 feet per minute. The collision avoidance system
may revise an RA as the encounter unfolds. The pilot delays for
five seconds before responding to an initial RA and three seconds
before responding to subsequent RAs [17].

We apply GBDT to analyze simulated aircraft encounters to
discover the most predictive properties of NMACs and categorize
encounters according to those properties. The results of our study
are used to help the ACAS X development team better organize and
understand the NMACs and inform development.

6.1 Dataset
We analyze a dataset that contains simulation logs from an aircraft
encounter simulator modeling a two-aircraft mid-air encounter
[17]. Components in the simulator include sensors, pilot response,
aircraft dynamics, and a development prototype of ACAS X. The
dataset contains 10,000 encounters with 863 NMACs and 9137
non-NMACs. The class imbalance is due to the rarity of NMACs
and the difficulty in generating NMAC encounters. We provide
GBDT with the entire dataset so that the algorithm can learn from a
larger set of examples. Each encounter has 38 attributes collected at
1Hz for 50 time steps. The attributes are of mixed type that include
numeric, categorical, and Boolean types. The attributes include the
state of the aircraft, pilot commands, and the state and output of
the collision avoidance system for each aircraft.

Since the NMAC condition (horizontal separation < 500 feet and
vertical separation < 100 feet) is directly observable in the data,
GBDT will split on this rule because it has the best fitness. While
correct, the result does not provide useful information about the
NMACs. We address the issue by filtering the NMAC event from
the encounters. For each encounter, we compute the closest point of
approach (CPA), which is the point where the separation of the two
aircraft reaches a minimum, then trim the encounter to retain only
data from the start of the encounter to five seconds prior to that
time. Five seconds strike a good balance between removing CPA
information and leaving sufficient encounter data for prediction.

6.2 Grammar
We crafted a custom CFG for the ACAS X dataset building on the
grammar presented in Figure 1. We include temporal logic operators
eventually F and globally G; elementwise logical operators conjunct
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∧, disjunct ∨, negation ¬, and implies =⇒ ; comparison operators
less than <, less than or equal to ≤, greater than >, greater than or
equal to ≥, and equal =; mathematical functions absolute value |x |,
difference −, and sign sign; and computing function count count
(which returns the number of true values in a vector of Booleans).

In addition to dividing the attributes by data type, the ACAS X
grammar further subdivides the attributes by their physical rep-
resentations. The reason is to be able to compare attributes with
constant values that have appropriate scale and resolution. For
example, even though aircraft heading and vertical rate are both
real-valued attributes, aircraft heading should be compared to val-
ues in the range of −180° to 180°, whereas vertical rate should be
compared to values in the range of −80 feet per second to 80 feet
per second.

6.3 Comparison of Induction Algorithms
We study the performance of GBDTwhen used together withMonte
Carlo, MCTS, GE, and GP as subroutines. We evaluate the algo-
rithms based on classification performance and interpretability of
the produced models.

6.3.1 Classification Performance. We evaluate the classification
performance of the models on the ACAS X dataset and report ac-
curacy, precision, recall, and F1-score. A decision tree can always
achieve perfect classification performance on a training set given
a sufficient number of splits. However, large and deep trees are
harder to interpret than smaller ones. These experiments limit the
maximum tree depth to four.

6.3.2 Interpretability Metrics. We consider various metrics for
quantifying the interpretability of the models. These metrics aim
to capture the size and complexity of various parts of the model.
Intuitively, large and complex models tend to be less interpretable
than smaller ones.

• Average rule length. The average length of a rule mea-
sured in number of characters. In general, shorter rules
are easier to interpret than longer ones.

• Average rule nodes. The average number of nodes in the
derivation trees of the decision expressions. This metric
aims to capture the complexity of a rule rather than only its
representation length. In general, derivations with smaller
number of nodes in its tree are less complex and thus easier
to interpret.

We performed 20 random trials for each algorithm and report
the mean of the results in Table 1. The best performing entry for
each metric is highlighted.

Table 1: Comparison of GBDT Induction Algorithms

MC MCTS GE GP

Accuracy 96.58 96.35 96.57 96.71
F1-Score 0.8148 0.8086 0.8170 0.8231
Precision 0.7658 0.7384 0.7576 0.7688
Recall 0.8720 0.8949 0.8886 0.8875
Avg. Length 12.11 11.38 12.20 12.09
Avg. Nodes 12.78 12.08 12.79 12.73

In our experiments, GBDT-GP produced decision trees with the
highest classification accuracy and F1-score, while GBDT-MCTS
produced decision trees that were shorter and less complex. Over-
all, we selected the GBDT-GP induction algorithm for its better
classification performance yet still competitive interpretability per-
formance.

