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ABSTRACT 

This paper addresses the problem of building trust in the 

online prediction of a battery powered aircraft’s remaining 

flying time. A series of flight tests is described that make use 

of a small electric powered unmanned aerial vehicle (eUAV) 

to verify the performance of the remaining flying time 

prediction algorithm. The estimate of remaining flying time 

is used to activate an alarm when the predicted remaining 

time is two minutes. This notifies the pilot to transition to the 

landing phase of the flight. A second alarm is activated when 

the battery charge falls below a specified limit threshold. This 

threshold is the point at which the battery energy reserve 

would no longer safely support two repeated aborted landing 

attempts. During the test series, the motor system is operated 

with the same predefined timed airspeed profile for each test. 

To test the robustness of the prediction, half of the tests were 

performed with, and half were performed without, a 

simulated powertrain fault. The pilot remotely engages a 

resistor bank at a specified time during the test flight to 

simulate a partial powertrain fault. The flying time prediction 

system is agnostic of the pilot’s activation of the fault and 

must adapt to the vehicle’s state. The time at which the limit 

threshold on battery charge is reached is then used to measure 

the accuracy of the remaining flying time predictions. 

Accuracy requirements for the alarms are considered and the 

results discussed. 

1. INTRODUCTION 

Improvements in battery storage capacity have made it 

possible for general aviation vehicle manufacturers to 

consider electrically-powered solutions. The development of 

trust in battery remaining operating time estimates, however, 

is currently a significant obstacle when considering adoption 

of electrical propulsion systems in aircraft (Patterson, 

German & Moore, 2012). There are several ways in which 

predicting remaining operating time is more complicated for 

battery-powered vehicles than it is for vehicles with a 

conventionally-powered liquid-fueled combustion system. 

Unlike a liquid-fueled system, where the fuel tank’s volume 

remains unchanged over successive refueling procedures, a 

battery’s charge storage capacity will diminish over time. 

Another complicating feature of a battery system is the time-

varying relationship between battery output power and 

battery current draw. Whereas a conventional liquid 

combustion system uses an approximately constant amount 

of liquid fuel to produce a given motive power, the power 

from a battery system is equal to the product of battery 

voltage and current. Thus, as batteries are discharged, their 

voltages drop, and they will lose charge at a faster rate. 

Previous papers introduced several new tools for battery 

discharge prediction onboard a small electric aircraft. A 

series of ground tests similar to the flight tests used in this 
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work are described in Hogge, Bole, Vazquez, Celaya, Strom, 

Hill, Smalling & Quach (2015), and a battery equivalent 

circuit model used to simulate the battery state is described in 

Bole, Teubert, Quach, Hogge, Vazquez and Goebel (2013). 

The model’s battery capacity, internal resistance and other 

parameters were identified through two laboratory 

experiments that used a programmed load. In one experiment 

the batteries were slowly discharged. In the other experiment 

a repeated pulsed loading discharge was done. Current and 

voltage profiles logged during flights of a small electric 

airplane further tuned the battery model (Quach, Bole, 

Hogge, Vazquez, Daigle, Celaya, Weber & Goebel, 2013). 

The use of a flight plan with upper and lower uncertainty 

bounds on the required energy to complete the mission 

successfully was presented along with an approach to identify 

additional parasitic battery loads (Bole, Daigle & Gorospe, 

2014). This paper describes results of initial flight tests to 

assess the performance of an alarm that warns system 

operators when the estimated remaining flying time falls 

below a certain threshold. 

A large electric unmanned aerial vehicle (eUAV) was used in 

this study. The eUAV is a 33% sub-scale version of the Zivko 

Aeronautics Inc. Edge 540T tandem seat aerobatic aircraft as 

seen in Fig. 1. This vehicle has been actively used by 

researchers at NASA Langley Research Center to facilitate 

the rapid deployment and evaluation of Battery Health 

Management algorithms for electric aircraft since 2010. 

Examples of prior works using this platform are found in the 

following papers: (Saha, Koshimoto, Quach, Hogge, Strom, 

Hill, Vazquez & Goebel, 2011), (Hogge, Quach, Vazquez & 

Hill, 2011) and (Daigle, Saxena & Goebel, 2012).  

Remaining flying time prediction algorithms focus on the 

prediction of battery charge depletion over an eUAV flight. 

