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Abstract

Verification is the process through which Modeling and Simulation (M&S) software goes to ensure
that it has been rigorously tested and debugged for its intended use. Validation confirms that said software
accurately models and represents the real world system. Credibility gives an assessment of the
development and testing effort that the software has gone through as well as how accurate and reliable
test results are. Together, these three components form Verification, Validation, and Credibility (VV&C),
the process by which all NASA modeling software is to be tested to ensure that it is ready for
implementation.

NASA created this process following the CAIB (Columbia Accident Investigation Board) report
seeking to understand the reasons the Columbia space shuttle failed during reentry. The report’s
conclusion was that the accident was fully avoidable, however, among other issues, the necessary data to
make an informed decision was not there and the result was complete loss of the shuttle and crew. In an
effort to mitigate this problem, NASA put out their Standard for Models and Simulations, currently in
version NASA-STD-7009A, in which they detailed their recommendations, requirements and rationale
for the different components of VV&C. They did this with the intention that it would allow for people
receiving M&S software to clearly understand and have data from the past development effort. This in
turn would allow the people who had not worked with the M&S software before to move forward with
greater confidence and efficiency in their work.

This particular project looks to perform Verification on several MATLAB® (The MathWorks, Inc.)
scripts that will be later implemented in a website interface. It seeks to take note and define the limits of
operation, the units and significance, and the expected datatype and format of the inputs and outputs of
each of the scripts. This is intended to prevent the code from attempting to make incorrect or impossible
calculations. Additionally, this project will look at the coding generally and note inconsistencies,
redundancies, and other aspects that may become problematic or slow down the code’s run time. Certain
scripts lacking in documentation also will be commented and cataloged.

1.0 Introduction

SCaN, Space Communication and Navigation, is the NASA program primarily focusing on enabling
NASA missions to provide commands from ground controllers to their spacecraft, as well as to return
telemetry and science data from NASA spacecraft to scientists via radio communications. SCENIC, the
SCaN Center for Engineering, Networks, Integration, and Communications, is a project of SCaN that is
working on a web-based user interface providing analysis of SCaN’s communication assets interacting
with NASA spacecraft. This project’s goals were to look at several MATLAB® scripts and perform
verification testing on them. That is to say, it was to look for potential bugs and to ensure that the scripts
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were calculating their measurements correctly. The goal of these scripts was to determine if the
communication architecture met hypothetical mission communication requirements on hypothetical sets
of missions. However, numerous lines of code were unused, there was minimal documentation and it was
initially difficult to see or understand how the code interacted.

These sorts of problems come about as a result of the code being a project that several people have
worked on over multiple years with minimal documentation and explanation for how different areas of
the code operate. There is a certain amount of expectation that anyone going in to use the code has a
degree of understanding and knowledge not only about the general formulas and mathematics that is
being used but also how the code implements these formulas (Ref. 1). Variable and script names generally
do not give much indication as to what their function is. This leads to unnecessary difficulty when trying
to work with the code.

In addition, this leads to unseen bugs as a result of combining multiple persons work causes
unintended interactions. The code runs without errors, however the result that comes out is not correct.
However, because the results are well within the feasible range of values, with no further testing or
knowledge of the code one could reasonably assume that the code is working. In order to uncover these
sorts of issues, verification testing is necessary.

There was also a documentation effort, much of which included creating workflows for the scripts.
This included looking at all possible file paths that the code could take and noting limits of operation as
needed. This was done to prevent the code from taking on impossible or code-breaking values. This is a
very necessary part of verification as without it, it is possible for the code to try to make impossible
calculations, such as dividing by zero, leading to nonworking code and user frustration (Ref. 2). This will
be further discussed in Section 5.0. Section 2.0 will describe how performance was improved while
Sections 3.0 and 4.0 will discuss the methodology used to find and correct bugs in the code and the
process of standardizing conventions respectively.

