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ABSTRACT 

The bulge in the Earth at its equator has been shown [1] 

to lead to a clustering of natural decays biased to occur 

towards the equator and away from the orbit’s extreme 

latitudes.  Such clustering must be considered when 

predicting the Expectation of Casualty (Ec) during a 

natural decay because of the clustering of the human 

population in the same lower latitudes.  This study 

expands upon prior work [1, 2], and formalizes the 

correction that must be made to the calculation of the 

average exposed population density as a result of this 

effect.  Although a generic equation can be derived from 

this work to approximate the effects of gravitational and 

atmospheric perturbations on a final decay, such an 

equation averages certain important subtleties in 

achieving a best fit over all conditions.  The authors 

recommend that direct simulation be used to calculate the 

true Ec for any specific entry as a more accurate method.  

A generic equation is provided, represented as a function 

of ballistic number and inclination of the entering 

spacecraft over the credible range of ballistic numbers.  
 

1. BACKGROUND 

In the final stages of orbital decay, the density scale 

height shrinks to only a few kilometers.  At the same 

time, the rapidly-circularizing orbit encounters two 

effects of the oblate Earth, each of which (at moderate to 

high inclinations) permute the “effective altitude” to a 

degree comparable to or exceeding such typical scale 

heights.  The primary influence is the elevation of the 

atmosphere relative to Earth’s center in the equatorial 

regions, simply rising in lock step with the geoid.  

Because the Earth’s radius at the equator is 21 kilometers 

(km) higher than at its poles, the effective density (and 

thus, the local deceleration) could hypothetically increase 

by a factor of nearly 50 at the equator relative to values 

at the poles under an idealized perfect circular Kepler 

orbit.   

 

Simultaneously, the J2 gravitational orbit perturbation 

works in the opposite direction, raising the local radius of 

the orbit at extreme latitudes, and dropping it at the 

equator.  There are additional J3 effects noted by 

Fremeaux, et al., [3] which emerge as a small correction 

factor in the present study.  Fig. 1 shows the progression 

of the local altitude and radius for a decaying polar orbit, 

and the progression in the Log10 of density during the 

decay.  All values are plotted versus latitude, causing a 

rocking back and forth as time progresses.  Clearly, the 

dominant nonlinear factor in the otherwise spiral decay is 

the physical uplift of the atmosphere into the orbit path. 

 

 
Figure 1. Altitude, radius, and Minus Log(Density) plotted 

vs. latitude for a decaying 50o orbit at 100kg/m2 ballistic 

number. While the J2 gravitational effect raises the local 

radius at the extreme latitudes, the elevation of the 

atmosphere above the physical bulge at the equator 

dominates the density variations encountered by the 

decaying spacecraft. Both the gravitational and atmospheric 

perturbations are evident in structure of the decay 

concentration curves. 

 

With such strong cyclic variation in the drag profile, it 

should be expected that the distribution of natural decays 

around the orbit path (measured in Argument of Latitude 

[ArgLat with symbol Θ], which is the angle along an orbit 

in the orbit plane measured from the north-bound pass of 

the equator; generally computed as the true anomaly plus 

the argument of perigee) should instead show a statistical 

clustering that reflects this cyclic forcing function at one-

half orbit period.  Indeed, in earlier work, both simulation 

and analysis of well-documented real, natural polar orbit 

decays showed a cyclic clustering towards the equator.  

Preliminary assessments with the initial model revealed 

that the statistical biasing of natural decays to the more 

heavily populated lower latitudes could have up to a 13% 

effect on the calculated value of Ec.  When the authors 

presented the preliminary model they acknowledged that 

further work would be necessary to completely define the 

statistical biases under different values of ballistic 

number (BN), inclination, and perhaps solar flux 

conditions.  This paper reports the conclusion of that 

work, covering a full range of credible ballistic numbers 
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and all orbit inclinations.  Solar flux was shown in 

subsequent publication [2] to be inconsequential to the 

decay latitude bias problem.  In the improved model the 

authors have reformulated the analysis in terms of ArgLat 

instead of latitude, which has allowed better comparison 

of the physics across cases. 