A lower-bound on the battery state of charge (SOC) that is 

considered safe for flight is set at 30% in this work. Flying 

the vehicle with batteries below 30% SOC is considered to be 

a high-risk mode of operation. Policy and guidelines are set 

according to the rulings and the engineering judgment of the 

NASA Langley UAS Operations Office and the NASA 

Langley Airworthiness and Safety Review Board. Such 

violations of operating guidelines are referred to here as a 

functional failure of the vehicle’s mission. The primary use 

case for remaining flying time predictions is to warn system 

operators when landing procedures must be initiated to avoid 

the aircraft motor batteries becoming too depleted. Ground 

based tests of a typical “missed approach” maneuver were 

made in a laboratory test facility. It was determined that 

initiating landing procedures when the eUAV batteries reach 

30% SOC would provide a sufficient energy buffer for at 

least two “missed approach” maneuvers without risk of 

exceeding battery current limits and the risk of excessive 

heating based upon ground tests. The predictive element to 

be tested in this work is an alarm that warns system operators 

when the powertrain batteries are within two minutes of 

reaching the 30% SOC threshold under normal operating 

conditions. This should allow the pilot sufficient time to 

prepare for landing without exceeding a moderate work load.  

The accuracy of onboard remaining flying time estimation 

algorithms was tested in this work. A series of controlled run-

to-functional-failure (charge depletion) flight experiments 

were conducted while a ground station operator monitored 

the battery health parameters. The vehicle under test was 

flown by a pilot experienced in flying large radio control 

models. The pilot followed a flight plan of timed constant 

airspeed cruise legs. 

The time it took for powertrain batteries to reach 30% SOC 

established a truth value for the functional failure time. 

Ground based tests established confidence in the battery SOC 

diagnostic where the powertrain batteries could be repeatedly 

run down to their lower-limits without risking loss of the 

vehicle (Hogge et al., 2015). 

The defined performance requirements were then verified by 

repeating ground based run-to-functional-failure tests a 

specified number of times previously reported in Hogge et al. 

(2015). The performance requirement testing procedure used 

here was originally introduced in Saxena, Roychoudhury, Lin 

and Goebel (2013). 

Section 2 of this paper provides an overview of the Edge 

540T powertrain. Algorithms used for onboard battery state 

estimation and remaining flying time predictions are 

summarized in Section 3. The process used to verify onboard 

remaining flying time predictions through structured flight 

tests and experimental results are described in Section 4. 

Finally, concluding remarks are given in Section 5. 

2. OVERVIEW OF EDGE 540T POWERTRAIN 

A wiring diagram for the vehicle powertrain is shown in Fig. 

2. The aircraft has two 3-phase tandem motors that are 

mechanically coupled to the aircraft propeller. Powertrain 

batteries are arranged in two pairs of series connected battery 

 
Figure 1. The Edge 540T Rapid Evaluation eUAV 
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packs. A switchable parasitic load Rp injects a fault to test the 

robustness of the remaining flying time estimation algorithms 

to changes in the battery loading demand. The other symbols 

in the figure identify the location of the current and voltage 

sensors. 

Remaining flying time predictions are generated by 

propagating a number of estimates of the battery charge 

forward. Forward propagation of the present battery state 

estimate is performed using an estimate of the future 

powertrain demand that will occur over the known flight 

plan. These future loads include propeller loads and parasitic 

loads. The prognostic tools make use of the known flight plan 

to inform future load predictions, but no prior information is 

assumed to be available regarding when a parasitic load may 

be injected. 

3. REMAINING FLYING TIME PREDICTION 

Battery discharge prediction is described here in terms of the 

following components; (i) online battery state estimation; (ii) 

prediction of future battery power demand as a function of an 

aircraft flight plan; (iii) online estimation of additional 

parasitic battery loads; and (iv) prediction of battery 

discharge over the future flight plan. The assumptions and 

algorithms used for each of these steps are summarized in this 

section. 

3.1. Online Battery State Estimation 

Our previous papers (Quach et al., 2013) and (Bole et al., 

2014), described the use of an equivalent circuit model and 

unscented Kalman filtering (UKF) (Julier & Uhlmann, 1997, 

2004) to update battery state estimates based on observations 

of current and voltage at the battery output terminals. This 

approach is also summarized here for convenience. The state 

space model of the battery has internal states that are affected 

by the current withdrawn and the voltage produced at the 

output terminals (the charge states of each of the capacitors 

in the equivalent circuit model). The battery state is modeled 

in a filtering framework that can be used to propagate the 

battery state in a structured way so as to account for variation 

in its available current and voltage based upon internal 

chemical reactions and past usage demand. A Kalman filter 

is a mathematical framework that captures many aspects of 

the state tracking problem in an optimal way. It provides a 

way to represent the uncertianty associated with the state of 

the battery and measurements in the presence of sensor noise. 

