A Proposed Byzantine Fault-Tolerant Voting Architecture Using Time-Triggered Ethernet

Andrew Loveless, NASA Johnson Space Center Christian Fidi, Stefan Wernitznigg, TTTech

SAE 2017 AeroTech Congress & Exhibition Fort Worth, TX 26 – 28 September 2017

COTS in Manned Spacecraft

- COTS technologies are attractive for use in human-rated spacecraft.
 - Reduces development and upgrade costs.
 - · Lowers the need for new design work.
 - Eliminates reliance on individual suppliers.
 - Leverages larger knowledge base.
 - Minimizes schedule risk.
- Problem? Hard to meet the high reliability and fault tolerance requirements.
 - E.g. 10⁻⁹ failures/hour in ultra-dependable systems.
 - E.g. Crit-1, "fly-through" fault tolerance.
 - Studies for Orion showed purely COTS designs would result in poor reliability and undue expense.

Often custom proprietary solutions are needed.

COTS in Manned Spacecraft (cont.)

- But the inclusion of COTS technologies is becoming more feasible.
 - Greater availability of rad-tolerant components.
 - TMR (Maxwell SCS750), lock-step (ARM R5).
 - Ability to realize fault-containment regions.
 - Growing number of suppliers.
- NASA's strategy for future spacecraft has heavily prioritized using COTS parts.
 - · Includes launchers, landers, etc.
- Multiple projects have explored realizing safety-critical systems using COTS.
 - Scalable Processor-Independent Design for Extended Reliability (SPIDER).
 - Heavy Lift Vehicle (HLV) Architecture Study.
 - Evolvable Mars Campaign (lander).

Fault Classifications

Fault Classifications (cont.)

SAE INTERNATIONAL Paper # 2017-01-2111 5/23

Fault Classifications (cont.)

SAE INTERNATIONAL Paper # 2017-01-2111 6/23

Fault Classifications (cont.)

- Manned spacecraft must tolerate Byzantine faults.
 - Especially for dynamic mission phases with short time to effect.
 - Higher number of "all-or-none" events (e.g. deploy parachutes).
 - Failure could result in loss of life.

Byzantine faults are often Fanot considered in satellites.

- Possibility is considered low enough to not warrant additional complexity.
- Impacts of faults are less severe (e.g. not taking a picture).

nissive

Byzantine Faults

Byzantine faults can disrupt consensus among redundant processors.

- E.g. on internal state information.
- E.g. on sensor data.
- E.g. on diagnosis of system faults.

Occur at rates much > 10⁻⁹ failures/hour.

- Slightly-off-specification (SOS) hardware.
- Stuck transmitter different receivers can interpret a marginal signal differently.
- Time base corruption messages received slightly too early or too late.
- Several architectural approaches for Byzantine-resilient systems.
 - Hierarchical e.g. SAFEbus, Orion VMCs.
 - Full exchange e.g. Draper FTMP, SPIDER.

A Typical Approach

"Channelized bus" approach is common in launchers.

- Each OBC can only access devices on its local bus.
- Uses full exchanges.
- Usually designed to be 1FT.

Examples:

X-38 CRV, Ares I, Delta IV.

Shortcomings?

Bus Channel A

PDU₁

RIU1

COM₁

PDU2

Bus

Channel

COM₂

PDU3

RIU2

Bus Channel

External time

reference

Shortcomings?

1. Requires separate CCDL for data exchange between OBCs.

External time

reference

Shortcomings?

- 1. Requires separate CCDL for data exchange between OBCs.
- 2. Often requires external timing hardware for synchronization.

External time

reference

Shortcomings?

- 1. Requires separate CCDL for data exchange between OBCs.
- 2. Often requires external timing hardware for synchronization.
- 3. Requires separate interstage to meet minimum number of FCRs.

External time

reference

Shortcomings?

- 1. Requires separate CCDL for data exchange between OBCs.
- 2. Often requires external timing hardware for synchronization.
- 3. Requires separate interstage to meet minimum number of FCRs.
- 4. Requires two rounds of data exchange between OBCs.

COM₁

PDU₂

Bus Channel

COM₂

PDU₃

PDU₁

Shortcomings?

- Requires separate CCDL for data exchange between OBCs.
- 2. Often requires external timing hardware for synchronization.
- 3. Requires separate interstage to meet minimum number of FCRs.
- 4. Requires two rounds of data exchange between OBCs.

5. Bandwidth limited.

Bus Channel A

PDU₁

RIU1

COM₁

PDU₂

Bus

Channel

COM₂

PDU₃

RIU2

Bus Channel

An Approach Using TTE

■ 1FT "switched voter" using TTE.

- Requires only 3 full processors.
- Requires 2-3 redundant switches.
- Devices can connect to OBCs directly or via TTE network.
- Assumes minimum number of SMs and CMs are present for sync.

■ TTE network used for data distribution and sync.

- Eliminates need for separate CCDL.
- Eliminates need for timing hardware.
- Bandwidth up to 1 Gbit/s.

Switches act as interstages.

- Messages reflected to/from the switches.
- Eliminates need for fourth processor.

Failure Assumptions

- End systems may be subject to Byzantine failures.
 - May send arbitrary messages.
 - May transmit at any point in time.
 - May send different messages to different switches.
- Switches are restricted to inconsistent omission failures.
 - May not create (nor modify to produce) a new "valid" message.
 - May drop or fail to receive an arbitrary number of messages.
 - May relay messages asymmetrically some receivers may not get data.
 - Acts as a "trusted sender".

Fault propagation from switches theoretically requires dual-correlated simultaneous faults.

 \rightarrow 10⁻⁶ ×10⁻⁶ = ~10⁻¹² failures/hour

Agreement on Local Data

Agreement on Local Data (cont.)

SW1 SW₂ SW3 K 5 5 K 5 5 Each switch K relays the data to all OBCs. TTE NIC TTE NIC TTE NIC OBC₁ OBC₂ **OBCN Bus Interface Bus Interface Bus Interface**

4 Each OBC votes the values sent from the switches.

Absent data is not included in the vote.

K, 5, 5 Final: 5

K, 5, 5 Final: 5 **K**, 5, 5 Final: 5 ! Vote could be implemented in TTE NIC or in software on the OBCs.

Agreement on External Data

Commanding

1 A fault causes OBC2 to send a bad value to SW3.

Commanding (cont.)

to all RIUs.

Commanding (cont.)

Happening Simultaneously ...

- 5 Each switch reflects the original data back to all OBCs.
- 6 Each OBC votes the redundant values from each OBC.

Absent data <u>is not</u> included in the vote.

Each OBC votes the results from Step 6 to diagnose faulty OBCs.

Absent data <u>is</u> included in the vote.

Questions?