Understanding Human Autonomy Teaming Through Applications Bimal Aponso, NASA Ames Research Center

NextGen Flight Deck and Human-Autonomy Teaming Symposium, NASA Langley, Feb. 2017

Understanding Human Autonomy Teaming Through Applications

Understanding Human Autonomy Teaming Through Applications

Understanding Human Autonomy Teaming Through Applications

Human Autonomy Teaming

Summer Brandt Joel Lachter Jay Shively

February 16, 2017

- Brittle
 - Automation often operates well for a range of situations but requires human intervention to handle boundary conditions (Woods & Cook, 2006)
- Opaque
 - Automation interfaces often do not facilitate understanding or tracking of the system (Lyons, 2013)
- Miscalibrated Trust
 - Disuse and misuse of automation have lead to real-world mishaps and tragedies (Lee & See, 2004; Lyons & Stokes, 2012)
- Out–of-the-Loop Loss of Situation Awareness
 - Trade-off: automation helps manual performance and workload but recovering from automation failure is often worse (Endsley, 2016; Onnasch, Wickens, Li, Manzey, 2014)

HAT Solutions to Problems with Automation

- Brittle
 - Negotiated decisions puts a layer of human flexibility into system behavior
- Opaque
 - Requires that systems be designed to be transparent, present rationale and confidence
 - Communication should be in terms the operator can easily understand (shared language)
- Miscalibrated Trust
 - Automation display of rationale helps human operator know when to trust it
- Out–of-the-Loop Loss of Situation Awareness
 - Keep operator in control; adaptable, not adaptive automation
 - Greater interaction (e.g., negotiation) with automation reduces likelihood of being out of the loop

Simulated Ground Station

Autonomous Constrained Flight Planner (ACFP)

- Transparency: Divert reasoning and factor weights are displayed.
- Negotiation/Dialog: Operators can change factor weights to match their priorities.
- Shared Language/Communication: Numeric output from ACFP was found to be misleading by pilots. Display now uses English categorical descriptions.

Activited autors					
Option:	KCYS 27	KABQ 08	KABQ 03	KDEN 35L	
Risk:	GOOD (0.99)	GOOD (0.99)	GOOD (0.99)	GOOD (0.98)	
Fuel:	1184lbs	3654lbs	4025lbs	895lbs	
ETA:	35.21	69.37	76.53	30.19	
Dist:	134 NM	305 NM	334 NM	113 NM	
Serv:	NASA FACILITIES	NASA FACILITIES	NASA FACILITIES	NASA HUB	
Medical:	TRAUMA 1M	TRAUMA 3M	TRAUMA 3M	TRAUMA 10M	

• Human-Directed: Operator calls "Plays" to determine who does what

Anti-skid Fail	Anti-ice fail	Windshield Overheat	Wheel Well Fire	Wx Radar Fail	NASA3	5 - Medical Emergency
No Auto-Land	Cabin Pressure Fail	Medical Emergency	Auto-Brake Fail	Cabin Fire		SWITCH STATUS TO MEDICAL
Cargo Door Open	Divert	Weather				SUGGEST DIVERT OPTIONS FOR NEAREST SUITABLE
						MAKE RECOMMENDATION TO PILOT
						UPLINK AGREED UPON FLIGHT PLAN
						ADD DETAILS OF ILLNESS TO OPERATOR NOTES
						CONTACT EMS
						CONTACT MAINTENANCE
						CONTACT CUSTOMER SERVICE
						CONTACT SLOT CONTROL
						CONTACT CARGO CONTROL
						ASK IF PILOT NEEDS ADDITIONAL ASSISTANCE

- Participants, with the help of automation, monitored 30 aircraft
 - Alerted pilots when
 - Aircraft was off path or pilot failed to comply with clearances
 - Significant weather events affect aircraft trajectory
 - Pilot failed to act on EICAS alerts
 - Rerouted aircraft when
 - Weather impacted the route
 - System failures or medical events force diversions
- Ran with HAT tools and without HAT tools

- Participants preferred the HAT condition overall (rated 8.5 out of 9).
- HAT displays and automation preferred for keeping up with operationally important issues (rated 8.67 out of 9)
- HAT displays and automation provided enough situational awareness to complete the task (rated 8.67 out of 9)
- HAT displays and automation reduced the workload relative to no HAT (rated 8.33 out of 9)

HAT workload reduction was marginally significant (HAT mean 1.7; No HAT mean 2.3, p = .07)

- Transparency/Shared Language
 - "This [the recommendations table] is wonderful.... You would not find a dispatcher who would just be comfortable with making a decision without knowing why."
- Negotiation
 - "The sliders was [sic] awesome, especially because you can customize the route.... I am able to see what the difference was between my decision and [the computer's decision]."
- Human-Directed Plays
 - "This one was definitely awesome. Sometimes [without HAT] I even took my own decisions and forgot to look at the QRH because I was very busy, but that didn't happen when I had the HAT."