The unscented Kalman filter uses a mechanism, the 

unscented transform (UT) to approximate how the state’s 

mean and covariance transform through the nonlinear battery 

model by maintaining the mean and second moment of the 

state probability distributions before the nonlinearity and 

after the nonlinearity. The UT takes a random variable 𝐱 with 

mean �̅� and covariance 𝐏𝑥𝑥 that is related to a second random 

variable 𝐲  by some function 𝐲 =  𝐠(𝐱)  with mean �̅�  and 

covariance 𝐏𝑦𝑦  computed with high accuracy using a 

minimal set of weighted samples called sigma points (Julier 

& Uhlmann, 1997). This special set of points serves as a 

proxy for the actual battery state probability distribution 

transformed by the nonlinear battery model and does so more 

efficiently than other methods. The propagated sigma points 

are used by the UKF to estimate the next battery state from 

the state population mean and covariance. See Bole et al, 

2014 and Daigle et al, 2012 for further information. 

Figure 3 shows an equivalent circuit battery model that is 

used to represent battery output voltage dynamics as a 

function of the battery current control input. The basic model 

is based on Thevenin’s theorem to model the current and 

voltage profile of the battery as a black box input-output 

device. We make the first-approximation assumption that the 

battery state can match a linear electrical network with 

voltage and current sources and only resistances. It is similar 

to models presented in Chen and Rincon-Mora (2006), and 

Ceralo (2000). This battery model contains six electrical 

components that are tuned to recreate the observed current-

voltage dynamics of the Edge 540T battery packs. The bulk 

of the battery charge is assumed to be stored in the capacitor 

𝐶𝑏. The (𝑅𝑠, 𝐶𝑠) and (𝑅𝑐𝑝, 𝐶𝑐𝑝) circuit element pairs are used 

to simulate standard battery phenomenon, such as internal 

resistance drops and hysteresis effects (Saha, Quach & 

 
Figure 3. Lithium-Ion battery equivalent circuit model 

 

 
Figure 2. Schematic of electric Powertrain. 
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Goebel, 2012). The ratio of a battery’s charge at a given 

instant to its maximum charge storage capacity is typically 

referred to as the state of charge (SOC). Battery SOC is 

defined here as: 

max

max1
C

qq
SOC b

   (1) 

where qb represents the charge stored in capacitor bC , 𝑞𝑚𝑎𝑥  

is the maximum charge that the battery can hold, and maxC  

is the maximum charge that can be drawn from the battery 

in practice. Here, maxC will always be less than 𝑞𝑚𝑎𝑥 , due to 

electrochemical side-reactions that make some portion of a 

battery’s charge carriers unavailable. As the battery ages 

more of its internal charge will become unavailable because 

of these side reactions. The maxC  parameter must be refitted 

periodically to capture the aging effect to maintain 

prediction accuracy. In our experience each battery must be 

re-characterized after ten recharge cycles with a slow 

current discharge lab experiment to capture changes in the 

maxC  and the  𝑅𝑠  parameters for each motor battery.  

 

Battery input-output dynamics are known to change as a 

function of internal battery charge. Some of the parameters 

in the equivalent circuit model are parameterized as 

functions of battery state of charge (SOC) (Zhang & Chow, 

2010). The following SOC parameterizations were used for 

the bC , 𝐶𝑐𝑝, and 𝑅𝑐𝑝 parameters in Fig. 3.  

C𝑏 = C𝐶𝑏0 +  C𝐶𝑏1 ∙ SOC + C𝐶𝑏2 ∙ SOC2 +  C𝐶𝑏3  ∙ SOC3 (2) 

C𝑐𝑝 = C𝑐𝑝0 + C𝑐𝑝1  ∙ exp (C𝑐𝑝2(𝑆𝑂𝐶))       (3) 

R𝑐𝑝 = R𝑐𝑝0 + R𝑐𝑝1  ∙ exp (R𝑐𝑝2(𝑆𝑂𝐶))       (4) 

the coefficients in the parameterized models for Cb, Ccp, and 

Rcp must be tuned based on observed current and voltage 

battery data over a range of battery SOC values. 

 

Two laboratory experiments were used to fit all of the 

parameters in the equivalent circuit model to the lithium 

polymer packs used on the Edge-540T. In one test a battery 

is discharged using a series of current pulses. This 

experiment exposes voltage dynamics that must be fit by the 

𝑅𝑠, 𝐶𝑠 and 𝑅𝑐𝑝, 𝐶𝑐𝑝  parameters in the equivalent circuit 

model. A multidimensional search method such as the 

downhill simplex method of Nelder-Mead is used to fit a 

model to the recorded data (Nelder & Mead, 1965). These 

identified parameters are associated with a selected battery 

from a batch of batteries of a given chemical formulation. 