 

2. APPROACH 

Tens of thousands of natural decays were simulated in the 

NASA General Mission Analysis Tool (GMAT), in 

parametric studies every 5° of inclination for spacecraft 

with 50, 100, 150, and 200 kg/m2 BN decaying for 

slightly more than 50 orbits each.  The orbits were 

propagated to 90 km altitude.  (Past research [2] has 

shown that at 90 km the residual time and distance to go 

to the surface is approximately independent of ArgLat for 

any given ballistic number.  Therefore, to reduce 

computation time from weeks to days, the decays were 

truncated at 90 km).  This truncation must be accounted 

for when considering actual expectation of casualty, 

because ground intercept will be several degrees 

downrange of the calculated entry point.   

GMAT is a certified NASA mission planning tool with 

an adaptive step, ninth order Runge-Kutta integrator with 

eighth order error control that can numerically integrate 

the path of a decaying object through a selectable 

atmosphere.  In this study, the MSIS-E 2000 atmosphere 

was modeled at F(10.7) identical daily and 90-day 

average values of 115 janskys, and the global 

geomagnetic index Kp constant was uniform at 3.  Orbits 

were propagated with 4th-order spherical harmonics and 

full atmospheric responses to day-of-year and the orbit’s 

Right Ascension of the Ascending Node (RAAN).   

The mass of the modeled spacecraft was dithered in tiny 

steps to achieve a cumulative 2% spacecraft mass 

variation in 101 uniform steps per run.  The mass dither 

is considered by the authors to be the subtlest and most 

linear way to induce a smooth variation in a very 

nonlinear process.  This method allows the initial 

conditions to be as nearly identical as possible, while 

allowing the forces being studied to integrate in the 

nonlinear ways under study.  The 2% total mass variation 

in a decay with more than 50 remaining orbits at 

inception is enough to observe one full cycle of the 

ArgLat of decay.  (One hundred and one runs are needed 

to generate 100 gaps.  It is the gaps that drive the 

compression data.).  

Once a full cycle of ArgLat was observed, the relative 

compression (or “compression factor”) C(Θ) of the 

decays was recorded at each value of Θ.  C(Θ) is 

calculated by talking the ratio of the spacing between the 

ArgLat of any one iteration’s decay and the next 

iteration’s value, divided by the averaged step size over 

the full 360° cycle of ArgLat.  (The non-integer number 

of steps is linearly interpolated between integer steps that 

bracket the 360° cycle.)  A clustering of decays in one 

portion of the arc then yields a ratio less than one, and a 

rarefaction or sparseness of decays will lead to a number 

greater than one. Although this may seem 

counterintuitive, representing a variable angle per 

incremental decay scenario (vs. variable decays per unit 

angle) was the most easily immediately-normalized 

function when establishing common compression curves.  

When the function is inverted to a probability distribution 

function, each local point must be binomially expanded, 

as discussed later. 

Example: if 57.137 uniform increments of a 

satellite’s mass caused the decay’s ArgLat to vary 

by 360°, the average step size would be 

(360°/57.137) = 6.2751°.  If the argument of 

decay latitude shifted only 5.72° from one 

iteration to the next at a particular region, the local 

compression rate would be (5.72°/6.2751) = 

0.9115° 

 

 
Figure 2. An example relative compression curve for 

BN=200 decays at 50° inclination and RAAN=180°. The 

curve illustrates the excellent fit of the five-term Fourier 

approximation. At the vernal equinox, this orbit has a beta 

angle of zero and passes directly under the subsolar point, 

creating a day-night asymmetry in the decay rate. The near 

mirror of this curve occurs at 90° RAAN (see Fig 6). The 

asymmetry is removed by plotting the rates at four 

orthogonal RAANs and averaging the curves. (This is best 

done after curve-fitting, because there is no way to align the 

individual statistical points to achieve the same values of 

ArgLat in all four plots.) Note in the curve how sparse the 

entry events are at the peaks relative to the valleys, in terms 

of spatial density of the points. 

