

Testing the Tester: Lessons Learned During the Testing of a State-of-the-Art Commercial 14nm Processor Under Proton Irradiation

Carl M. Szabo, Jr.
AS&D, Inc., supporting
NASA Electronic Parts and Packaging (NEPP) Program
NASA/GSFC
carl.m.szabo@nasa.gov
301-286-8890

Adam R. Duncan, Naval Surface Warfare Center Crane, and Kenneth A. LaBel, NASA GSFC

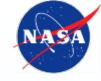
Acronyms

- Basic Input/Output System (BIOS)
- Device Under Test (DUT)
- Graphical Processing Unit (GPU)
- Goddard Space Flight Center (GSFC)
- High Definition Multimedia Interface (HDMI)
- Massachusetts General Hospital (MGH)
- National Aeronautics and Space Administration (NASA)
- NASA Electronic Parts and Packaging (NEPP) Program
- Random Access Memory (RAM)
- Solid State Disk (SSD)
- single event effect (SEE)
- Thermal Design Power (TDP)
- Universal Serial Bus (USB)

Background

Circa 1986, playing with an Atari 1040ST

- Lifelong Computer Hobbyist and Enthusiast
 - Unconventional Training and Skill Set
- System Administrator supporting GSFC since 2002
 - Duties often require flexibility and out of the box thinking to solve unplanned problems / handle unexpected events
- Introduced to Radiation Effects ~2012
 - "Person Under Test"


NASA

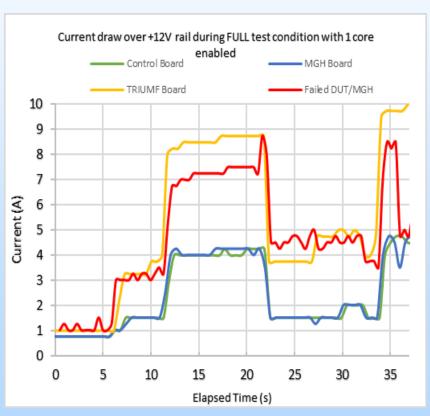
Device Under Test

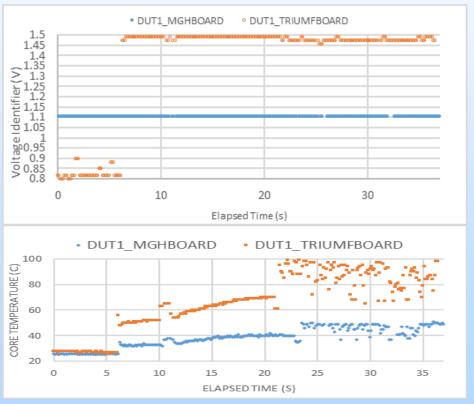
- Intel core i5-6600K "Skylake" Microprocessor
 - ASUS Z170M-Plus Motherboard, 8GB RAM, 750W Power Supply, SSD, USB and HDMI over Ethernet control
 - Microsoft Windows Server 2012R2 OS, HWiNFO System
 Monitoring, Linpack, FurMark, Prime95 Stress, Batch File Control
 - In-situ, "System Level" Best Effort Approach
- Proton Testing via
 - TRIUMF 105 MeV Beam Line (November 2015)
 - MGH 200 MeV Beam Line (October 2016)

What Happened

- Hard failure event observed during TRIUMF visit
 - Device appeared to lose integrated GPU functionality during irradiation
 - Failure occurred during "Full" test (Linpack + FurMark)
 with only 1 CPU core active
 - Results were difficult to explain at the time of testing
- Subsequent testing at MGH yielded no functional failures after 60+ test runs!
 - How??
- Next day at MGH, re-tested board used during TRIUMF tests
 - Processors began to fail!

Troubleshooting 1/3




- Product was new and period of testing was short
 - First setup featured early release hardware
 - Public discovers flaws (Prime95 lockup issue)
- Test setup evolved as the device technology matured
 - Later procured motherboards featured updates
 - BIOS revision of board used at MGH operated DUT differently than board and BIOS version used at TRIUMF
 - Supporting hardware and software enabled enhanced data collection
 - Accurate data
 - Evolution of test setup allowed insight that was not possible in early testing
 - Retesting on the MGH and TRIUMF-tested boards showed same behaviors with fresh processors

Troubleshooting 2/3

- Large differences in functional parameters
 - Failures only occurred during exposure to protons
 - These differences would likely be transparent to regular users

Troubleshooting 3/3

- Motherboard used at TRIUMF operated DUT in excess of rated 91 Watt TDP!
 - Only 1 processing core active
 - Degradation of performance after 18 hour extreme stress test
 - Failed Linpack tests
 - Could not reproduce GPU functional failure
- Motherboard used at MGH operated DUT more efficiently
 - Lower temperature operation
 - Fewer changes in voltage
 - Slightly better performance
- Control Motherboard (latest BIOS available as of Sep. 2017)
 - Behavior largely the same as MGH motherboard

Conclusion

- Early hardware and software is imperfect
 - Perform updates BIOS, microcode, hardware and software
- Up-to-date hardware and software leads to
 - Increased data
 - Accurate data
 - Correctable / Uncorrectable Error Reporting
- However, current product cycle is changing quickly
 - How feasible to characterize?
 - Limited time begets limited reliability data
 - Flight project cannot tolerate lack of supply + reliability data, nor frequent updates