6.4 Categorizing Aircraft Encounters
WeapplyGBDT-GP to learn a categorization for theACAS X dataset.
A maximum tree depth of four is used. Figure 3 shows an example
of the categorization results extracted from the leaf nodes of the
tree. The figure shows plots of altitude versus time, which, while
cannot fully capture the high-dimensionality of the encounter data,
is generally most visually informative in this ACAS X application
since ACAS X issues RAs only in the vertical direction. Since we
are primarily interested in categorizing NMACs, we consider only
NMAC categories. Figure 3 shows the first five encounters for each
of the six NMAC categories identified, where each row is a separate
category. The categories are labeled in ascending order starting at
cluster 1 at the top row. The first row only shows two plots because
category 1 only contained two encounters.

1

2

3

4

5

6

1Figure 3: Visual Overview ofCategorizedACASXEncounter
Data. Each Row is a Category.

The following sections summarize the properties that distinguish
each category and discuss their relevance. Because the categories
are derived from leaf nodes at depth four, each category is described
by the conjunction of four expressions. The hierarchical nature of
GBDT means that some decision expressions are shared between
categories while others are not. For each category, we first present
the natural language output of the decision expressions, and then
provide an analysis of the encounters.
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6.4.1 Category 1.

• False “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s]”

• False “At some point, [[absolute altitude difference] is less
than or equal to 100 ft]”

• False “Whenever [the sign of [aircraft 2’s vertical rate] is
equal to the sign of [aircraft 1’s vertical rate]], it is also
true that [pilot 1 is flying intended trajectory]”

• False “At some point, [[pilot 2’s commanded vertical rate]
is less than or equal to 1 ft/s]”

The encounters in this category are characterized by both aircraft
climbing, maintaining vertical separation, then the lower aircraft
drastically increasing climb rate toward the upper aircraft near
CPA. The aggressive maneuvering causes vertical separation to be
lost rapidly and results in an NMAC. Figure 4 shows the aircraft
vertical rates of an encounter where the large difference in vertical
rate just before NMAC is clearly visible at 34 seconds and NMAC
occurs at 39 seconds. Text labels in figure indicate the issued RAs.
An asterisk at a time step indicates that the pilot is following active
RA and a dash indicates that the pilot is following the previous RA.
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Figure 4: Vertical Maneuvering Just Before CPA

Aggressive maneuvering close to CPA is known to be problem-
atic. With the pilot’s five-second response time, there is insufficient
time remaining for the collision avoidance system to resolve the
conflict. The encounter is exacerbated by having a climbing aircraft
being approached from below, which greatly reduces maneuvering
options for the upper aircraft. Fortunately, these large sudden ma-
neuvers, and thus these encounters, are extremely rare in practice.

6.4.2 Category 2.

• False “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s”

• False “At some point, [[absolute altitude difference] is less
than or equal to 100 ft]”

• True “Whenever [the sign of [aircraft 2’s vertical rate] is
equal to the sign of [aircraft 1’s vertical rate]], it is also
true that [pilot 1 is flying intended trajectory]”

• False “Whenever [it is not true that [the absolute value of
[pilot 1’s commanded vertical rate] is less than 10 ft/s]], it

is also true that [the absolute difference between [pilot 2’s
commanded vertical rate] and [aircraft 2’s RA target rate]
is less than 30 ft/s]”

The encounters in this category are also characterized by a main-
tenance of vertical separation in the first part of the encounter
before aggressive maneuvering close to CPA. The relative vertical
rate of the aircraft exceeds 50 feet per second at some point in the
encounter. However, in these encounters, aircraft 1 does not receive
an advisory until close to CPA where the large maneuvering occurs.
As a result, pilot 1 has not yet started to respond to the RA at 5
seconds to CPA. The aggressiveness of pilot 2’s maneuvering is reit-
erated in the property that the commanded vertical rate differs from
the advisory’s target rate by more than 30 feet per second. That
is, the pilot is not complying with the RA. These encounters differ
from those in category 1 in that the aircraft maintains a greater al-
titude separation in the first part of the encounter and both aircraft
simultaneously maneuver toward each other near CPA.

6.4.3 Category 3.

• False “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s]”

• True “At some point, [[absolute altitude difference] is less
than or equal to 100 ft]”

• False “[The number of times [the sign of [aircraft 2’s RA
target rate] is equal to the sign of [aircraft 1’s RA target
rate]] is greater than 23]”

• True “[The number of times [[pilot 1 is responding to
previous RA] or [RA alarm occurs on aircraft 2]] is less
than or equal to 1]”

Similar to categories 1 and 2, the encounters in this category
also contain aggressive vertical maneuvering at some point in the
encounter. However, the aggressive maneuvering occurs earlier
in the encounter causing the aircraft to become co-altitude prior
to CPA. Generally the maneuvering leads to one or more altitude
crossings early on and results in active RAs throughout most of
the encounter. Figure 5 shows the vertical rates of an encounter
where the large difference in vertical rate occurs well prior to CPA
in the encounter. The large difference in vertical rates is seen at 25
seconds and NMAC occurs at 37 seconds.
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Figure 5: Vertical Maneuvering Early in Encounter
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6.4.4 Category 4.