 

The resulting plot of relative compression vs. ArgLat 

shows a consistent cyclic behavior of concentrating 

entries as the decay location approaches the equator 

(ArgLat= 0 and 180), receding rapidly after passing it, 

and becoming most rarefied approaching the extreme 

latitudes (ArgLat = 90 and 270).  An example plot is 

shown in Fig. 2.  A 5-term Fourier analysis of the data is 



 

superimposed as the solid line, showing an excellent fit, 

with generally <0.7% average error of the fit from 

recorded values.  The universal model of the compression 

curve over all conditions is generated by characterizing 

the trend of the first four best-fit Fourier coefficients 

under varying ballistic number, RAAN, and inclination.  

(The fifth term represents residual noise, but no implicit 

physics emerges from its trending.)  Noise comparable to 

or greater than the fifth Fourier amplitude coefficient is 

introduced in the estimation of the curve in 256 discreet 

bins of ArgLat with nearest value in the true compression 

curve.  

The entire series was repeated at four orthogonal orbit 

planes (RAAN=0, 90, 180, and 270) at the vernal equinox.  

The reason for RAAN variation was to average out the 

effects of the diurnal variation in the atmosphere, which 

presents variations in density of up to 25% of peak value, 

depending upon whether Θ lies near the terminator, subsolar 

point, or solar midnight. 

In all then, (4 ballistic numbers)  (4 RAANs) 

 (101 runs/case)  (18 inclinations) led to 29,088 sample 

runs, leading to 288 curves of 100 data points each.  An 

additional 30 special cases were run to explore conditions at 

the solstice, simplified gravitational models, and extreme 

ballistic numbers, for yet another 3030 runs. 

Next, all 100 compression data pairs for each set of input 

conditions were spread into the closest of 256 uniform 

ArgLat bins.  A Fourier analysis was performed on this 

256-bin representation of the curve.  The amplitude and 

phase of the first five oscillating terms were recorded, with 

the first term (the uniform average compression) defined as 

being one despite any curve-fitting residual.  

The five Fourier terms were then explored for empirical 

trends, such that the amplitude and phase of each term can 

be derived for any input.  The empirical formulation of the 

Fourier terms then, in theory, allows us to recreate the 

compression curve for any condition.  Ultimately, chaotic 

trends in the phases of asymmetric Fourier terms, and low-

inclination orbits in general were problematic to developing 

a fully-universal empirical prediction. 

 

From the relative compression C(Θ) along such a 

reconstituted curve we can derive the relative likelihood of 

impacting at any particular latitude.  For any given 

inclination (i) and ArgLat (Θ), we get that the latitude is 

ARCSIN(SIN(i)*SIN(Θ)), and the local statistical 

likelihood at that latitude relative to unit average will be a 

binomial expansion of 1/C.  The coefficient 1/C must be 

binomially expanded to achieve the original true 

compression in relative decays per degree.  This problem 

stems from the mathematical inequality that the most easily 

normalized initial compression curve is based upon 

N/Avg(X), which is not equal to N*Avg(1/X). 

 

3. RESULTS 

Each compression curve takes the general form of a 

sinusoidal curve in (two times the) ArgLat, (a 

2Θ harmonic), perturbed by 1Θ, 3Θ, and 4Θ harmonic 

terms of generally lower amplitude, each term affected 

by a unique phase offset.   

 
Figure 3. A family of compression curves for inclinations 

from 5° to 90° at RAAN=0° and BN=100 kg/m2. Curve 

amplitude near 90° ArgLat increases with orbit inclination. 

The curves are more chaotic and invert the compression 

effect’s locations at the lower inclinations, although at low 

amplitude and low inclination, the net effect on latitude 

clustering is small. 

 

 
Figure 4a. The even-numbered (symmetric) Fourier term 

amplitudes of compression curves. Note that the 2Θ terms 

are typically a factor of 10 larger than the 4Θ terms and the 

patterns generally repeat with comparatively small 

variations for ballistic number and RAAN. In each of the 

16 tooth-shaped curves, orbit inclination increases from 5 at 

the left to 90° at the right. Each of four major groupings 

shows the results for one RAAN value: 0°, 90°, 180°, and 

270° from left to right. Within each group, each of four 

ballistic numbers are evaluated: 50, 100, 150, and 

200 kg/m2. 