2.0 Performance

One of the initial things this project looked at was for general errors and inconsistencies in the code.
Numerous unused variables and subfunctions were removed in an effort to clean up the code and make it
more readable, as well as reduce the size of the overall file size. Many of these unused variables were left
over from previous methods of calculating variables and were set up in a way that they were on a path
that would never be taken, but since they were not commented out it was not immediately apparent that
this was the case.

For example, Figure 1 was a script in its entirety. As one can see, it was able to be replaced with a
simple if statement in the higher script calling it. However, dozens of commented lines of code were
making it difficult to immediately identify that, despite the fact that it seems most of the elseifs were
checking for a variable that had long ago been permanently set to ICRF. The lower script had apparently
not been changed as the programmer was likely unaware that there was a place downstream where this
check was performed.

Figure 2 shows the resulting higher level script. Lines 93 to 95 were replaced with lines 64 and 65.
These two lines of code are much easier for a programmer to read and understand than having to go to
another function.
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if strcmpi(sc.refframe, 'GCRF ')==1

elseif strcmpi(sc.refframe, 'GRC ')==1 || strcmpi(sc.refframe, 'TDR ')==
elseif strcmpi(sc.refframe, 'ICRE')==
[planet,~] = planetephem(Ttdb'):
s5c.ECI = (sc.refpos' + planet{4}.ECI);%planet{3}.ICRF)";
elseif strcmpi(sc.refframe, 'ITREFZ000 ')==
elseif strcmpi(sc.refframe, 'ITRF-93 ')==1
elseif strcmpi(sc.refframe, 'ITRE-97 ')==
elseif strcmpi(sc.refframe, 'MCI ')==1 || strcmpi(sc.refframe, 'MCI')==1
elseif strcmpi(sc.refframe, 'TEME ')==1
elseif strcmpi(sc.refframe, 'TOD ')==1
end
end

Figure 1.—An old, unnecessarily script

Old Version of interplanetaryaccess_mars New Version of interplanetaryaccess_mars

61— | sc.refpos = (kepelems2pos(sc, JDtt))'s

91 - sc.refpos = (kepelems2pos(sc, JDtt, Ttdb'))
92 %Convert spacecraft position f:

ame to ECI
refframe, '"EME2000") ~=1 63
64— | planet = planetephem(Ttdb);
65— sc.ECI = (sc.refpos' + planet{4}.ECI);

93— if strempi(sc.refframe $Convert spacecraft position from the given coordinate frame to ECT

sc = coord2ECI (sc, Ttdb)

70— | sc = plntintr(sc,planet);

Figure 2.—A comparison of the higher level code before and after

3.0 Methodology

Following that, several checks were performed on individual functions to ensure that there were not
any performance issues. Several problems were found here, namely with a list of the different missions.
There were items misspelled, items missing, parse errors if certain items were nonzero. One of the more
prominent errors, shown in Figure 3, was that string compare was only used to compare the first part of a
string.

This was presumably done so that string compare could distinguish between the different missions,
which were numbered in the list it was searching. However, because it was only looking at the beginning
of the strings, for certain names whose first characters were the same, such as with HSF: Leo ops and
HSF: Leo ops-servicing, the function could not distinguish between the two. This issue was resolved by
adding a conditional that would halt the program at the problematic cases and remove the problem values,
seen in Figure 4. Ideally changes would be made to the list of names, however that has already been
standardized across multiple uses and is outside the scope of this project.
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c=find(strncmp ([out3{k}.requirements{:,1}],uselist{j},length (uselist{j}))):

Find '"HSF: LEO Ops'in list: Find "HSF: LEO Op'in list: Return 'HSF: LEO Op' locations:
HSF: LEO Ops 1 HSF: LEO Op sl HSF: LEO Op
HSF: LEO Ops 2 HSF: LEO Op s2 HSF: LEO Op
HSF: LEO Ops 3 HSF: LEO Op s3 HSF: LEO Op
HSF: LEO Ops Servicing 1 HSF: LEO Op s Servicing 1 HSF: LEO Op
HSF: LEO Ops Servicing 2 HSF: LEO Op s Servicing 2 HSF: LEO Op
Deep Space Science 1 Deep Space Science 1 Deep Space
Deep Space Science 2 Deep Space Science 2 Deep Space
Deep Space Science 3 Deep Space Science 3 Deep Space
Aerial Systems 1 Aerial Syst ems1 Aerial Syst
Aerial Systems 2 Aerial Syst ems 2 Aerial Syst
Aerial Systems 3 Aerial Syst ems 3 Aerial Syst
Aerial Systems 4 Aerial Syst ems 4 Aerial Syst

