Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

Neal M. Chaderjian
NASA Ames Research Center
Moffett Field, CA 94035

Presented at the
AHS International 73 ${ }^{\text {rd }}$ Annual Forum
Fort Worth, TX, USA
May 9-11, 2017

Motivation

- Average CFD FM accuracy was 2.4% (2009)
* It was believed that poor rotor wake resolution was responsible
* This lead to research in off-body (OB) adaptive mesh refinement (AMR)
- In 2011 (Chaderjian/Buning): CFD FM predicted with 0.2\% for V22 TRAM
* Vortex wake resolution had no effect ($10 \%, 5 \%$, and $2.5 \% \mathrm{c}_{\text {tip }}$)
* Rather, it was crucial to
- Adequately resolve the formation of the blade-tip vortex
\triangleleft Fine surface mesh near rotor tip and high-order spatial accuracy
- Maintain a physically realistic turbulent eddy viscosity in the vortex wake
\checkmark Detached eddy simulation (DES) turbulent length scale

Coarse Wake-Grid Resolution $\Delta S=10 \% c_{\text {tip }}$

Fine Wake-Grid Resolution $\Delta \mathrm{S}=2.5 \% \mathrm{c}_{\text {tip }}$

Motivation

- In 2012 (Chaderjian/Ahmad): UH-60A rotor in hover and forward flight (C8534)
* Airloads did not depend on rotor wake resolution
- Both studies did not involve significant blade/wake interaction

Coarse Wake-Grid
Resolution
$\Delta S=10 \% \mathrm{c}_{\text {tip }}$

Fine Wake-Grid
Resolution
$\Delta \mathrm{S}=2.5 \% \mathrm{c}_{\text {tip }}$

Objective

- An important question remains
* How are the forward-flight CFD airloads affected by rotor-wake resolution when there is significant blade/wake interaction?
* Practical engineering issue: High resolution wakes are too expensive for most engineering applications
- Two examples for a UH-60A rotor in forward flight are examined
* Blade vortex interaction (BVI), flight-test counter C8513
* Dynamic stall with BVI, flight-test counter C9017
- Also examine 2D dynamic stall
* Discuss similarities and differences in 2D and 3D dynamic stall

Outline

- Flight-Test Data
- Numerical Approach
- Numerical Results
* BVI - UH-60A (C8513)
* Dynamic stall
- 2D example
- 3D UH-60A (C9017)
- Concluding Remarks

Flight-Test Data/CFD Validation

- Joint NASA/U.S. Army UH-60A Airloads Database (1993/1994)
* Airloads at various radial locations along the rotor blade
- Bousman's qualitative analysis of dynamic stall (AHS Journal/Oct. 1998)
* He examined the time history of blade pressures to judge when
- Moment stall: Formation of dynamic stall vortex at blade leading edge
- Lift stall: When dynamic stall vortex passes over blade trailing edge
- Flow separation at blade trailing edge

Numerical Approach
(Near-Body and Off-Body Grids)

Cartesian Off-Body Grids

Rotor-Blade Grids
Blade Tip

- Rotor blades/Hub use O-mesh topology
- Off-body grids use Cartesian grids with adaptive mesh refinement (AMR)
- Rotor wake captured only with Level-1 grids (10\%, 5\%, and 2.5\%c ctip)
- No interpolation throughout the resolved rotor wake of interest
* Has same resolution and coincident overlaping grid points

Outline

- Flight-Test Data
- Numerical Approach
- Numerical Results
* BVI - UH-60A (C8513)
* Dynamic stall
- 2D example
- 3D UH-60A (C9017)
- Concluding Remarks

BVI Flight Counter C8534
 NASA'S OVERFLOW Navier-Stokes CFD Code

\mathbf{M}_{∞}	$\mathbf{M}_{\text {tip }}$	$\boldsymbol{\mu}$	Re $_{\text {tip }}$	$\boldsymbol{\alpha}_{\text {shaft }}$ deg	$\boldsymbol{\beta}$, deg	$\mathbf{C}_{\mathbf{T}}$
0.0982	0.643	0.153	7.15×10^{6}	0.75	7.71	0.00675

Effect of Wake-Grid Resolution on Airloads BVI Flight Counter C8534

- Good overall agreement with flight-test data
- OB resolution has very little effect on airloads!

Outline

- Flight-Test Data
- Numerical Approach
- Numerical Results
* BVI - UH-60A (C8513)
* Dynamic stall
- 2D example
- 3D UH-60A (C9017)
- Concluding Remarks

CFD Animation of Two-Dimensional Dynamic Stall

$$
\alpha=10^{\circ}+10^{\circ} \sin \left(2 k t-\frac{\pi}{2}\right), k=\frac{\omega c}{2 V_{\infty}}=0.1
$$

20.000
15.000
10.000
5.000
0.000

|vort|

How Most People
Think of Dynamic Stall

- Vortex forming at airfoil leading edge - (moment stall)
- Vortex passing airfoil trailing edge - (lift stall)
- Reversed flow
* As vortex forms at leading edge
* As vortex passes trailing edge
- Three stall events, each smaller than the previous one

