

Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

Dr. Salvatore Mandrà

What is fair sampling?

Definition (fair sampling):

- The ability of an algorithm to find all solutions of a degenerate problem with equal probability when run in **repetition mode**

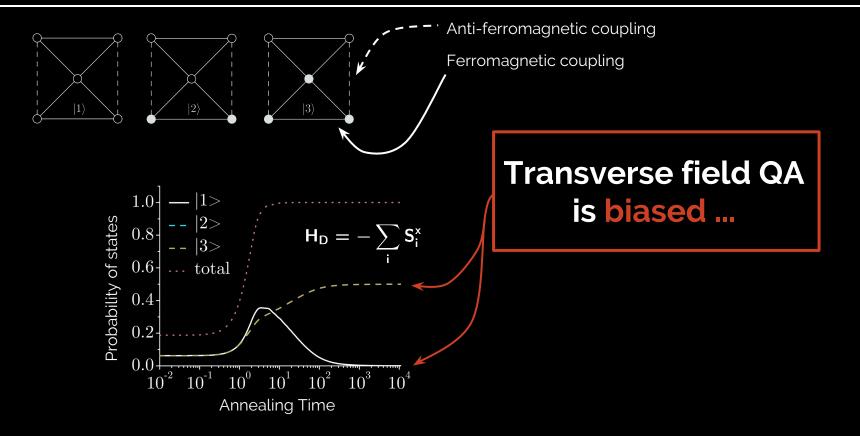
Why is it important?

In some contexts (SAT-Filter, #SAT, machine learning, ...) finding a good
 variety of solutions is more important than finding a single solution quickly

Optimize benchmarking:

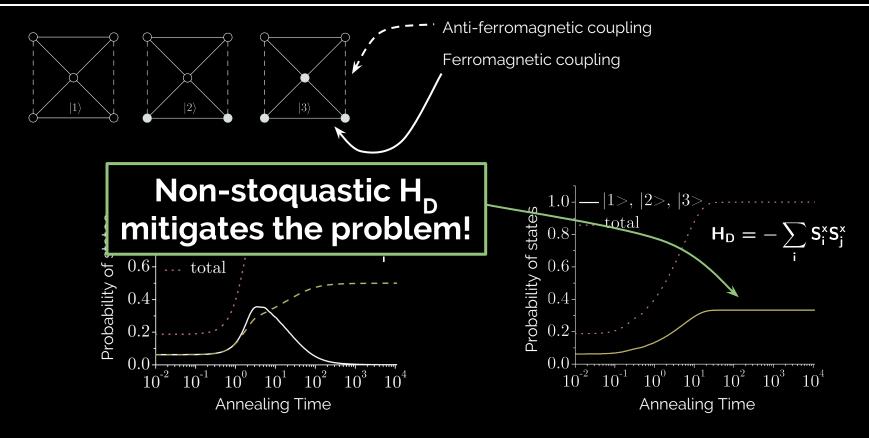
- Standard test: Find the ground-state energy fast and reliably
- Stringent test: Find all minimizing configurations equiprobably

Previous studies on transverse field QA [1]



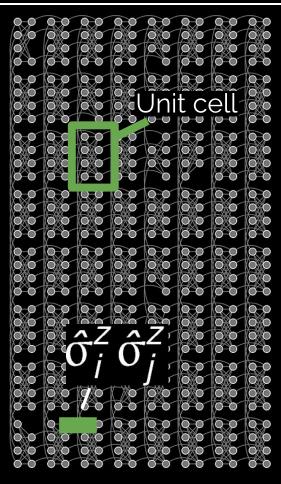
[1] Y. Matsuda, H. Nishimori & H. G Katzgraber, "Ground-state statistics from annealing algorithms: quantum versus classical approaches.", New Journal of Physics, 11(7), 073021 (2009)

Previous studies on transverse field QA [1]



[1] Y. Matsuda, H. Nishimori & H. G Katzgraber, "Ground-state statistics from annealing algorithms: quantum versus classical approaches.", New Journal of Physics, 11(7), 073021 (2009)

The D-Wave 2X quantum annealer

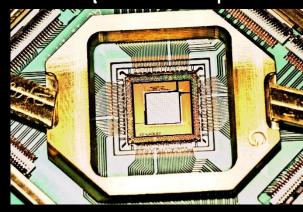


 $/H_{\rm p}$

$$\mathbf{H_D} = -\sum_{\mathbf{i}} \hat{\sigma}_{\mathbf{i}}^2$$

- Unavoidable noise
- Non-zero temperature

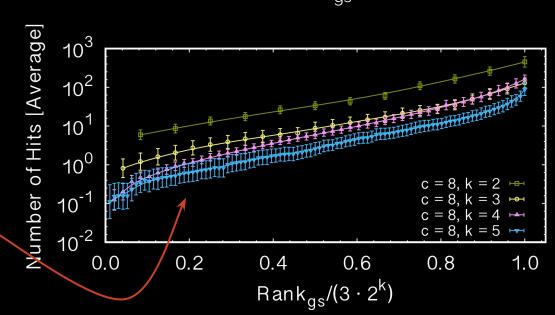
~1000 working qubits Superconducting qubit chip



Experimental analysis using DW2X device [1]

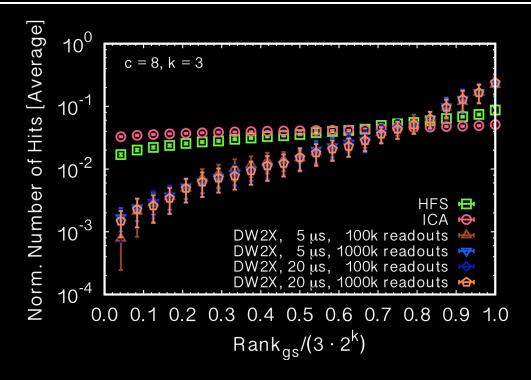
- Random couplings from **Sidon set** (J_{ii} = ±5, ±6, ±7 on Chimera of $c \times c$ unit cells)
- Limit the study to instances with well controlled degeneracy ($\#_{gs} = 3 \cdot 2^k$)
- No **trivial** degeneracy
- 100 gauges x {10k, 100k} readouts
- T_{ann} = 5μ, 20μ, 200μ

DW2X is exponentially biased!



[1] **S. Mandrà**, Z. Zhu & H. G. Katzgraber, "Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians", arXiv:1606.07146

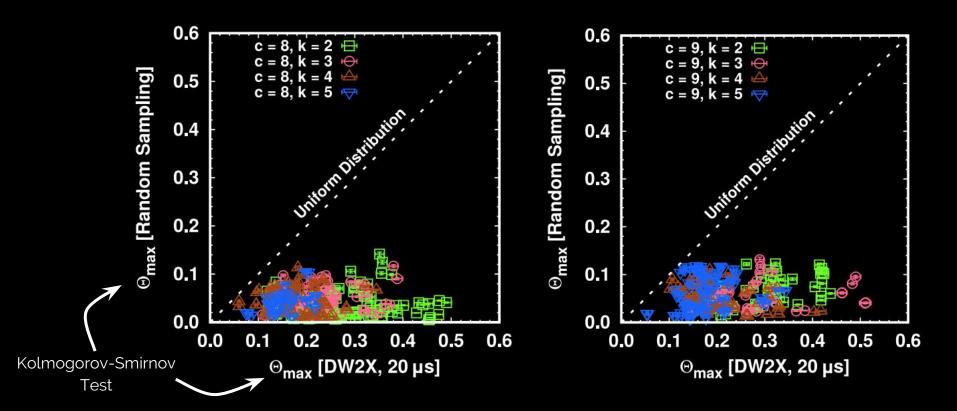
Classical algorithms sample more homogeneously



[1] **S. Mandrà**, Z. Zhu & H. G. Katzgraber, "Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians", arXiv:1606.07146
[2] F. Hamze & N. de Freitas, Proceedings (2004), A. Selby, arXiv (2014)

[3] Z. Zhu, A. J. Ochoa & H. G. Katzgraber, PRL (2015)

Experimental analysis using DW2X device [1]



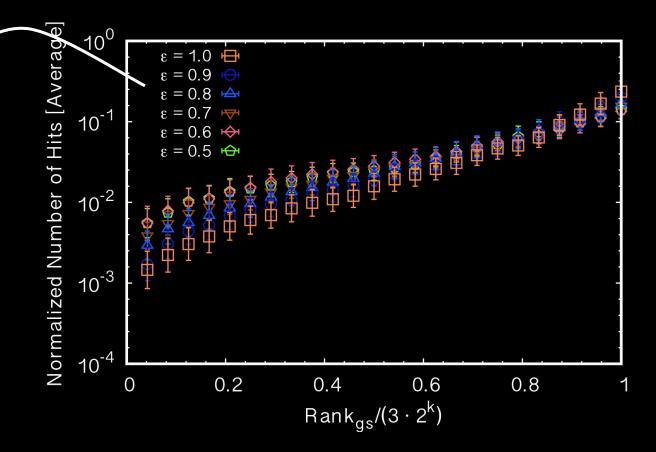
[1] **S. Mandrà**, Z. Zhu & H. G. Katzgraber, "Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians", arXiv:1606.07146

Could the bias be a consequence of the intrinsic noise of the DW2x?