Figure 3.—Function erroneously lumping similar names together

64

€65 — if j ==1 1] j == 13 % Added to prevent c from including incorrect walues (it think
66 — LastString = ' ';

€7 — for s=l:length(c)

68 — string = cellZmat (out3{k}.requirements{c(s),1}):

69 — if length(LastString)+l < length(string) % Checks if current name is too 1
70 — c=c(l:s-1);

71 — break

72— end

73 — LastString=string:

74 — end

75 — end

=

Figure 4.—If statement taking out incorrect names

However, other issues with such lists were also found. Using these sorts of strings is an easy to
understand method of coding and differentiating between different use cases, but they are also very prone
to breaking by something as simple as a slightly differently typed phrase(‘Deep Space Science’ and ‘Deep
Space (Science)’ for example caused problems).

A full one quarter of the total cases were found to be defaulting to 1 every time because string names
had changed between iterations and string compare was no longer functioning. This was not immediately
obvious because the order of the list names and the order that the code ran through the cases was
completely different. It was only after organizing the code so that the order was the same did it become
clear that some cases were missing entirely. Other cases that existed were simply not used and were
removed for clarification.

4.0 Standardization

Another issue managed was standardizing subfunctions. Several scripts contained their own,
individual subfunctions, all of which were supposed functionally identical but still all had slight
variations. This project looked to standardize these subfunctions into single functions that multiple scripts
called. Having six almost identical subfunctions was confusing and unneeded.
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However, it was found that in certain cases, the subfunctions contained functional differences, to the
point where they gave completely different outputs to the same input, as seen in two separate versions of
kep_solve in Figure 5. The two versions only have one functional line of code difference, which appeared
to be leftover from a previous iteration of the function. Because of the exact inputs that the sample data

had, this never became a significant issue.

In addition, a further issue with this particular function was that the line of code seemed to be a poor
attempt to convert the value of M into radians from degrees. M was later input into sin, which expects its
input in radians. It was getting it in degrees. While this was not causing any error outputs, the value
output was wrong (sind is the correct function in this scenario). The error can be seen in Figure 6.

This demonstrates the danger of building on erroneous code, one error can lead to another. In this
case the damage was limited, but if limits of operation and units are not noted and recorded then entire
sections of code can rapidly become unusable. Cascading errors is something in particular this project

looked for and sought to fix.

SNIP2 version of kep_solve

kepelems2pos version of kep_solve

1 %% Solution of Kepler's Equation| 1 %% Solution of Kepler's Equation
2 function E = kep_solve (t,M,e) 2 tion E = kep_solve(t,M,e)

3 % Eccentric anomaly (must be solved iteratively for Ek) 3 % Elliptic or Hyperbolic Anomaly (solved iteratively)
4- | M= [132.238285927288]; 4- | M= [132.238285927288];

5— |t = [0.164613299865791]; 5— |t = [0.164613299865791];

6= | e=0; 6— | e=0;

7- | E_i=[]: 7- | E_i=[1:

8- E = zeros(l,size(t,2)): 8- E = zeros(l,length(t));

9- for j=l:size(t,2) 9-— for j=l:length(t)

10— M=M-floor (M/2/pi) *2*pi; 10

i = E i =M(j); iifl= E_i = M(j):

12— k= 1; 12 - k=1;

13- err = le-10; 2= err = le-10;

14— while (k>err) 14— while (k>err)

1515 y = e*sin(E_i)+M(j); 15— y = e*sin(E_i)+M(j):