• False “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s]”

• True “At some point, [[absolute altitude difference] is less
than or equal to 100 ft]”

• True “[The number of times [the sign of [aircraft 2’s RA
target rate] is equal to the sign of [aircraft 1’s RA target
rate]] is greater than 23]”

• False “Whenever [the sign of [aircraft 2’s RA target rate] is
equal to the sign of [pilot 1’s commanded vertical rate]], it
is also true that [the absolute value of [aircraft 2’s vertical
rate] is less than 10 ft/s]”

The encounters in this category also contain aggressive vertical
maneuvering close to CPA. Loss of vertical separation before 5
seconds prior to CPA is manifested either early in the encounter
or as an extended period where the aircraft are co-altitude near
CPA. Compared to category 3, the RAs occur later in the encounter,
which is reflected in the property that the RA target rates are of
the same sign for a large part of the encounter. Target rates are
zero and thus have the same sign when no RA is active. Together,
these properties suggest that the aircraft are co-altitude without
active advisories in the early part of the encounter. Additionally,
there is a time in the encounter where aircraft 2’s advisory and
aircraft 1’s commanded vertical rate are in the same direction and
aircraft 2’s vertical rate exceeds 10 feet per second. This property
is largely manifested as pilot 2 aggressively maneuvering against
the advisory with a high vertical rate leading to NMAC.

6.4.5 Category 5.

• True “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s]”

• False “At some point, [pilot 2 is responding to current
RA]”

• False “At some point, [the absolute difference between
[aircraft 1’s vertical rate] and [aircraft 2’s vertical rate] is
less than 1 ft/s]”

• False “Whenever [[number of seconds remaining in pilot
2’s response delay] equals 5], it is also true that [the ab-
solute difference between [aircraft 1’s RA target rate] and
[aircraft 2’s vertical rate] is less than 20 ft/s]”

In these encounters, the aircraft cross in altitude early in the
encounter without active advisories, then maneuver back toward
each other to cause an NMAC. Since the aircraft are estimated to
cross safely and appear to vertically diverge following the cross-
ing, the collision avoidance system witholds an RA to reduce the
number of unnecessary alerts. However, after crossing, the air-
craft make a sudden maneuver toward each other that results in
an NMAC. Because the aircraft are already close in altitude, the
vertical maneuvering in these encounters is less aggressive than
those in previous categories. Due to the late maneuvering and the
pilot response delay, pilot 2 does not start to comply with the issued
RA until within five seconds of CPA. Figure 6 shows the vertical
profile of an encounter in this category where the aircraft cross in
altitude at 19 seconds and NMAC at 38 seconds.
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Figure 6: Maneuvering Following Altitude Crossing

6.4.6 Category 6.

• True “For all time, [the absolute difference between [pilot
1’s commanded vertical rate] and [pilot 2’s commanded
vertical rate] is less than 50 ft/s]”

• True “At some point, [pilot 2 is responding to current RA]”
• True “At some point, [crossing RA is issued to aircraft 1]”
• False “[The number of times [[altitude difference relative

to aircraft 1] is less than or equal to 50 ft] is greater than
21]”

In these encounters, an initial RA is issued early in the encounter
and the aircraft cross in altitude during the pilot’s initial response
delay. As the pilots respond to the RA, their maneuvers actually
result in a reduction in vertical separation rather than increasing it.
The encounter eventually leads to a crossing RA to be issued late in
the encounter before resulting in an NMAC. A crossing RA is one
where the aircraft are expected to cross in altitude following the RA.
Issuing advisories can be problematic in cases where aircraft are
approximately co-altitude due to the uncertainty in the aircraft’s
estimated positions and future intentions. In these encounters, the
problem arises as one aircraft maneuver and crosses altitude imme-
diately after an initial RA is issued to the other aircraft. Figure 7
shows the vertical profile of an encounter with these properties.
The aircraft cross in altitude during pilot 2’s response delay period
at 21 seconds and NMAC occurs at 39 seconds.
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Figure 7: Altitude Crossing During Response Delay



Interpretable Categorization of Heterogeneous Time Series Data KDD’17, August 2017, Halifax, Nova Scotia Canada

7 CONCLUSIONS
This paper introduced GBDT, a framework that combines deci-
sion trees and grammar-based expression search for interpretable
classification and categorization. GBDT was developed specifi-
cally to address the need for interpretable models that can support
high-dimensional and heterogeneous time series data. To further
improve interpretability, we showed a method to automatically
generate English sentences by providing a map of subexpressions
to sentence fragments. We applied GBDT to categorize an aircraft
encounter dataset and showed that the method produces inter-
pretable and insightful categories. Our approach not only partitions
a dataset into similar groups, but also explains the relevant proper-
ties of each group. The source code for GBDT and the experiments
in this paper are available online [16].
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