These parameters are assumed to be unvaried across all 

similar battery packs of a given batch. Any differences in 

individual batteries due to manufacturing variation is 

accounted for by adaptation of the battery charge capacity 

term maxC  of the bC  capacitor in the equivalent circuit 

model. In a second test, maxC is identified by running a slow 

discharge lab experiment for each battery pack as shown in 

Fig. 4. During this low current discharge test, the voltage 

across the bC  capacitor plays a dominate role. Thus, this 

experiment allows the maxC  parameter in the equivalent 

circuit model to be fitted in isolation, also through use of the 

Nelder-Mead simplex method (Bole et al., 2014). The 

equivalent circuit battery model and the UKF state 

estimation are assumed to do an adequate job of tracking the 

total charge within the battery over a flight usage profile. 

3.2. Prediction of Motor Power Demand as a Function of 

Aircraft Flight Plan 

After estimating battery state, the next step towards 

predicting remaining flying time is the estimation of motor 

power demand over the remainder of a given flight plan. The 

aircraft’s flight plan is assumed here to be specified in 

advance in terms of a fixed set of segments. Each segment 

includes a desired vehicle airspeed along with an expected 

duration or other ending condition. An example flight plan is 

defined here as: 

1. Takeoff and climb to 200 m:  
Set airspeed to 25 m/s, hold for 1.2 min 

2. Maintain altitude, maintain airspeed:  

Set airspeed to 23 m/s, hold for 3.0 min 

3. Maintain altitude, increase airspeed:  

Set airspeed to 25 m/s, hold for 2.0 min 

4. Maintain altitude, decrease airspeed:  

Set airspeed to 20 m/s, hold for 2.0 min 

5. Maintain altitude, increase airspeed:  

Set airspeed to 23 m/s, hold until landing  

is called by monitors on the ground. 

6. Remote control landing: airspeed and  

duration may vary widely depending on 

pilot and environmental conditions.  

The energy required for an aircraft to fly the remainder of a 

given flight plan will necessarily be uncertain due to variation 

in pilot behavior and environmental conditions. A minimum, 

maximum, and median motor power demand for each

Figure 4. Low-current discharge (2A) lab experiment. 
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remaining segment of the flight plan is used in this work to 

represent prediction uncertainty. These three power estimates 

can then be integrated to form predictions of the minimum, 

maximum, and median motor energy consumption over the 

remaining flight plan.  

Figure 5 shows sample predictions of future motor power and 

energy demand over segments 1-5 of the given flight plan. 

Here, segment 5 of the flight plan is shown to extend out 

indefinitely (20 minutes), representing the intent to continue 

flying until the ground team calls for a landing. The median 

motor power demands are estimated for each flight plan 

segment using a previously developed model, discussed in 

Bole et al. (2013) and in Bole et al. (2014). A plus or minus 

20% empirically derived error margin around the median 

motor power demand estimate was used to generate the 

minimum and maximum predictions shown in Fig. 5 (Saha et 

al., 2012). 

A constraint on the minimum battery SOC required for safely 

landing the aircraft is considered to limit the aircraft’s 

maximum safe flying time. For safety reasons and for 

manufacturer’s recommendation to optimize battery life, a 

battery should not be depleted to a very low SOC threshold 

value. This minimum SOC threshold is considered here to be 

30%. Ground static testing of the integrated powertrain and 

airframe verified that sufficient energy is present to perform 

two complete “missed approach” landing maneuvers when 

the SOC is 30%. The ground static tests used the battery 

voltage and current profiles recorded during typical takeoffs, 

circling cruise and landing maneuvers. Prediction of 

available flying time remaining can thus be considered in this 

example as the time until the battery SOC reaches 30%, 

assuming that a landing will not be called until the last 

possible moment. A triplet of minimum, maximum, and 

median remaining flying time estimates will ultimately be 

produced by estimating when the battery SOC threshold 

would be reached for each of the minimum, maximum, and 

median motor power profiles. 

