KU LEUVEN

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Jan Quets, Gabriëlle De Lannoy, Rolf Reichle, Michael Cosh, Robin Van der Schalie, Jean-Pierre Wigneron

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Problem statement

unique Tb observation Xunique SM retrieval

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Problem statement

unique Tb observation Xunique SM retrieval

Because:

- choice in RTM parameterization (e.g. SMAP L2, LMEB L2, ECMWF, SMAP L4)
- choice in inversion algorithms:
 - o regular (i.e. non-mpdi-based) or mpdi-based algorithm
 - species included in cost function (CF): H-pol, V-pol, which angle(s), how many angles?
 - $_{\circ}$ $\,$ whether to include proir soil moisture information in the CF

Problem statement

unique Tb observation Xunique SM retrieval

Because:

- choice in RTM parameterization (e.g. SMAP L2, LMEB L2, ECMWF, SMAP L4)
- choice in inversion algorithms:
 - o regular (i.e. non-mpdi-based) or mpdi-based algorithm
 - species included in cost function (CF): H-pol, V-pol, which angle(s), how many angles?
 - $_{\circ}$ $\,$ whether to include proir soil moisture information in the CF
 - \rightarrow note: uncertainty = systemic error + random error
 - random error may be focus (e.g. in data assimilation studies)

Methods: site information

11 EASEv2 grid cells containing SMAP core validation sites

KU LEUVEN

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Methods: site information

11 EASEv2 grid cells containing SMAP core validation sites

\rightarrow in situ soil moisture observations to which SM retrievals will be compared (May 2010 \rightarrow June2015)

KU LEUVEN SMW2017, Vienna

Little River watershed

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Methods: ensemble sets

- 4 choices in RTM parameterization ullet
 - Lit1: based on SMAP L2 h: $0.11 \rightarrow 0.16$; ω : $0.05 \rightarrow 0.07$; $b_h \& b_v$: $0.1 \rightarrow 0.11$ 0
 - Lit2: based on LMEB L2 h: 0.10→0.70; ω: 0.05→0.05; b_h&b_y: 0.15→0.3 0
 - Lit3: based on ECMWF 0
 - Lit4: based on SMAP L4 0

- h: $1.66 \rightarrow 1.66$; ω : $0.00 \rightarrow 0.05$; $b_{h}\&b_{v}$: $0.15 \rightarrow 0.3$
- h: $0.00 \rightarrow 0.97$; ω : $0.00 \rightarrow 0.13$; $b_h \& b_v$: $0.07 \rightarrow 0.4$
- 4 perturbations for each h_{min} , h_{max} , ω , and b_h , b_v (-50%, -25%, +25%, +50%) ٠
- 7 angles in CF (i.e. 30°, 35°, 40°, 45°, 50°, 55°, 60°), either separately or together ۲
- 2 polarizations (i.e. H-pol, V-pol) ۲
- 2 different RTM-inversion algorithms (i.e. mpdi-based or non-mpdi-based) ۲

KU LEUVEN

Methods: ensemble sets

- 4 choices in RTM parameterization ullet
 - Lit1: based on SMAP L2 h: $0.11 \rightarrow 0.16$; ω : $0.05 \rightarrow 0.07$; $b_h \& b_v$: $0.1 \rightarrow 0.11$ 0
 - Lit2: based on LMEB L2 h: 0.10→0.70; ω: 0.05→0.05; b_h&b_y: 0.15→0.3 0
 - Lit3: based on ECMWF 0
 - Lit4: based on SMAP L4 0

- h: $1.66 \rightarrow 1.66$; ω : $0.00 \rightarrow 0.05$; $b_{h}\&b_{v}$: $0.15 \rightarrow 0.3$
- h: 0.00→0.97; ω: 0.00→0.13; $b_h \& b_v$: 0.07→0.4
- 4 perturbations for each h_{min} , h_{max} , ω , and b_h , b_v (-50%, -25%, +25%, +50%) ٠
- 7 angles in CF (i.e. 30°, 35°, 40°, 45°, 50°, 55°, 60°), either separately or together ۲
- 2 polarizations (i.e. H-pol, V-pol) ۲
- 2 different RTM-inversion algorithms (i.e. mpdi-based or non-mpdi-based) ۲
- \rightarrow many ensemble sets tested, ranging between 28 and 2456 members ۲
- \rightarrow not all combinations possible ٠

Methods: Cost Function (CF)

 $CF = (Tb_{sim} - Tb_{obs})^{T}C^{-1} (Tb_{sim} - Tb_{obs}) + \frac{1}{0.02^{2}}(SM_{retr} - SM_{CLSM})^{2}$

with C = Tb error covariance matrix, representing:

- Tb error variances (6² K²)
- correlations between Tb errors of different incidence angles

with prior SM information included

model-only SM_{CLSM}

Part 1: sensitivity analysis

default retrieval:

- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
- =basically SCA

Part 1: sensitivity analysis

default retrieval:

- single species in CF: 40° Hpol
- Lit4 RTM parameterization
- non-mpdi-based inversion algorithm
- =basically SCA

HOW?

- step1: choosing angle, polarization, RTM-parameters, inversion algorithms separately
- **step2:** calculating ensemble variances of these experiments
- step3: dividing this variance in long-term mean ensemble variance and short-term ensemble variance

Part 1: sensitivity analysis

Part 1: sensitivity analysis

retrieved soil moisture default retrieval: sm [m³/m³] site: Forth Cobb 0.4 inc. angle = 40° single species in CF: 40° Hpol 0.2 Lit4 RTM parameterization 0 ٠ 2010 2011 2012 2013 2014 2015 non-mpdi-based inversion algorithm retrieved soil moisture ٠ sm [m³/m³] site: Forth Cobb =basically SCA . polarization: H polarization: V polarization choice: 2011 2012 2013 2014 2015 2010 time **E(sm ens var)** [m³/m³] ² 8000'0 0 E(short-term ens var) [m³/m³]² angle polarization parmaps long-term mean ensemble variance inv. algorithm short-term ensemble variance inv.algorithm Polarization Parmaps angle 0,00005 0,0001 0,00015 **KU LEUVEN**

Part 1: sensitivity analysis

Part 1: sensitivity analysis

Part 2: total uncertainty estimation

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Part 2: total uncertainty estimation

 \rightarrow (1) find a properly verified ensemble set

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Part 2: total uncertainty estimation

- \rightarrow (1) find a properly verified ensemble set
- \rightarrow (2) its ensemble variance characterizes total retrieval uncertainty

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Results: ranked skills of ensemble retrievals

KU LEUVEN

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

KU LEUVEN

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

Take home messages

- **1.** passive L-band SMOS soil moisture retrievals are uncertain
 - ... and most sensitive to RTM parameterizations (e.g. roughness parameters and surface albedo)
 - ... with the ensemble variance of a verified set amounting to 78% of in situ temporal variance
 - ... choice of RTM-parameter set strongly influences the bias

2. constraining a CF with CLSM-simulated soil moisture improves the retrieval skill

- even though CLSM skills are generally worse than retrieval skills
- main reason: constrain extreme high and low values

3. ensemble means of ensemble sets

- ensemble means of ensemble sets outperform operational SMOS by about up to 9% for ubRMSE and more than 6% for anomaly R
- best performance reached by including as many as possible species in the CF (i.e. 14 species)
- 4. next: compare to SMOS-IC or other alternatives

Thank you for your attention!

KU LEUVEN

J. Quets et al. (KULeuven)

Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals