In-space Manufacturing: Make it, Don't Take it!

G.I.R.L 2017 October 7, 2017

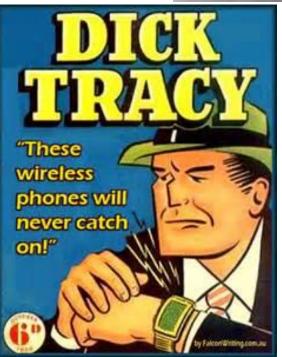
> Niki Werkheiser NASA In-space Manufacturing Project Manager Niki.Werkheiser@nasa.gov 256-544-8406

What I thought I would get....

What I actually

Images courtesy of Creative Commons

The Future is NOW!


Apollo Guidance Computer

- 1200 Transistors
- 70 lbs
- 4K Memory
- 1 MHz processor
- \$150K

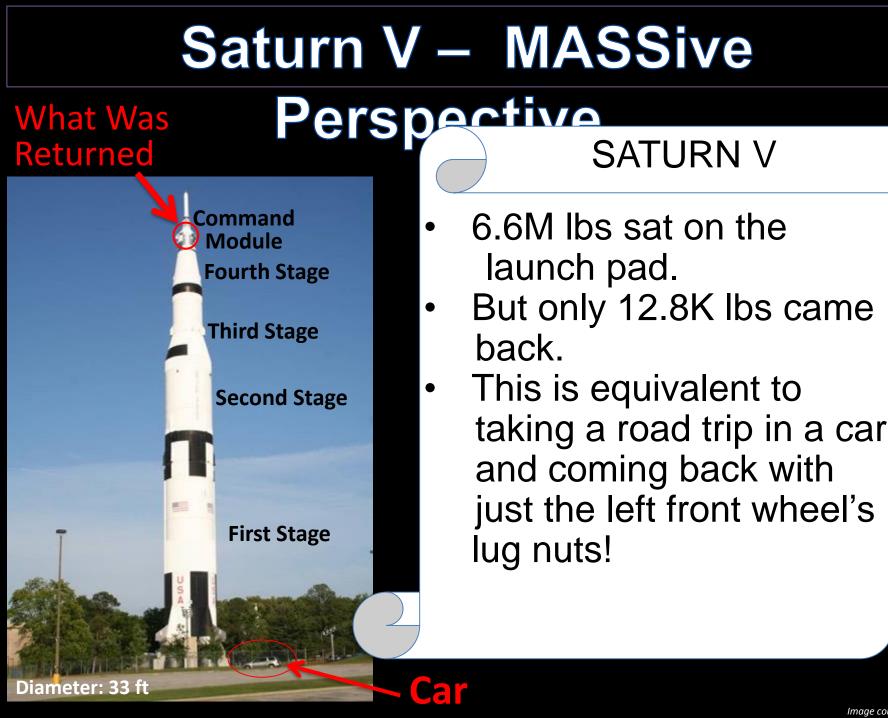
- 2 Billion Transistors
- 4.5 ounces
- 128 Gb Memory
- 1.4 GHz processor
- \$399

3D Printing, i.e. Additive Manufacturing

Image courtesy of Creative Commons

Large Facilities Mass Timeroduction

Big Workforce


Independence

Can be here.....

Or here

Images courtesy of Wikimedia Commons

Image courtesy of NASA

SATURN V

With 3D Printing

Square peg in Round Hole? No problem!

We have to

make this

Without 3D Printing

using nothing but this

fit in

fit into the hole made for this

Image courtesy of NASA & Made in Space, Inc.

What is In-space Manufacturing (ISM)?

- ISM is responsible for developing the on-demand manufacturing capabilities required for sustainable Exploration Missions to destinations such as Mars. This includes advancing the needed technologies, as well as establishing the skills & processes that will enable the technologies to go from novel to institutionalized.
- These technologies are evolving rapidly due to terrestrial markets. NASA is leveraging this commercial development by adapting them for the space environment in order to develop these capabilities within a realistic timeframe and budget.
- ISM utilizes the International Space Station (ISS) as a critical microgravity testbed to adapt these technologies for microgravity operations and evolve the current operations mindset from earth-reliant to earth-independent.

Step #1: First 3D Printer in Space!