3.3. Online Estimation of Additional Parasitic Battery 

Loads from an Injected Powertrain Fault 

Parasitic demands on the battery system that cannot be known 

in advance are simulated with a resistive load that may be 

injected in parallel with the aircraft batteries at any time 

during flight. Let 𝑅𝑝 be the unknown parasitic load. The 

parasitic current, 𝑖𝑝  ,is the difference in the current 𝑖 

measured at the battery and the current 𝑖𝑚 measured at the 

motor controller. The locations of the battery current sensors 

𝑖𝐵1 and 𝑖𝐵2 for battery current 𝑖 and the motor current sensors 

𝑖𝑀1  and 𝑖𝑀2  for motor current 𝑖𝑚  are found in Fig. 2. A 

residual, defined as the difference between an observed signal 

and its model-predicted value, can be defined for the parasitic 

fault detection based on the measured values of 𝑖 and 𝑖𝑚. In 

the nominal case, our model for 𝑖  is 𝑖 = 𝑖𝑚 . We can then 

define a residual, 𝑟𝑖, as 𝑟𝑖 = 𝑖∗ − 𝑖𝑚
∗ , where the ∗superscript 

indicates a measured value. Nominally, 𝑟𝑖 = 0,and we can 

define a simple threshold-based fault detector that triggers 

when 𝑟𝑖 > 0 for some threshold T. Once a fault is detected, 

we can estimate the parasitic current at time k using 

 𝑖�̂�(𝑘) = 𝑖∗(𝑘) − 𝑖𝑚
∗ (𝑘).   (5) 

The parasitic resistance can then be estimated with Ohm’s 

Law 

 

Figure 5. Uncertain predictions of motor power and energy draw over the sample flight plan 
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𝑅�̂�(𝑘) =
𝑉𝑏

∗(𝑘)

𝑖�̂�
.   (6) 

The estimate 𝑅�̂�(k) will be noisy, since it is computed based 

on measured values. Assuming that Rp is constant, we take 

the median of all computed values to provide a robust 

estimate of Rp, i.e., 

𝑅𝑝(𝑘) = median({𝑅�̂�(𝑘𝑗) : 𝑘𝑑 ≥ 𝑘𝑗 ≥ k }),  (7) 

where 𝑘𝑑is the time of fault detection (and the time that 

fault identification begins). This online filtering routine is 

described further in Bole et al. (2014). A battery current 

profile and parasitic load estimates from a sample aircraft 

data set is shown in Fig. 6. Here, a 5. 5 Ω parasitic load is 

injected in parallel with the aircraft batteries at 5 minutes 

into the flight for half of the test series. At the time the load 

is injected, the battery current becomes notably higher than 

the motor current. The estimated parasitic load then rapidly 

converges to approximately 5.5 Ω. Online parasitic load 

estimates are directly incorporated into the battery discharge 

predictions. This results in an immediate shift in the battery 

discharge predictions each time the parasitic load estimate is 

updated. 

3.4. Prediction of Battery Discharge Over a Flight Plan 

The Prognostic Horizon metric defined by Saxena, Celaya, 

Saha, Saha and Goebel (2010) is the difference in the time 

when the prediction meets error criteria and the time when 

the event predicted occurs. It is represented by the symbol λ. 

The accuracy of that prediction falling within a specified 

error margin is denoted by the parameter α. The α margin 

limits are set according to the risk of early prediction and 

according to the risk of late prediction of the remaining flying 

time. In our case, the risk posed by late prediction of the time 

of zero remaining flying time is risk to the vehicle 

successfully landing. The risk posed by an excessively early 

prediction is the opportunity cost posed by landing too early 

and any additional missions needed to accomplish what was

 

missed by landing early. “The desired level of accuracy with 

respect to the (remaining flying time) ground truth is 

specified as ±α bounds”. The tuning of the estimation 

algorithm biases the prediction of remaining flying time to 

regard overestimation as a hazardous mode of operation to be 

avoided (Saxena et al., 2013). Ground Truth from a set of test 

flights was used to determine the actual remaining flying time 

on average, and the 𝛼+ margin set to be the same (0%). Since 

the typical prediction accuracy fell between ±20% error, the 

early prediction bound 𝛼−  was set to 40% to bias the 

acceptable predictions to be early rather than late. This is 

reflected in the 𝛼+  limit bound having a value of 0% 

indicating no tolerance for overestimation of remaining 

flying time. The 𝛼−  limit bound for underestimation of 

remaining flying time is set to 40% below the ground truth 

value. 

Figure 7 shows predictions of remaining flying time for the 

example run. The dark line in Fig. 7 denoted in the legend as 

𝛼+ indicates the true flying time remaining. The dashed line 

in Fig. 7 represents the median prediction of flying time 

remaining. The vertical extent of the histograms represents 

the interval between the minimum, median and maximum 

remaining flying time predictions. Here, the predicted 

remaining flying time is found by subtracting the present time 

from the time at which the lowest battery SOC crosses the 

30% threshold when simulated into the future using the 

energy demand implied by the projected flight plan. The 

predictions  slightly underestimate remaining flying time 

until the parasitic load is detected at about 5 minutes into the 

flight. After the parasitic load is detected the remaining flying 

time predictions are immediately shifted down and increase 

the degree of underestimation. 

