

Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement RVĽ

Neal M. Chaderjian NASA Ames Research Center Moffett Field, CA 94035

Presented at the AHS International 73rd Annual Forum Fort Worth, TX, USA May 9-11, 2017

Motivation

- Average CFD FM accuracy was 2.4% (2009)
 - It was believed that poor rotor wake resolution was responsible
 - This lead to research in off-body (OB) adaptive mesh refinement (AMR)
- In 2011 (Chaderjian/Buning): CFD FM predicted with 0.2% for V22 TRAM •
 - Vortex wake resolution <u>had no effect</u> (10%, 5%, and 2.5% c_{tip})
 - Rather, it was crucial to
 - Adequately resolve the formation of the blade-tip vortex
 - ♦ Fine surface mesh near rotor tip and high-order spatial accuracy
 - Maintain a physically realistic turbulent eddy viscosity in the vortex wake
 - ♦ Detached eddy simulation (DES) turbulent length scale

Coarse Wake-Grid Resolution $\Delta S = 10\% C_{tin}$

Motivation

- In 2012 (Chaderjian/Ahmad): UH-60A rotor in hover and forward flight (C8534)
 - ✤ Airloads did not depend on rotor wake resolution
- Both studies did not involve significant blade/wake interaction

Objective

An important question remains

- How are the forward-flight CFD airloads affected by rotor-wake resolution when there is significant blade/wake interaction?
- Practical engineering issue: High resolution wakes are too expensive for most engineering applications
- Two examples for a UH-60A rotor in forward flight are examined
 - Blade vortex interaction (BVI), flight-test counter C8513
 - Dynamic stall with BVI, flight-test counter C9017
- Also examine 2D dynamic stall
 - Discuss similarities and differences in 2D and 3D dynamic stall

Outline

RVLT

- Flight-Test Data
- Numerical Approach
- Numerical Results
 - ✤ BVI UH-60A (C8513)
 - ✤ Dynamic stall
 - 2D example
 - 3D UH-60A (C9017)
- Concluding Remarks

Flight-Test Data/CFD Validation

- Airloads at various radial locations along the rotor blade
- Bousman's qualitative analysis of dynamic stall (AHS Journal/Oct. 1998)
 - He examined the time history of blade pressures to judge when
 - Moment stall: Formation of dynamic stall vortex at blade leading edge
 - Lift stall: When dynamic stall vortex passes over blade trailing edge
 - Flow separation at blade trailing edge

NASA	Numerical Approach (CFD/CSD Loose Coupling)
	- OVERFLOW 2.2L – CFD Flow Solver
Loose Coupling Every ¼ revolution	Solves the time-dependent Navier-Stokes equations
	 Structured overset grids
	 <u>2nd-order</u> dual time accuracy (Δt=¼° rotation, 60 subiterations)
	 At least 2.3 subiteration residual drop for all grids
	 <u>5th-order</u> spatial accuracy (central differences/artificial dissipation)
	Hybrid RANS/LES turbulence model
	 Spalart-Allmaras one-equation turbulence model
	 DDES length scale
	 SARC rotation/curvature correction
	 Y⁺<1 at body surfaces
	CAMRAD II – Helicopter Comprehensive Analysis Code
	Provides rotor-blade structural deflections
	Provides trim control angles at the blade root

- Rotor blades/Hub use O-mesh topology
- Off-body grids use Cartesian grids with adaptive mesh refinement (AMR)
- Rotor wake captured only with Level-1 grids (10%, 5%, and 2.5%c_{tip})
- No interpolation throughout the resolved rotor wake of interest
 - ✤ Has same resolution and coincident overlaping grid points

Outline

RVĽ

- Flight-Test Data
- Numerical Approach
- Numerical Results
 - * BVI UH-60A (C8513)
 - ✤ Dynamic stall
 - 2D example
 - 3D UH-60A (C9017)
- Concluding Remarks

BVI Flight Counter C8534

NASA'S OVERFLOW Navier-Stokes CFD Code

M∞	M _{tip}	μ	Re _{tip}	α_{shaft} , deg	β , deg	C _τ
0.0982	0.643	0.153	7.15x10 ⁶	0.75	7.71	0.00675

Three AMR Wake-Grid Resolutions BVI Flight Counter C8534

NASA's Pleiades Supercomputer 5,628 Broadwell CPU Cores

ΔS= 5% C_{tip}

500 Grids 87 Million Grid Points 4.6 Hr/Rev

2,500 Grids 297 Million Grid Points 7.8 Hr/Rev

12,000 Grids 1.8 Billion Grid Points 40 Hr/Rev

RVLI

Effect of Wake-Grid Resolution on Airloads BVI Flight Counter C8534

- Good overall agreement with flight-test data
- OB resolution has very little effect on airloads!