 



 

 
Figure 4b. The odd (asymmetric) Fourier term amplitudes of 

the compression curves. The groupings are as in Fig. 4a, 

and the vertical axis is to the same scale. The simple first 

harmonic wave in Θ is the largest but most irregular of all 

the secondary terms, and is believed to be heavily influenced 

by the exact path through or near the subsolar point, 

potentially containing some J3 gravitational information 

too. Note the interesting and as yet unexplained gap in most 

1Θ amplitudes near 50°-55°. The 3Θ terms are very 

repeatable and are likely purely atmospheric in nature (see 

Fig 5c). The 5Θ terms are completely negligible, 

representing noise. (The gravitational model itself is only to 

four harmonic terms.) 

 

 

 
Figure 5a. The scale of atmospheric vs. gravitational effects 

is evident in the calculation of compression curves when 

Earth’s simple point-mass gravitational model (0-order, 

0-degree gravitational model) is used instead of the full 

4-order, 4-degree gravitational model. Only atmospheric 

geometry—especially the solar heating effect—is driving the 

Θ, 3Θ, and 4Θ Fourier terms in this case, resulting in 

perturbing effects generally comparable in scale with the 

“wall of air” effect at low inclinations, dropping to about 

25% influence at the highest inclinations for the 1Θ term, 

and <5% influence for the higher-order terms. 

Figure 5b. The compression curve Fourier coefficients when 

the full gravitational model is used for the same conditions 

of 100 kg/m2 ballistic number and 0° RAAN. Note the 

reduction in nearly all of the coefficients, indicating that 

gravitational forces in many cases may mitigate the 

atmospheric effects. 

  

 
Figure 5c. The point mass gravitational model for a 

100 kg/m2 BN at 90° RAAN. Note the shift in height and 

shape of the 1Θ (blue) term, and the increase in the 

2Θ (orange) term, all presumably due to atmospheric effects 

only. The path of the orbit relative to the subsolar point has 

a noticeable effect on the symmetry of the curve (Fig. 6). 

Note that the 3Θ (red) term is remarkably consistent across 

all the curves. This strongly implies that the J3 terms are 

atmospheric in nature, and real. 

 

The basic 2Θ curve has an uprange offset of 15°-20° 

relative to nodal crossings at 0° and 180° of ArgLat at 

higher inclinations, with interesting trends in the opposite 

direction at the lower inclinations, where all the Fourier 

terms have comparable amplitudes.  The shape of the 

curve is generally more disorganized at lower inclination 

orbits, but still exhibits this basic behavior (see Fig. 3). 

The first five Fourier terms’ amplitudes are shown in 

Figs. 4a and 4b grouped into terms that are respectively 

even and odd multiples of Θ, representing the effects that 

are symmetric north-to-south and those that are 

asymmetric. 



 

 
Figure 5d. The same conditions as in Fig. 5c above, with the 

full gravitational model employed. As with the RAAN=0 

case pair, most Fourier terms have been reduced from the 

point-mass gravity model’s case. 

 

Figure 6a. The compression curve changes in character with 

passage of the orbit near the subsolar point at the summer 

solstice. Here a 60° inclination orbit of 100 kg/m2 ballistic 

number was propagated every 15° in RAAN, ultimately 

lining up nearly through maximum density a few degrees 

east of the subsolar point when the initial RAAN at the start 

of the propagation was 120°. At RAAN = 300° (+180° of 

RAAN from 120°), the curve family reached a nearly 

mirrored amplitude profile. It illustrates the effect on 

symmetry of major perturbing effects in the atmosphere 

other than the equatorial bulge that causes the basic 

SIN(2Θ) curve. When all 22 runs are sequenced, the curves 

exhibit a simple harmonic “sloshing” with cycling RAAN. 

 

 
Figure 6b. The variation in Fourier term amplitudes with 

RAAN for the sweep of a 60° orbit. Note that the 

2Θ amplitude term peaks well before the full compression 

curve does. 