Figure 6. Sample motor and battery current profiles (top), 

along with parasitic load estimates (bottom) 

 

Figure 7. Histograms of predictions of flying time 

remaining within α limit boundaries 
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4. FLIGHT TEST VERIFICATION OF REMAINING FLYING 

TIME PREDICTION 

A description of the flight test experiment, followed by the 

performance requirements, the β metric, the SOC ground 

truth, SOC and remaining flying time results are found in this 

section. 

The flight test verification of the Edge 540T hardware and 

software was initiated by loading the Cmax and Rs parameters 

for the batteries used when the onboard battery management 

software was started. The propulsion batteries were 

previously characterized by a slow discharge laboratory 

procedure, and then fitted to the equivalent circuit model 

using the Nelder-Mead method. More details are found in 

Bole et al., (2014). 

4.1. Description of the Flight Experiment 

A flight plan of timed airspeed segments at a fixed altitude 

(described in section 3.2) was also loaded into the onboard 

software. Only manual (stick-to-surface) pilot control 

commands were used to perform the test flights for this 

experiment. Aircraft propeller RPM, estimated battery SOC, 

and predictions of remaining flying time were displayed on a 

ground station display for the system operators in near real-

time. The motor throttle was controlled by the pilot to attain 

each requested flight plan airspeed target. A second ground 

station operator called out the actual airspeed achieved and 

altitude as feedback to the pilot. The pilot adjusted the 

vehicle’s airspeed to maintain the flight plan airspeed target 

values for the flight plan segment time duration as described 

in Section 3.2. These airspeed targets were all planned for 

constant altitude flight plan segments. An “Amber Warning” 

alarm was raised when the remaining flying time prediction 

came within two minutes of the 30% SOC landing limit 

threshold for the weakest battery. At the 2-minute “Amber 

Warning”, the pilot was instructed to descend to landing 

approach pattern altitude and to be ready to begin the landing 

approach when the ground station displayed the “red alert”. 

This indicated the lowest battery was at or below the 30% 

SOC limit threshold or that a low voltage (17.0V) safety limit 

threshold had been breached. The amber and red alerts are 

depicted in Fig. 8. Once the “red alert” threshold alarm was 

raised, an “End Research, Load Off” advisory status call was 

made to the pilot. The pilot then began the landing approach 

sequence and disarmed the parasitic load resistor bank. This 

precaution was necessary because the resistor bank generates 

sufficient heat to be a fire risk after several minutes without 

the cooling from the relative air movement of flight. Once 

landed, the motor was stopped and the vehicle was retrieved 

by ground personnel to prevent any additional battery 

consumption by ground taxiing. The battery data logging was 

continued for an additional twenty minutes after landing to 

document the recovery of the battery voltage that had been 

depressed due to the power demand to sustain flight. This 

battery voltage at near-equilibrium was used to compute an 

empirical approximation of the ending battery SOC based 

upon laboratory tests done at near-equilibrium (Bole et al., 

2013). The data logging during the experimental flights was 

performed by the data system described in (Hogge et al., 

2011). 

4.2. Performance Requirements 

The specification of performance requirements for 

verification of the remaining flying time predictions is 

described next. The predictive element tested is an alarm that 

warns system operators when the powertrain batteries are two 

minutes from reaching 30% SOC under normal operations. 

Accuracy requirements for the two minute warning were 

specified as: 

1. The prognostic algorithm shall raise an alarm no later 

than two minutes before the lowest battery SOC estimate 

falls below 30% for at least 90% of verification trial 

runs. 

2. The prognostic algorithm shall raise an alarm no earlier 

than three minutes before the lowest battery SOC 

estimate falls below 30% for at least 90% of verification 

trial runs. 

3. There should be enough charge present in the batteries 

so as to complete at least 2 go-arounds in case of a 

missed landing. 

Here, the two minute alarm is biased to occur early rather 

than late since the landing becomes unsafe if not enough 

battery charge is present. The early alarm prediction bound 

limits the “opportunity cost” of unnecessarily denied flying 

time. 

4. Required confidence to specify when prognosis is 

sufficiently good – β > 50% 

An additional requirement for the flying time prediction 

verification specifies maximum bounds on the ending SOC 

estimation error: 

5. The ending SOC estimation error as identified from the 

resting battery voltage must be less than 5% for at least 

90% of verification trial runs. 