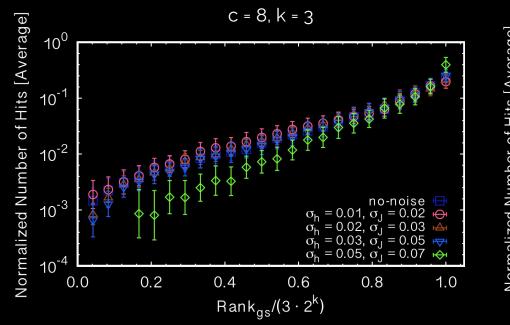
No.

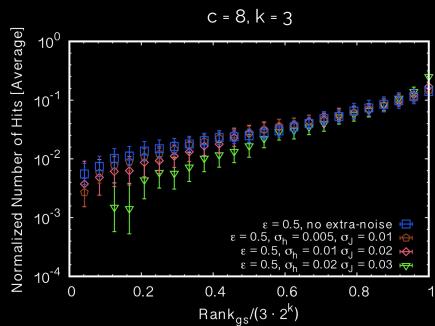
The bias is unchanged by rescaling the energy

- Energy of the target problem rescaled by a factor **ε**
- Intrinsic noise rescaled by a factor 1/ε

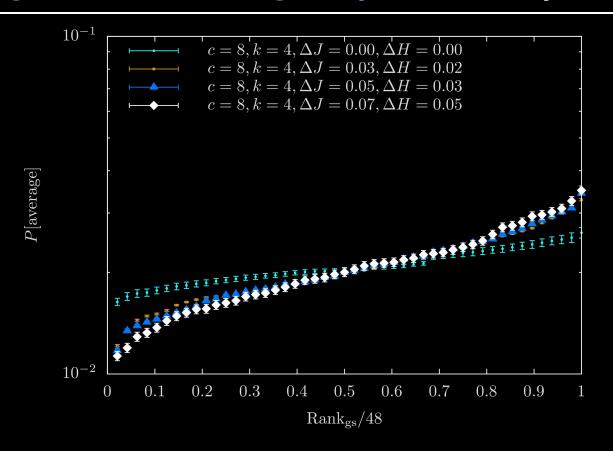


Adding extra noise does not change the bias

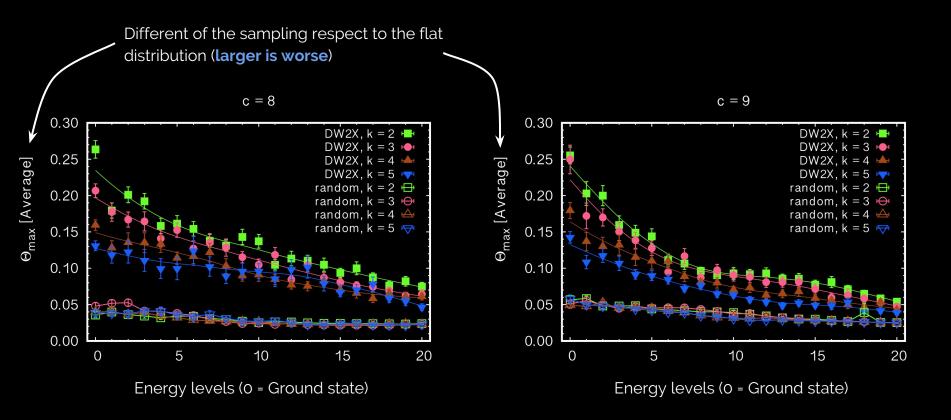




Classical algorithms are marginally affected by the noise



The bias persists up to the 20th excited state!



Implications & Future directions

The bias can limit the use of QA for sampling

- Applications like SAT-Filter and machine learning may not be suitable for QA without mitigating the sampling problem

How to mitigate the sampling problem?

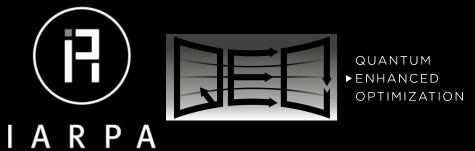
- Explore different driver Hamiltonians (e.g. non-stoquastic)

How to understand the bias problem better?

- Theoretical understanding of the role of the driver Hamiltonian in sampling
- Theoretical exploration of the implication of many-body localization

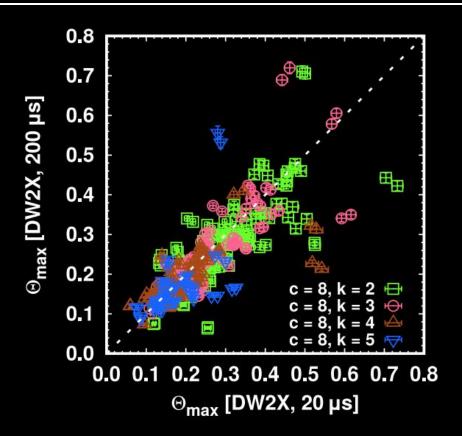
Zheng Zhu Texas A&M

Helmut G. Katzgraber Texas A&M



Thanks for the attention!