 

 
Figure 6c. The variation in Fourier term phases with RAAN 

for the sweep of a 60° orbit.  

 

 
Figure 6d. When the first Fourier term in 1Θ is averaged at 

each value of Θ over all RAANs, a perfect sine wave 

emerges, representing the residue believed to be the 

J3 gravitational contribution. This slightly biases natural 

decays to occur in the northern (vastly more populated) 

hemisphere. 



 

From the Fourier amplitudes in Fig. 1 (especially in the 

90° and 270° RAAN cases) there is an apparent 

increasing trend in the peak 2Θ Fourier amplitude with 

increasing ballistic number.  A special series of high 

ballistic number cases was run to explore this trend, with 

the peak amplitude at 90° inclination plotted in Fig. 7.  

From this we derive there is a simple quadratic trend in 

the symmetric compression effect as a function of 

ballistic number, while the asymmetric effects are 

increasingly less significant. 

 

 
Figure 7. The trend of the first four Fourier term 

amplitudes for peak inclination orbits as ballistic 

number increases.  The symmetric first and fourth terms 

show a simple quadratic growth, while the odd terms 

remain flat and comparatively small. 

 

It should be noted that it is only the symmetric terms that 

progress monotonically in phase, while the asymmetric 

terms present a less ordered structure (see Figs. 8 and 9).   

 

 
 

Figure 8. The phases of the 2Θ and 4Θ Fourier (cosine) 

terms are the only monotonically changing curves in the 

significant components of the compression curves. 

 

The phases of the Fourier terms generally show a much 

noisier trend as a function of orbit inclination than do the 

amplitudes. A set of phases for one set of inclinations 

under common RAAN and BN conditions is shown in 

Fig. 9.  As we have mentioned earlier, the compression 

curves do not exhibit particularly strong predictable 

structure in the lower inclinations.  As in the high-

ballistic-number study, only the even-numbered 

(symmetric) terms show a monotonic and convergent 

behavior with increasing inclination.  

 

 
Figure 9. The phases of the first four cosine terms of the 

compression curves for all ballistic numbers at 90° 

RAAN. There are four curves for each Fourier phase 

term: one for each ballistic number (50, 100, 150, and 

200 kg/m2). The curve for each successively higher 

ballistic number initiates farther lower on the graph 

than it did for the prior (smaller) ballistic number. Note 

the erratic behaviour of the asymmetric terms. (Phase 1 

and Phase 3, implying the offsets from ArgLat = 0° of 

the 1Θ & 3Θ cosine terms.) The jump appears 

coincident in inclination with the gap in the amplitude 

trend, evident in Fig. 4b). Only the 2Θ family is very 

well behaved over all inclinations. 

 

 
Figure 10. The amplitudes of the first four Fourier 

terms of the compression curves, each averaged across 

four orthogonal RAANs. As with Fig. 9, each of four 

parallel curves starts lower than the curve for the next 

lower ballistic number. 

 



 

4. DISCUSSION 

The physics of decay biasing are difficult to discern 

empirically in highly nonlinear and interacting 

gravitational and atmospheric density domains that are 

each modelled with many orders of comparable-scale and 

often competing perturbations.  Even the 30,000+ 

simulations of the current study are insufficient to isolate 

all the pure physics, although some key effects are 

emerging. 

 

The authors propose that the first four Fourier terms are 

sufficiently well-behaved in amplitude and phase that 

they can be used to generate a representative compression 

curve for any selected ballistic number and orbit 

inclination.  The most problematic of these is the 

1Θ term, which as seen in Fig. 6d is likely harboring real 

J3 gravitational effects observed by Fremeaux, et al. [3] 

along with the diurnal atmosphere effects.  While the 

diurnal effects are large, these should be averaged out 

when estimating expectation of casualty for decays 

sufficiently far in the future that specific dates and 

RAANs are completely unknown. 