- The first 3D Printer was launched to ISS on SpaceX-4 in September 2014. The printer was designed and built by Made in Space, Inc. under NASA Small Business Innovation Research contract.
- The primary objective of this printer is to compare print quality and performance between the flight and ground samples.
- To date, 45 parts have been printed in space including the first-student designed part to be printed in space!
- The first flight samples have underwent test & analyses to compare to ground control samples. We are currently printing more parts on ISS now!

Images courtesy of NASA

3D Print Tech Demo Parts Printed

Printer Performance Capability

First Part "Emailed" to Space!

Design Part

Uplink to ISS

Manufacture on ISS

3D Printed Wrench: Demonstrated on-demand manufacturing capability by uplinking a part file that was not pre-loaded to the 3D Printer.

You can print the same wrench by downloading

the file at NASA 3D Resources!

Images courtesy of NASA & MIS, Inc.

Additive Manufacturing Facility (AMF): Commercial ISS 3D Printer

MADE IN SPACE

POWERED THROUGH PARTNERSHIP

- The second 3D Printer, the Additive Manufacturing Facility (AMF), is now operating on ISS.
- This printer is owned and operated by Made in Space, Inc. thru agreement with the ISS National Lab and Center for Advancement of Science in Space (CASIS).
- NASA is one of the customers, as well as other government
 - agencies, industry, and academia.
- AMF can print with ABS, Ultem and High-density Polyethylene.

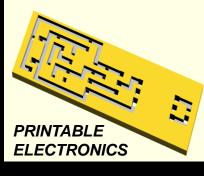
The Capability to Manufacture Items in Space is a Critical Enabler for the Path to Mars

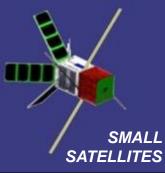
NASA Article Ranks "Understanding how to manufacture items in space" as the #1 was that ISS is helping us on our journey to Mars!!!

"As crews head to Mars, there may be items that are unanticipated or that break during the mission. Having the ability to manufacture new objects on demand while in space will greatly benefit missions. The 3-D Printing in Zero-G Technology Demonstration validates that a 3-D printer works normally in space. This is the first step towards establishing an on-demand machine shop in space, which is a critical enabling component for crewed missions to deep space."

Refabricator Space Station Technology Demonstration

- The Refabricator is the first integrated 3D Printer and Recycler that will be operated on the International Space Station.
- You can put a 3D Printed part in and it will recycle it back into new 'feedstock' to make new and/or different parts.
- It was developed by Tethers Unlimited, Inc. though Small Business Innovation Research (SBIR) awards.
- This technology also has exciting potential for use right here on earth!!


In-space Manufacturing Technology Development Areas


IN-SPACE RECYCLER

MULTI-MATERIALS

ADDITIVE CONSTRUCTION OF LARGE STRUCTURES USING IN-SITU RESOURCES

EXTERNAL STRUCTURES

Images courtesy of NASA

In-Space Manufacturing (ISM) Path to Exploration

EARTH RELIANT

PROVING GROUND

ISS Platform

- In-space Manufacturing
 - **o 3D Print Tech Demo (polymers)**
 - Additive Manufacturing Facility (polymers)
 - In-space Recycling
 - On-demand Utilization Catalogue
 - Printable Electronics
 - In-space Metals
 - Syn Bio & In-situ Resources
 - External In-space Mfctr. & Repair Demo

Commercial Cargo and Crew

Space Launch System

ISS

Planetary Surfaces Platform Additive Construction, Repair & Recycle/Reclamation Technologies (both Insitu and Ex-situ) Provisioning of Regolith Simulant Materials for Feedstock Utilization Execution and Handling of Materials for Fabrication and/or Repair Purposes Synthetic Biology Collaboration

EARTH INDEPENDENT

Asteroids

Earth-Based Platform

- Define Capacity and Capability Requirements (work with EMC Systems on ECLSS, Structures, Logistics & Maintenance, etc.)
- Certification & Inspection Process
- Material Characterization Database (in-situ & ex-situ)
- Additive Manufacturing Systems Automation Development
- Ground-based Technology Maturation & Demonstrations (i.e. ACME Project)
- Develop, Test, and Utilize Simulants & Binders for use as AM Feedstock