4.3. β Metric of Prediction Performance 

Prognostic algorithms inherently contain uncertainties and 

often estimate the uncertainties in the predicted quantity. 

These estimates can be used to infer the variability (spread) 

in predictions. Figure 9 after Saxena et al. (2012) illustrates 

the β metric of the fraction of the probability mass falling 

between the two α bounds of acceptance. The higher the 

value of β, the higher the confidence that a prediction will 

remain within the two α bounds of acceptance. In Fig. 7 the 
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portion enclosed between the α limits is the β percentage of 

the probability density function (PDF) contained between the 

limits. In this example β is 86%, or 86% of the PDF is within 

the α limits. The remaining portion outside the limits is 

referred to as 𝛽+. A threshold criteria of 50% for the β metric 

for the prediction to be acceptable for decision making was 

proposed by Saxena, Roychoudhury, Celaya, Saha, Saha, and 

Goebel (2012). We use 50% for this test series.  

Referring back to Fig. 7 the β values based upon histogram 

location before the parasitic load is engaged at time of 5 

minutes are somewhat more than 50%. After the 5.0 minute 

time index, the histograms show that all the β density is 

contained within the α-bounds. The lower 50% bound on β 
works in conjunction with the α-bounds to specify 

performance constraints. As the α-bounds get narrower (i.e. 

less error tolerated) the probability density functions are 

required to contain the spread in order to satisfy the same β 
criterion. Figure 8 shows how the α error bounds narrow and 

the β histograms narrow as the 30% SOC threshold is 

approached. In the example shown here, the two-minute 

warning β histograms are all within the α bound limits 

implying a β of 100%. Referring back to Fig. 7 the prognostic 

horizon is somewhere before the beginning of the plot for the 

sample flight since even when the upper limit of the first few 

vertical bars is past the 𝛼+ limit, the included portion is still 

greater than 50%. Figure 10 shows a cumulative plot of all 

the β values from 15 flight tests with the 50% pass/fail 

threshold dashed line. The flight that had a late prediction of 

the two-minute warning coincided with a β of less than 50%. 

In this run, the airspeed exceeded the target airspeed by as 

much as 17% due to the pilot’s compensation for unsteady 

winds aloft and the desire to provide a larger margin above 

aircraft stall speed. The flight plan airspeed values were also 

not adjusted for this change in keeping with the experiment 

plan. An operator could want a β-derived status indicator that 

would indicate if the flying time predictions are reliable. 

However, since the β metric is calculated from the α bounds 

which is in turn based upon the ground truth time of the 

lowest battery crossing the 30% SOC threshold limit, and the 

ground truth SOC is calculated from a measurement taken 15 

minutes after the landing, it is not available online and can 

only be computed offline well after the flight.  

4.4. SOC Ground Truth 

The definition of requirements 1, 2, and 4 stated previously 

in section 4.2 use the term “SOC estimate”. The UKF state 

estimation algorithm described earlier, is relied upon to 

provide online estimates of battery SOC from measured 

battery current and voltages. A more direct measurement of 

battery SOC can be obtained after the experimental flight is 

complete by allowing the batteries to rest until the terminal 

voltage settles to a constant value. There is a known 

relationship between the equilibrium battery voltage and the 

SOC that can then be used to compute the ending SOC for all

 

 
Figure 9. β Probability Density Function area within α 

acceptance limits. 

 

Figure 8. Advisory alarms with β PDF histograms of 

predictions 

 

 

Figure 10. Passing β values for 15 flights 
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the powertrain batteries. The difference between the 

estimated battery SOC at the end of each flight and the 

measurement of SOC that is computed from the resting 

battery voltage is referred to here as the ending SOC 

estimation error. The allowed estimation error is specified in 

requirement five. 

4.5. SOC Performance Results 

Figure 11 shows box plots of the SOC estimation error 

measured over the 15 verification flights performed. Because 

each verification flight requires 4 powertrain batteries, 60 

measurements of the SOC estimation error are produced. 

Eleven of these measurements fall outside of the 5% error 

tolerance allowed, thus only 82% of the trials pass. 

Requirement five that 90% of the trials stay within the 5% 

error benchmark was not satisfied. A goal of the flight test 

series was to use batteries with the same chemical 

formulation. However, there were not enough batteries with 

this formulation to support more than two flights a day. These  

batteries had identification numbers below 50. A few were of 

a different formulation with identification numbers 50 and 

above and were used for any third or fourth flights in a day. 

Change in the manufacturing batch leads to differences in 

chemical composition variability and manufacturing 

variability which is not completely modeled. Hence we 

observe some variation in the results discussed in this work. 