 

   
Figure 11. The average of the first Fourier term over 

four orthogonal RAANs at every value of ArgLat reveals 

a family of regular sine curves similar to that seen in 

Fig. 6d, whose amplitude and general regularity both 

grow with ballistic number. Each curve is a different 

inclination orbit, and all four plots are to the same 

scale. The curve amplitudes peak near 40° inclination 

and invert at the highest inclinations, but generally 

indicate a small preference (0.06 peak, vs 0.35 peak 

value in the two terms) to enter in the Northern 

Hemisphere for most orbits. 

 

Although only four RAAN’s were explored at the 

equinox (vs. the 22 at the solstice for one inclination 

shown in Figs. 6a-6d) the data can be similarly averaged 

to reveal (with some inherent noise) that the J3 effect 

seen in Fig. 6d is clearly at work.  Fig. 11 is a compilation 

of the residue (average) curves of the 1Θ term as a 

function of ArgLat at the equinox for each of four 

ballistic numbers 50, 100, 150, and 200, clockwise from 

upper left. 

 

The 3Θ phase term is sufficiently well behaved across all 

ballistic numbers and all inclinations below 85°, and its 

amplitude sufficiently small that it should be included, 

although its phase seems to be problematic.  As 

evidenced by the point-mass gravitational study 

illustrated in Figs 5a-5d, the 3Θ term is expected to be 

atmospheric in nature.  Fortunately, where the phase 

becomes noisy and suspect, the amplitude of the 

correction falls to near zero (perhaps an initial reason for 

the noise in estimating phase). 

 

4.1 The Model 

The authors continue to refine the model and the general 

understanding of the latitude biasing phenomenon in 

natural decays.  The data presented has been used to build 

an approximate model of the compression curve for any 

set of conditions (see below).  However, the cumulative 

errors in curve-fitting and then interpolating each Fourier 

term indicate that the most precise answer for any 

planned decay will be to perform a full simulation for the 

exact ballistic number and inclination of the vehicle in 

question, averaged over a continuum of RAANs (i.e., 

every 15°) on a date near the equinox.  This does not take 

long using the analytical tools developed for this study.   

 

The next best model is to linearly interpolate the 

8 Fourier coefficients in phase and amplitude for any 

given ballistic number and inclination between the 

available 288 data sets.  This model is what will actually 

be rolled into screening software and quick-study tools, 

as it is a tabular lookup that can run well in a spreadsheet.  

This method takes many thousands of data elements that 

cannot be presented easily in a publication, and which 

will be under ongoing update and refinement. 

 

The expedient, but least accurate approximate model 

presented here is an empirical derivation that—while far 

from perfect—is substantially more accurate than the 

prior assumption of a fully random decay along the 

ArgLat, and is useful for broad parametric studies to 

determine peak areas of concern in calculating Ec.  This 

model uses a set of “eyeball fit” empirical curves to 

model the change in coefficients.  

 

The model is built as follows: 

Each Fourier term FN of Nth order has an Amplitude AN 

and a phase offset ΦN to create a term of the form: 

 

FN=AN*Cos (N*Θ+ΦN) 

 

In the equations that follow, BN is the ballistic number 

in kg/m2, and INC is the inclination of the orbit in 

degrees. 

 



 

a) F0=A0=1 

 

b) The first Fourier term represents the averaged 

first-term contributions over all RAANs for any 

given ballistic number.  The resulting average is 

expected to be the effect of J3 gravitational 

perturbation as the principal 1Θ driver into the 

nonlinear atmosphere.  Until further simulations 

reveal more detail, the evident simplest trend 

from the preliminary 4-RAAN average is a 

family of curves with the same phase: 

a. The amplitude of the first Fourier Term 

is estimated as the empirical fit: 

A1=.0418+ 

.000125*BN*Sin((5.86*INC)+227°) 

i. Note: the amplitude goes 

negative  

b.  Φ1 = 0° 

i. for low BN 

Φ1 = 100°*sin(2*INC+40°) 

ii. for BN >50 

 

c) The dominant second term F2 follows a sin3 fit 

to inclination:  

a. A2= .0498 +0 .2576*sin3(INC) 

b. Φ2 = 192°*BN -170  

i. for INC >45° 

Φ2 = 70°*BN  

i. for INC <45° 

 

d) The F3 and F4 terms should most correctly be 

estimated from the averaged curves in all 

RAANs.  This work has not been completed, 

and will be better done once a broader set of 

RAANs have been studied.  The two terms are 

estimated from trend data at all four RAANs as 

follows: 