In-Space Manufacturing (ISM) Phased Technology Development Roadmap

Earth-based	Demos: Ground & ISS			Exploration Missions
	3D Print Plastic Printing Demo Mat. Char.	Recycler Mat. Char. Utilization Testing AMF	Metal Printing Fab Lab Self- External repair/ Mfctr. replicate	Asteroids Cislunar Mars Lagrange Point
Pre-2012 Ground & Parabolic centric: • Multiple FDM Zero-G parabolic flights • Trade/System Studies for Metals • Ground-based Printable Electronics/Spac ecraft • Verification & Certification Processes under development • Materials Database • Cubesat Design & Development	 2014 In-space:3D Print: First Plastic Printer on ISS Tech Demo NIAC Contour Crafting NIAC Printable Spacecraft Small Sat in a Day AF/NASA Space-based Additive NRC Study ISRU Phase II SBIRs Ionic Liquids Printable Electronics 	2015 - 2017 3D Print Demo Add. Mfctr. Facility (AMF) ISM Cert Process Part Catalogue ISS & Exploration Material & Design Database External Manufacturing Autonomous Processes Future Engineers Additive Construction	2018 - 2024 ISS: Multi-material "Fab Lab" Rack Test Bed (Key springboard for Exploration 'proving ground') • Integrated Facility Systems for stronger types of extrusion materials for multiple uses including metals & various plastics, embedded electronics, autonomous inspection & part removal, etc. • In-space Recycler Demo • ACME Ground Demos	Cislunar, Lagrange FabLabsPlanetary Surfaces Points FabMars Multi-Material Fab Lab• Initial Robotic/Remote MissionsPlanetary Surfaces Points FabMars Multi-Material Fab Lab• Initial Robotic/Remote Missions• Transport vehicle and sites would need Fab capability• Provision & Utilize in situ resources for feedstock• Evolve to utilizing in situ materials (natural resources, synthetic biology)• Additive Construction & Repair of large structures• FabLab: Provides on- demand manufacturing of structures, electronics, & parts utilizing in- situ and ex-situ (renewable) resources. Includes ability to inspect, recycle/reclaim, and post-process as needed autonomously to ultimately provide self-sustainment at remote destinations.

ISS Serves as a Key Exploration Test-bed for the Required Technology Maturation & Demonstrations

AN EDUCATION PROGRAM FOR TOMORROWS INNOVATORS

www.futureengineers.org

Future Engineers is an education platform that hosts and develops design challenges for young innovators. We are delighted to host the 3D Printing in Space Challenges powered by the ASME Foundation. On September 21st, NASA launched the first-ever Zero-G 3D Printer (built by Made In Space) to the International Space Station aboard SpaceX-4. To celebrate the launch of this 'In Space Manufacturing' revolution, the American Society of Mechanical Engineers (ASME) Foundation and NASA partnered together to develop a series of 3D Space Challenges focused on solving real-world space exploration problems. Students can submit 3D models directly to the site for a chance to win out-of-this-world prizes!

Summary

In order to provide meaningful capability for on-demand manufacturing during Exploration missions, ISM must continue to test these technologies on the ISS and influence Exploration systems design now .

- In-space Manufacturing offers:
 - Dramatic paradigm shift in the development and creation of space architectures
 - Efficiency gain and risk reduction for low Earth orbit and deep space exploration
 - "Pioneering" approach to maintenance, repair, and logistics will lead to sustainable, affordable supply chain model.
- In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant terrestrial developments.
 - Requires innovative, agile collaboration with industry and academia.
 - NASA-unique Investments to focus primarily on developing the skillsets and processes required and adapting the technologies to the microgravity environment & operations.
- We must do the foundational work it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities.
 - Characterize, Certify, Institutionalize, Design for AM
- Ultimately, ISM will utilize an ISS US Lab rack to develop an integrated "Fab Lab" with the capability to manufacture and recycle multi-material components, including the capability for electronics, as well as automation of part inspection and removal. 21

In-Space Manufacturing (ISM)

"If what you're doing is not seen by some people as science fiction, it's probably not transformative enough."

-Sergey Brin

Now for my favorite part...Q&A!!