Outline

RVLT

- Flight-Test Data
- Numerical Approach
- Numerical Results
 - ✤ BVI UH-60A (C8513)
 - ✤ Dynamic stall
 - 2D example
 - 3D UH-60A (C9017)
- Concluding Remarks

Two-Dimensional Dynamic Stall

 $\alpha = 10^{\circ} + 10^{\circ} \sin(2kt - \frac{\pi}{2}), \ k = \frac{\omega c}{2V_{\infty}} = 0.1$

- Force/moment time-history indicates 3 stall events
 - ✤ 2-3 typical
 - 2D characteristics identified experimentally (McCroskey et al., 1976)
 - Many feel 2D captures the essential elements (Tan & Carr, 1996)
 - It will be shown that 2D does miss some important 3D dynamic stall characteristics

Outline

RVLT

- Flight-Test Data
- Numerical Approach
- Numerical Results
 - ✤ BVI UH-60A (C8513)
 - ✤ Dynamic stall
 - 2D example
 - 3D UH-60A (C9017)
- Concluding Remarks

High-Resolution Dynamic Stall (C9017) NASA'S OVERFLOW Navier-Stokes CFD Code

M_∞ M_{tip} μ Re_{tip} α_{shaft}, deg β, deg C_T 0.158 0.666 0.237 4.62x10⁶ -0.15 -1.58 0.0110

There is BVI

It is affecting the dynamic stall process

Three AMR Wake-Grid Resolutions BVI Flight Counter C8534

NASA's Pleiades Supercomputer 5,628 Broadwell CPU Cores

760 Grids 83 Million Grid Points 4.5 Hr/Rev

3,200 Grids 241 Million Grid Points 6.2 Hr/Rev

14,700 Grids 1.3 Billion Grid Points 28.5 Hr/Rev

RVLI

Effect of Wake-Grid Resolution on Airloads Dynamic Stall Flight Counter C8534

- Good overall agreement with flight-test data
- More high-frequency content, but little effect on airloads!
- This suggests $\Delta S=10\%c_{tip}$ adequate for engineering design airloads

Closeup View of 3D Dynamic Stall With BVI

- Inboard and outboard separation, with attached flow in between
- 3D Vortex rings emitted due to Helmholtz vortex theorem
 - Different from 2D Vortex lift-off
- Vortex path altered due to separation
 - ✤ Can effect aeromechanics of following rotor blades

Velocity Vectors Relative to Rotor Blade

Outboard of Vortex

- Outboard incidence is greater than inboard incidence by at least 10 deg
- This explains why stall occurs
 outboard of the vortex and
 reattaches inboard of the
 vortex

Inboard of Vortex

Closeup View of a Single Blade

(Same Blade Motion and Aeroelastic Deflections)

- No outboard separation in the 3rd quadrant!
 - This confirms vortex-induced dynamic stall
- Inboard separation due to freestream reversed flow
- Separation along entire blade in 4th quadrant, due to blade incidence

BVI-Induced Dynamic Stall (C9017)

- First observed experimentally for a 2D airfoil
 - 38th European Rotorcraft Forum: Zanotti, Gilbertini and Mencarelli
 - Similar explanation of how a vortex triggers dynamic stall

First time observed for an actual helicopter rotor

Comparison of CFD With Qualitative Flight-Test Analysis (Dynamic Stall, C9017)

- Polar plot
 - Bousman's moment stall, lift stall, and trailing-edge separation
 - There are two stall events
 - CFD Outboard and inboard vortices
 - Outboard vortex initially moves inboard then outboard
 - Tracks stall closely up to 270°, where it drops below the blade and has little influence
 - Inboard vortex only moves inboard
- Flight test does not indicate inboard reversed flow
 - It must be there, but loads are light and pressure data sparse (Bousman)

Time-Dependent Flow Visualization of Dynamic Stall Blackhawk Helicopter Rotor in Forward Flight

RVLI

RVLT

Conclusions

- Good overall comparison between CFD airloads and flight-test measurements for BVI and dynamic stall cases
 - wake grid resolutions were $\Delta S=10\%$, 5%, and 2.5% C_{tip}
- Refining rotor wakes beyond engineering resolution ($\Delta S=10\% C_{tip}$) did not significantly affect the predicted airloads, even with blade/wake interaction
 - This suggests that airloads engineers may use the coarser wake-grid resolution (ΔS=10%c_{tip}) for hover and forward fight simulations provided
 - The CFD tip-vortex is accurately formed using a combination of fine surface mesh at the blade tip and high-order spatial accuracy
 - Use of a hybrid RANS/DDES turbulence model

Conclusions (Continued)

- Differences between 2D and 3D dynamic stall
 - 3D vortex rings are emitted rather than a simple 2D leading-edge vortex
 - Dynamic stall flow separation can alter the path of a BVI vortex
 - Vortices passing over the rotor blade caused BVI which triggered dynamic stall
 - This phenomenon has been observed in a 2D wind-tunnel experiment
 - Mechanism for BVI-triggered dynamic stall
 - Induced velocity field by other blade-tip vortices changed the relative angle of attack of the stalling rotor blade
 - The blade AOA increased outboard of the BVI vortex, causing flow separation
 - The blade AOA decreased inboard of the BVI vortex, resulting in attached flow
- The successful modeling of 3D dynamic stall with BVI should include an accurate prediction of blade-tip vortex trajectories

Acknowledgements

- Mr. Tim Sandstrom for truly state-of-the-art time-dependent flow visualization
- Mr. Bill Bousman for his helpful discussions of the UH-60A flight test
- NASA's RVLT Program for supporting this work
- NASA's Advanced Supercomputing (NAS) Division (Pleiades Supercomputer)