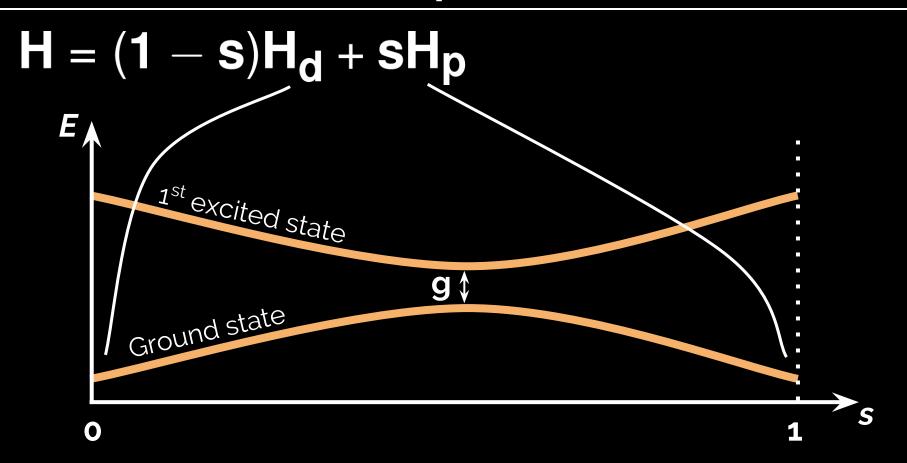
Experimental analysis using DW2X device [1]



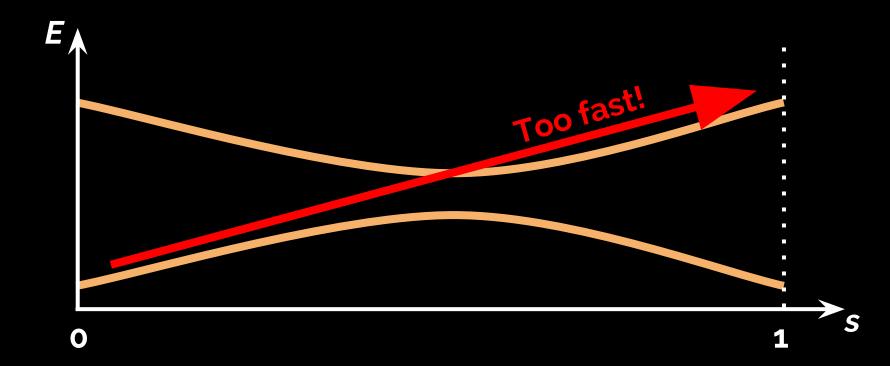
[1] **S. Mandrà**, Z. Zhu & H. G. Katzgraber, "Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians", arXiv:1606.07146

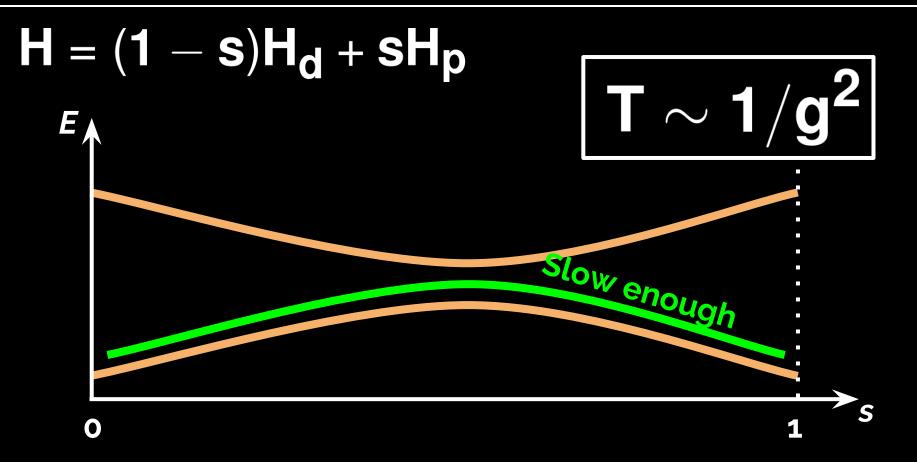
$$H = (1 - s)H_d + sH_p$$
Initial "driver"
Hamiltonian

Target Problem



$$H = (1 - s)H_d + sH_p$$





$$H = (1 - s)H_d + sH_p$$