F3: 

a. A3= .0334 -.0003*INC 

b. Φ3 =(BN)0.85-60° 

 

e) The F4 term follows 

a. A4=.0206-(8.5E-7)*(400-BN)*INC  

i. for INC < 55° 

A4=0.0206-(4.683E-5)*BN 

ii. for INC >55° 

b. Φ4 =130 - 0.78*BN +              

(BN/50)*(INC-50°) 

i. for INC < 55° 

Φ4 = (135-BN/8)-INC 

i. for INC > 55° 

 

The fits of these respective parametric representations to 

the averaged Fourier terms is illustrated in Fig. 12. 

   

 
Figure 12. The empirical fits described in this section to the 

Fourier coefficients for compression curves at each 

inclination, averaged across four orthogonal RAANs at the 

Vernal Equinox. The four curves in each plot represent the 

coefficients for the four studied ballistic numbers in 

ascending order left to right. The jumps in the 2Θ and 

3Θ phase curves do not lend themselves to simple models, 

and reconstructed curves in the regions of these breaks can 

show obvious qualitative differences. 

  

Two representative fits of the empirical curve to the 

averaged scenario and to representative original 

simulation data are shown in Figs. 13a and 13b for orbits 

not situated within 5° of a break point in the empirical 

curve sets.   

 

 
Figure 13a. Empirical (dashed) fit to the 4-RAAN average 

(solid) model for moderate BN and inclination. Data trace 

(points) from 270° RAAN is included to demonstrate how 

actual conditions will typically vary from the average on any 

given day. 

 



 

 
Figure 13b. The same comparison for high BN and 

inclination. The fit to the 4-RAAN average is excellent, but 

the statistical noise for any particular day of entry (in the 

form of the diurnal variation) is more evident. 

 

4.2 Final Ec Calculation 

With the averaged concentration factor available at each 

latitude, the Ec for a particular decay can finally be 

calculated with a slight modification to the traditional 

approach.  The ArgLat at 90 km is incremented in small 

steps from 0° to 360°.  The concentration factor is 

calculated for the ArgLat at 90 km for the specific orbit 

inclination and spacecraft ballistic number.  A necessary 

pad of a few degrees is added to the ArgLat (variable with 

the ballistic number of the object in question) to 

propagate the debris farther downrange to the ground.  

(The calculation of this pad is beyond the scope of this 

paper.)  The physical latitude on the planet associated 

with the adjusted impact ArgLat (Θimpact) is calculated by 

the simple equation: 

 

Latitude = ARCSIN(SIN(INC)*SIN(Θimpact)) (1) 

 

The population in any given latitude band is extracted 

from the gridded population of the world, with a model 

of population growth applied.  In the critical adjustment, 

this population is divided by the concentration factor 

associated with the 90-km ArgLat Θ to give an adjusted 

risk.  The binomial correction that must be applied to 

correct for a normalized Probability Function is 

P=(1/C(Θ))-(1-C(Θ))2.  Note that the impact latitude will 

be encountered twice during this process (ascending and 

descending), with a different concentration factor 

applied.  Each incremental risk is multiplied by the size 

of the incremental step in ArgLat divided by 360°, such 

that the sum of all steps is the total risk over the orbit.  

 

The resulting mean population per square kilometer can 

be mapped as a function of inclination and ballistic 

number, as shown in Fig. 14, illustrating the difference in 

resulting risk under the new model, compared to the prior 

randomized-entry assumption.  Expectation of casualty is 

a linear multiple of the mean exposed population per 

square kilometer, scaling as well with Debris Casualty 

Area.  The ratio of the average populations under various 

inclination orbits is a weak function of ballistic number, 

as shown in Fig. 15. 