Where we are and planned FY17 work

- Trust repair with automated system part-task
 Now (Transparency Part Task)
- Implementing HAT features on the flight deck

Spring '17 (Flight Deck)

- Developing a software framework for creating HAT Agents
- Updating ground station re-routing tool
- UX testing

Summer '17 (Ground Station Agent)

Cockpit Hierarchical Activity Planning and Execution

J Benton John Kaneshige

February 16, 2017

- Abstract idea of what will happen next
 - Abstract plans, not fully defined (instantiated) at start
- Partially ordered, conditions on tasks
 - Some tasks can be completed in any order
 - Timing is dependent on circumstances
- Precise tasks become more clear as time goes on
 - Interleaved execution and expansion
 - Clearance changes, weather, equipment failures, errors cause plan revision
 - Monitoring/projection detects failures, triggers revision

Activity Plan Components

Activity Plan Construction

Activity Plan Construction

Clideclone Monitorin

Projection

Fast Time Simulation

Monitors and Reaction

- Execution monitors check aircraft situation
- Remedial actions to repair plan
- Unplanned Contingencies

Testing & Integration

Aircraft Capability Management

Randy Mumaw Michael Feary

February 16, 2017

- Focus on Operational Decision Making
- Evolution from Pilot Decision Support to Human-Autonomy Teaming

Qantas A380 Uncontained Engine Failure

- QF 32; Singapore to Sydney; 469 people on board
- 4 minutes after Take-off, engine no. 2 bursts, severely damaging other equipment
- 43 ECAM messages in first 60 seconds; 10 additional later
- 50 minutes to sort through the non-normal checklists (NNCs)

"It was hard to work out a list of what had failed; it was getting to be too much to follow. So we inverted our logic: Instead of worrying about what failed, I said 'Let's look at what's working."" A380 Captain

Current Approach to Aircraft System Alerting

Airplane System Components

- Hydraulic system
- Thrust Reverser
- Battery
- Air conditioning pack

Airplane Capabilities

- Range / Endurance
- Stopping Distance (on runway)
- Ability to perform a specific approach
- Ability to enter RVSM airspace

Airplane system components have failed

What can I do? Where can I go?

Explicit Alerting on Capabilities

Typically, we don't

Can I Fly?

787

- 449 EICAS messages (Warning, Caution, Advisory)
- All but 19 of them reflect physical system failures/ status changes

Sometimes, we do

Examples from the 787

- NO AUTOLAND
- NO LAND 3
- NAV UNABLE RNP
- STALL PROTECTION

So are the pilots

Airplane System Integration

Pilot System Knowledge

- The volume and rate of crew alert and status messages can increase significantly for certain types of failures
- Non-normal procedure design for combinations of failures is challenging
- Air turnbacks or diversions occur due to confusion about severity of the failures, and impact on the mission

Both types of errors occur:

- Poor understanding of real problems
 - Oversensitivity to trivial changes

Answering Basic Questions

Status of Airplane Capabilities

- What is working/what is not?
- How can I restore what has been lost?

Operational Guidance

- Which limitations do I need to observe during the remainder of the mission?
- Mission Objectives
 - Can I still complete the planned mission?
 - If not, where else can I land?

An Alternative Approach

- Initially, we pull together information relevant to mission/diversion; e.g.,
 - airplane compatibility / capability (range)
 - airport information
 - weather information
- Then, organize it in a way that flight crews can benefit, understanding how to present it to support collaborative decision making
- Finally, transition some elements to a more autonomous advisor

- Develop a "framework/language" for communicating airplane capabilities
 - Pilot interviews and prototyping
- Develop a small set of failure cases
- Develop system models to simulate system failures
- Collaborate with industry (e.g. SAA with Boeing)

Thank you