Two-Dimensional Dynamic Stall

$$
\alpha=10^{\circ}+10^{\circ} \sin \left(2 k t-\frac{\pi}{2}\right), k=\frac{\omega c}{2 V_{\infty}}=0.1
$$

- Force/moment time-history indicates 3 stall events
- 2-3 typical
* 2D characteristics identified experimentally (McCroskey et al., 1976)
* Many feel 2D captures the essential elements (Tan \& Carr, 1996)
* It will be shown that 2D does miss some important 3D dynamic stall characteristics

Outline

- Flight-Test Data
- Numerical Approach
- Numerical Results
* BVI - UH-60A (C8513)
* Dynamic stall
- 2D example
- 3D UH-60A (C9017)
- Concluding Remarks

Effect of Wake-Grid Resolution on Airloads

Dynamic Stall Flight Counter C8534

- Good overall agreement with flight-test data
- More high-frequency content, but little effect on airloads!
- This suggests $\Delta S=10 \% \mathrm{c}_{\text {tip }}$ adequate for engineering design airloads

Closeup View of 3D Dynamic Stall With BVI

- Inboard and outboard separation, with attached flow in between
- 3D Vortex rings emitted due to Helmholtz vortex theorem
* Different from 2D Vortex lift-off
- Vortex path altered due to separation
* Can effect aeromechanics of following rotor blades
 Closeup View of Dynamic Stall

- Tip vortices from Blades 2 and 3 do not disrupt the flow on Blade 1

Blade 1 at $\psi=180^{\circ}$

Nomenclature

- Flow separates outboard of vortex, remains attached inboard of vortex
- Separation moves with the vortices
- Tip vortices from Blades 2 and 3 appear to trigger dynamic stall

Blade 1 at $\psi=225^{\circ}$

Rotating Blackhawk Rotor Blade

But What Happens When a Vortex Passes Over the Blade?

Velocity Vectors Relative to Rotor Blade

Closeup View of a Single Blade
(Same Blade Motion and Aeroelastic Deflections)

- No outboard separation in the $3^{\text {rd }}$ quadrant!
* This confirms vortex-induced dynamic stall
- Inboard separation due to freestream reversed flow
- Separation along entire blade in $4^{\text {th }}$ quadrant, due to blade incidence

BVI-Induced Dynamic Stall (C9017)

2D Wind-Tunnel Experiment

- First observed experimentally for a 2D airfoil
* $38^{\text {th }}$ European Rotorcraft Forum: Zanotti, Gilbertini and Mencarelli
* Similar explanation of how a vortex triggers dynamic stall

First time observed for an actual helicopter rotor

NHSA Comparison of CFD With Qualitative Flight-Test Analysis

(Dynamic Stall, C9017)

- Polar plot
* Bousman's moment stall, lift stall, and trailing-edge separation
* There are two stall events
* CFD Outboard and inboard vortices
- Outboard vortex initially moves inboard then outboard
* Tracks stall closely up to 270°, where it drops below the blade and has little influence
* Inboard vortex only moves inboard
- Flight test does not indicate inboard reversed flow
* It must be there, but loads are light and pressure data sparse (Bousman)

Time-Dependent Flow Visualization of Dynamic Stall

 Blackhawk Helicopter Rotor in Forward Flight

Conclusions

- Good overall comparison between CFD airloads and flight-test measurements for BVI and dynamic stall cases
- wake grid resolutions were $\Delta \mathrm{S}=10 \%, 5 \%$, and $2.5 \% \mathrm{C}_{\text {tip }}$
- Refining rotor wakes beyond engineering resolution ($\Delta \mathrm{S}=10 \% \mathrm{C}_{\text {tip }}$) did not significantly affect the predicted airloads, even with blade/wake interaction
* This suggests that airloads engineers may use the coarser wake-grid resolution ($\Delta \mathrm{S}=10 \% \mathrm{c}_{\text {tip }}$) for hover and forward fight simulations provided
- The CFD tip-vortex is accurately formed using a combination of fine surface mesh at the blade tip and high-order spatial accuracy
- Use of a hybrid RANS/DDES turbulence model

Conclusions

(Continued)

* Differences between 2D and 3D dynamic stall
- 3D vortex rings are emitted rather than a simple 2D leading-edge vortex
- Dynamic stall flow separation can alter the path of a BVI vortex
- Vortices passing over the rotor blade caused BVI which triggered dynamic stall
\diamond This phenomenon has been observed in a 2D wind-tunnel experiment
- Mechanism for BVI-triggered dynamic stall
\diamond Induced velocity field by other blade-tip vortices changed the relative angle of attack of the stalling rotor blade
- The blade AOA increased outboard of the BVI vortex, causing flow separation
- The blade AOA decreased inboard of the BVI vortex, resulting in attached flow
* The successful modeling of 3D dynamic stall with BVI should include an accurate prediction of blade-tip vortex trajectories

Acknowledgements

- Mr. Tim Sandstrom for truly state-of-the-art time-dependent flow visualization
- Mr. Bill Bousman for his helpful discussions of the UH-60A flight test
- NASA's RVLT Program for supporting this work
- NASA's Advanced Supercomputing (NAS) Division (Pleiades Supercomputer)