 
Figure 14. Weighted vs unweighted 2020 population under a 

90° orbit 

 

 
Figure 15. Ratio of mean population density under 

compression curve vs. the assumption of uniform decay 

around the orbit, as a function of orbit inclination for four 

ballistic numbers. A Θimpact of 13.5 degrees downrange after 

the 90km altitude is included in this calculation. 

 

4.3 Comparison with Prior Models 

Prior work [1] identified a sinusoidal perturbation of the 

decay probability as a function of latitude, and implied a 

full symmetry of the effect.  On an average case, this is 

approximately true, but for any particular orbit, the 

present work now shows the decay to be statistically 

clustered more strongly on the approach to the equator, 

as explained above.  The physics of this has been 

discussed in [2], and there are significant ramifications 

for exceptionally low-dV intentional tactical de-orbit 

scenarios.  In natural decays which usually occur over an 

indeterminate, broad timescale, many of these subtleties 



 

largely average out, but still have influence on the entry 

statistics. 

 

In the current work, the representation has been shifted to 

a function of Argument of latitude, and not latitude, to 

achieve a more universal formulation, and to search for 

underlying physics.  The current work also recognizes 

and accommodates remaining asymmetries in statistical 

decays, and refines the model for ballistic number 

differences.  

 

The prior method of estimating Ec incorporated a 

rudimentary concentration factor based upon how long a 

circular orbit dwells over any given latitude.  Typically, 

this correction is applied symmetrically around the 

equator in an algorithm to adjust the latitude-averaged 

population bands in strips only a few tens of kilometres 

wide to account for this circular “dwell time”.  In the 

method described within this paper, this correction is not 

applied independently, substituting instead a localized 

concentration factor in tiny numeric integration steps in 

ArgLat, applied and integrated band by band.  Note that 

the prior method actually places stronger likelihood of 

decay at the latitude extremes, and minimizes the effect 

at the equator, in complete opposition to the effect 

explored here.  The effective weighting of population is 

evident in Fig. 14. 

 

To conclude the forward work described in the authors 

prior study [1], the influence of F(10.7) solar flux 

variations was shown in [2] to be negligible in the critical 

final eight orbits when the decay rate is geometrically 

increasing.  This is because the expansion of the 

atmosphere results from radiant energy deposited above 

the altitudes where the lowest density scale heights (and 

thus, maximum effect of perturbations) occur.   

Conversely, the global geomagnetic index (Kp) was 

shown to be the driving factor to disturb low altitude 

atmospheric density.  Geomagnetic index (updated every 

3 hours) determines the energy deposition of charged 

particles in the altitudes driving the final few orbits of 

decay.  From a statistical standpoint, the Kp variation is 

rapid and random enough to only add noise to the more 

consistent geodetic effects of the wall of air and of 

J2 perturbations.  That said, the effect of Kp is significant 

when attempting a drag-centric targeted decay on any 

particular day. 

 

5. CONCLUSIONS 

The statistical clustering of natural decays towards the 

equator has been reduced to an approximate parametric 

representation accounting for ballistic number, 

inclination, and gravitational perturbations, useful for 

parametric studies and potentially for insight into the 

physics.  Some of the corrections to prior practice can 

lead to localized Ec changes of up to 36% over the 

random-decay assumption, and net integrated Ec’s that 

are 18% or more different than prior practice would 

estimate.  There is strong evidence that a slight bias of 

natural decays occurs in the northern hemisphere due to 

the J3 gravitational effect. 

 However, the chaotic nature of some parameters 

indicates that best precision will come from a dedicated 

simulation of each decay’s ballistic number and orbit 

inclination (and especially, if known, the date and range 

of likely RAANs for the expected decay), rather than the 

inherently “fuzzy” approximation to the specific case in 

a set of global parameters that seek to optimally fit a 

broader range of cases.    

The clustering is most conveniently rendered as a 

function of the ArgLat, which can then be transformed to 

latitude.  With the local compression factor available, it 

is a minor adjustment to existing look-up tools to 

generate a statistically-weighted Ec that accounts not only 

for the inhomogeneity in the population density with 

latitude, but as well for the inhomogeneity in the 

distribution of decays around the orbit.  
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