The batteries with the different formulation were 

characterized using the same method, and they seem to 

exhibit a similar range of variation as the majority batteries. 

This can be seen in the left half of Fig. 11. Since there are so 

few of them, the box plot quartiles collapse to the mean value 

for them. 

Figure 12 shows that that the SOC of the lowest battery on 

the earliest flights were discharged well below the 30% 

target. The post flight SOC estimate approached the SOC 

30% target as more flights were accomplished. This may be

 

due to pilot acclimatization and a revised procedure 

introduced beginning verification flight number 4. The 

procedure change consisted of a preparatory descent to 

approach pattern altitude upon the two-minute warning to 

better position the airplane for landing before the 30% SOC 

“End Research, Load Off” call to land was given.  

4.6. Performance of Predicted Flying Time Warning 

Figure 13 shows the difference between the time at which the 

two minutes remaining alarm was raised and the time at 

which the lowest battery SOC estimate crosses 30% for 15 

verification flights, which includes flights that were 

performed with and without parasitic load injection. The 

vertical lines in the figure indicate the bounds on acceptable 

alarm accuracy. Looking at late prediction requirement 1, 

flight six’s prediction of the two-minute warning was 0.2 

min. late according to ground truth. One out of the 15 flights 

was predicted late or 93% not predicted late thus satisfying 

requirement one. Flight six also violated the β > 50% of 

requirement 4 and would not be considered reliable to inform 

decision making. One of the 15 flights was predicted more 

than three minutes early (flight 10). Since 93% were not 

predicted earlier than 3 minutes, requirement two was 

satisfied. Previous laboratory test chamber captive thrust tests 

discussed in Hogge et al., 2015, and Hogge, Bole, Vazquez, 

Kulkarni, Strom, Hill, Smalling and Quach, 2017 would 

cause the user to expect better performance. Some factors to 

consider between ground and flight testing are variation in 

the pilot’s response to calm or windy environmental 

conditions. Pilot flying preference and “comfort level” varied 

more widely than was expected based upon experience with 

earlier parameter tuning flights with different pilots. Cool or 

warm days affect the battery initial temperature and 

parameters more than in the laboratory. Dry or humid days 

affect the air density “density altitude” and increase the 

 

Figure 11. Box plots of the SOC estimation error measured 

over 15 verification flights that each use 4 batteries 

 

 

Figure 12.Lowest SOC from resting voltage recovery for 

15 flights 
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energy demand necessary to maintain altitude. These sources 

of variation are not present in the laboratory tests.  

Another question to be considered is how well do the 

repeated trials of the two-minute alarm indicate what we 

should expect for future flights? An Anderson-Darling test 

was run on the 15-flight data set of the two-minute warnings 

to test if the alarm times came from a Gaussian distribution. 

The test indicated that the alarm time predictions came from 

a normal distribution at the 5% significance level. Since the 

distribution is normal, a confidence interval test would be 

valid. The standard error of estimate of the two-minute alarm 

time given the sample mean is shown in Fig. 14. This figure 

repeats Fig. 13 except that the statistical measures are 

emphasized. The sample mean of the fifteen flights shows 2.6 

minutes as the actual amber warning time as opposed to the 

specified range of 2 to 3 minutes for the 2-minute flying time 

remaining. The 95% confidence limits come from 

adding/subtracting two “standard error of estimate” values

 

to/from the mean (Spiegel & Stephens, 1998). The numerical 

value for the standard error of estimate was 0.39 for this data 

set. The 95% confidence limits are biased to the early 

prediction side of the 2 to 3 minute alarm specification shown 

in the red dashed lines. This is to trade the opportunity cost 

of missed possible flying time against not having enough 

energy to repeat failed landing attempts. This trade-off was 

made empirically at the end of the series of flight tests since 

the initial tuning was based on captive-flight ground tests.  

5. CONCLUSION 

Flight tests to verify the performance of remaining flying 

time predictions for a small electric aircraft were described. 

Continued flight after aircraft battery packs have reached 

30% SOC was defined as high risk operation for our 

experimental vehicle, and are to be avoided if possible. The 

flight tests did not pass the 5% ending SOC estimation error 

requirement but were not far from meeting that requirement 

(82% of 90%). The requirement that the two-minute warning 

alarm be satisfied 90% of the time was satisfied 93% of the 

time. Environmental and pilot variation are possible 

confounding factors and need to be better accounted for with 

an improved method. Repeatable testing such as that 

described in this paper is necessary to effectively debug, tune, 

and build trust in prognostic algorithms prior to deployment 

in mission critical applications. 
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