16— k = abs(abs(E_i)-abs(y)): 16— k = abs(abs(E_i)-abs(y)):
17— Ei=y; 17 - Ei=y;

18— end 18 — end

19— E(j) = E_i; 19— E(j) = E_i;

20 — end 20— end

21— lend 21~ lend

ans = ans =

0.291394476516672

132.238285927288

Figure 5.—The two versions of kep_solve with identical inputs

SNIP2 version of kep_solve

kepelems2pos version of kep_solve

1 %% Solution of Kepler's Equation| 1 %% Solution of Kepler's Equation
2 function E = kep_solve (t,M,e) 2 function E = kep_solve (t,M,e)
3 % Eccentric anomaly (must be solved iteratively for Ek 3 % Elliptic or Hyperbolic Anomaly (solved iteratively)
4- | M = [132.238285927288]; 4- | M= [132.238285927288];
5— |t = [0.164613299865791]; 5- |t = [0.164613299865791];
6— =0 6— | e=0;
7- | E_i=01: 7- | Ei=0]
8— E = zeros(l,size(t,2)); 8- E = zeros(l,length(t)):
for

j=l:size(t,2)
10~ M=M-floor (M/2/pi) *2*pi;

9- for j=1:length(t)

jlil /= E_i = M(j); ililj= E_i = M(3);

12— k= ip izl= k= 1;

13- err = le-10; 13- err = le-10;

14— while (k>err) 14— while (k>err)

15— y = e*sin(E_i)+M(j); y = e*sin(E_i)+M(j) 7
16— k = abs(abs (E_i)-abs(y)): 16— k = abs(abs(E_i)-abs(y)) 7
17— Ei=y 17 - Ei=y:

18— end 18— end

19— E(j) = E_i 19— E(j) = E_i;

20— end 20— end

21— end 21— end

y = e*sin(E_1i)+M(3)

sin(E i)

Figure 6.—E_i is incorrectly in degrees
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5.0 Documentation

A final part of this project was documenting and commenting the scripts. Initially there were minimal
comments, those that did exist were out of date. This project created workflows to show how the scripts
interacted with one another, which scripts called which others, and which scripts were used multiple
times. A section of one such workflow is shown below in Figure 7.

All scripts were given a header section with a description at the very least of the inputs and outputs as
well as the general purpose of the script. This was meant to significantly lessen the time that a new
designer would need to spend understanding the purpose behind the script. The header, at a minimum,
contains a list of all the inputs and outputs and what they are meant to represent as well as the goal of the
overall script.

MeetUserNeedsFoM

* merger ® access * multigsaccess_mars

* accessrpt3 * interplanetaryaccess_mars

* LATTE
* dataratecal
* lasercomm_calc

* distance_DSN_Helio

¢ distance_DSN_Lagrange

* distance_DSN_Mars

¢ distance_NEN
* distance_SN

* summaryparser

* Greedy

Figure 7.—A workflow chart created for clarity
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General comments around certain loops and longer sections of code were added as needed for
clarification as to what the code was actually doing. This was done with the purpose of helping
programmers in the future work more efficiently on the code as well as better understand if there is an
error in the flow of the logic.

6.0 Conclusion

This project was successfully able to streamline, simplify, and correct the code to the point where it is
more readable and works with greater efficiency. The code originally took about 50 seconds to run in its
entirety, now it takes under 20 seconds. Much of that is the result of preallocating, but eliminating
unneeded code also cut down a lot. The sheer volume of code has been reduced from 219 KB worth of
text to 133 KB worth.

Much of this is a result of removing bloated, unnecessary code or preallocating to reduce the memory
burden. Going forward, further testing will be needed, namely unit testing on inputs and outputs and
ensuring that calculations are correct. Long term, the MATLAB® scripts will need to be converted into
jar files, which are java based and thus one does not need MATLAB® to run them. These will be
integrated into the SCENIC user interface, the end goal of most of SCENIC’s capabilities.
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