ENTRY PROBE STUDIES FOR ICE-GIANTS

Parul Agrawal^{1*}, Gary Allen Jr.*, Milad Mahzari, Helen Hwang, Don Ellerby, Ethiraj Venkatapathy NASA Ames Research Center, Moffett Field, CA, 94035 * AMA

1. POC: parul.agrawal-1@nasa.gov Phone: (650)-604-3764 Nitin Arora, John Elliott Jet Propulsion Laboratory, Pasadena, CA 91109

- The Ice Giants Pre-Decadal Study was requested by NASA HQ as a new look at potential missions to the Ice-Giants
- Feasible mission concepts were investigated including probe entries
- The present study is part of the above study focusing on atmospheric entry analysis of the probes
- Establish atmosphere definitions for probe entry analysis
- Investigate viable trajectory options for direct ballistic entry
- Determine feasible thermal protection (TPS) material
- Identify entry technologies that can be leveraged to enable a viable mission to Ice-Giants

PROBE WITH AEROSHELL

- 1.2 m diameter, 45 deg. sphere-cone scaled from Galileo with spherical backshell
- Total entry mass: ~325kg
- Probe mass of ~200kg delivered at 10bar

POINT DESIGNS FOR ENTRY TRAJECTORIES

Planet	Uranus	Uranus	Neptune	Neptune	Neptune
Entry Parameters	Design # 1	Design # 2	Design # 3	Design #4	Design # 5
Hyperbolic excess					
velocity (km/s)	9.9	8.4	12.3	11.3	11.4
Relative entry velocity					
(km/s)	23.1	21.9	28.8	28.4	28.5
Entry Flight Path					
Angle, gamma (deg)	-35.0	-30.0	-34.0	-20.0	-16.0
Max deceleration (g					
loads)	216.7	164.8	454.9	208.7	124.5
Stg Pressure (bar)	12.0	9.0	25.0	11.5	6.8
Total Peak Heat Flux					
(W/cm ²)	3456.0	2498.0	9635.0	5461.0	4379.0
Total heatload (J/cm ²)	43572.0	41114.0	81476.0	109671.0	133874.0
HEEET TPS Mass (kg)	Not	29.0	Not	39.0	47.0
CP TPS Mass (kg)	Computed	60.0	Computed	73.0	88.0
Feasible Design	Maybe	Yes	No	Maybe	Maybe

- Neptune has higher entry velocity compared to Uranus that causes significantly higher heat flux, deceleration and stagnation pressure for the same Entry Flight Path Angle (EFPA).
- Shallower EFPA are needed for Neptune to have a viable TPS material. However, shallower trajectories are not ideal for communications. Further concept development is required to achieve a closed Neptune design.
- Based on stagnation point heating, simplified sizing was performed. Carbon Phenolic (CP) is twice as heavy compared to HEEET.

STAGNATION PRESSURE

Stagnation Pressure versus Altitude for Uranus and Neptune At Different Entry Flight Path Angle (FPA) 600 Planet, FPA (deg.) Uranus, -30 Uranus, -35 Neptune, -16 Neptune, -20 Neptune, -34 Stagnation Pressure, bar

ENTRY HEATING

TPS MASS

CONCLUSIONS

- Feasible mission design has to protect the probe and simultaneously allow sufficient time for communications
- We have a feasible design for Uranus entry. However, Neptune studies are incomplete and further work is needed to close the design
- While CP has flown at extreme conditions, heritage CP is no longer available. HEEET, a more efficient TPS is under development. It is anticipated that we will have extended performance envelope for HEEET in the next decade

RECOMMENDATIONS

- Design trades for EFPA, need to be performed early in the study to ensure proper communication and viable entry solution from TPS perspective
- The peak heating environments likely to change with higher fidelity CFD analysis. It is recommended as part of the next phase of the study
- Current ground test facility does not encompass relevant (H₂/He) testing. Investment in ground test capability at flight relevant conditions is recommended as part of future development

ACKNOWLEDGEMENTS: We acknowledge the support of NASA's Science Mission Directorate and Jet Propulsion Laboratory for funding this study.