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Abstract

The biodiversity, ecosystem services and climate variability of the Antarctic continent,
and the Southern Ocean are major components of the whole Earth system. Antarctic
ecosystems are driven more strongly by the physical environment than many other
marine and terrestrial ecosystems. As a consequence, to understand ecological
functioning, cross-disciplinary studies are especially important in Antarctic research.
The conceptual study presented here is based on a workshop initiated by the Research
Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific
Committee on Antarctic Research, which focussed on challenges in identifying and
applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in
their implementation, were clustered into eight themes, ranging from scale problems,
risk maps, organism and ecosystem responses to multiple environmental changes, to
evolutionary processes. Scaling models and data across different spatial and temporal
scales were identified as an overarching challenge. Approaches to bridge gaps in
research programmes included multi-disciplinary monitoring, linking biomolecular
findings and simulated physical environments, as well as integrative ecological
modelling. New strategies in academic education are proposed. The results of advanced
cross-disciplinary approaches can contribute significantly to our knowledge of
ecosystem functioning, the consequences of climate change, and to global assessments

that ultimately benefit humankind.

Keywords: scaling, risk maps, response to environmental changes, sea-ice, multiple

stressors, Southern Ocean
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Introduction

The Antarctic continent, incorporating its surrounding Southern Ocean, overlying
atmosphere, and its biosphere, is an integral component of the Earth system. As
Antarctic ecosystems change, so do the services they provide to global ecosystems and
humankind. In the context of this framework, cross-disciplinary science is essential to
conducting Antarctic ecosystem research. Other than a few biological interactions, life in
the Antarctic is driven by variations in the current physical environment and its history,
including geological and chemical drivers (Convey et al. 2014, Gutt et al. 2015).
Conversely, biological activity also modulates the physical environment. As a result, it is
essential to (a) understand the response of the biosphere to climate change, taking into
account species-specific adaptations to the specific environment, (b) estimate the
proportion of endemic Antarctic biota in relation to the global biodiversity, and (c)
quantify Southern Ocean contributions to global biogeochemical cycles, as well as other
ecosystem services (Grant et al. 2013). Linking the physical and biological components
of Antarctic ecosystems is also a key challenge since many parts of the Antarctic and
Southern Ocean climate system are heterogeneous in space and time (Mayewski et al.
2009, Turner et al. 2009, 2014, Jones et al. 2016), but descriptions of the physical
environment, and associated modelling, often differ widely from those applied to

biological processes.

As a consequence, Antarctic research is at the forefront of important scientific
challenges, applying holistic approaches that combine systematic assessments of key
physical predictors and key biota. Antarctic interdisciplinary research also helps to
provide societal benefits by delivering new technologies and projections of potential

impacts of the Antarctic environment to change and the impacts of those changes on
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ecosystem goods and services. Challenges range from increasing the availability of
quantitative information, such as increasing the number of studies and publicly available
data sets, to more functional requirements such as developing new analytical tools and
progressing our ability to resolve and simulate systems of greater complexity. Many of
these challenges can only be tackled synergistically, and need to be addressed to provide

a framework for future development of research in Antarctica, and elsewhere.

The Antarctic science community has made remarkable progress over the past 20 years.
However, despite some outstanding exceptions, this has largely been achieved within
single disciplines. It is not only the traditional structure of how scientific research is
organised and funded that encourages single-discipline approaches, but it is also the
extreme Antarctic environment, including difficulty of accessing support, that has
resulted in generally narrow science programmes, and has led to the current silo
structure of Antarctic research. Today we can sequence genes and modify genomes, and
we can remotely observe area-wide temperature, sea-ice cover and primary production
including their spatial patchiness and temporal dynamics from space, and make
projections, for instance, of sea-ice cover for the next 100 years; we can also count
penguins, seals and whales by satellites, drones, helicopters and airplanes, and we can
survey marine habitats by remotely operated and autonomous vehicles. We can also
conduct physiological and ecological experiments on terrestrial or marine
environments, either in situ, or in the laboratory, by manipulating environmental
variables. A drawback of such rapid and successful advances in single disciplines is that
it leaves gaps in cross-disciplinary developments. To date, we are left with a mosaic of
information that does not provide a coherent and robust picture of past, present and

future Antarctic ecosystems. With access to emerging new technologies, the
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collaboration of Antarctic biological, geological and physical scientists provides an
exciting opportunity to develop a comprehensive assessment of future ecosystem
vulnerabilities and resilience. But this is only likely to happen if scientists extend their
research interests beyond their discipline and are encouraged to establish true
interdisciplinary collaborations. To achieve this, historical barriers dividing distinct
areas of expertise need to be removed so that a new era of research targeted at
systematically addressing specific cross-disciplinary questions is ushered in. Biologists
need support from the climate and physical research fields (including chemistry and
geology) to solve the challenges of understanding complexity of real life systems. In turn,
physicists benefit from approaches that address obvious requirements of society. Large
international initiatives, once sufficiently developed, could in the future provide an
appropriate 'home' for advanced cross-disciplinary research e.g. the Southern Ocean
Observing System (SOOS; Rintoul et al. 2012), the Polar Climate Predictability Initiative

(PCPI; http://www.climate-cryosphere.org/wcrp/pcpi, last access: 17 May 2017) or

ongoing Scientific Research Programmes (SRP) of the Scientific Committee on Antarctic
Research (SCAR). Even more promising, would be new truly cross-disciplinary SRPs to

be developed in the near future.

In this sense, the Ist SCAR Antarctic and Southern Ocean Science Horizon Scan
(hereinafter = the  SCAR  Horizon  Scan; Kennicutt 11 et al 2015,

http://www.scar.org/horizonscanning, last access: 17 May 2017), was a key step to

opening new doors. It provided discipline-clustered overarching science questions
central to advancing science over the next two decades. The biology theme "Life at the
precipice" centred on processes of various biota (see also Xavier et al. 2016). However,

besides nature conservation issues, the genomic, molecular and cellular basis of



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

adaptation of organisms to their environment, was the only other biological challenge
highlighted in one of the published versions (Kennicutt II et al. 2014). Life in Antarctica
and the Southern Ocean is always shaped by various non-biological drivers, but
modulated and propagated through biological interactions (Gutt et al. 20133, Convey et
al. 2014). Hence, the status of ecosystems can only be evaluated if environmental
requirements of organisms are related to the chemical-physical constraints of their
survival. The present conceptual study aims to contribute to this challenge by focussing
on the urgency of cross-disciplinary approaches for the advance of Antarctic ecosystem
research. The fact that assessments by organisations such as the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; Diaz et al. 2015)
and the Intergovernmental Panel on Climate Change (IPCC; IPCC 2013) require
scientifically reliable information on interactions between the biological and physical
environment is clear evidence that such cross-disciplinary approaches are needed now.
This information is also used for the development of future scenarios and, thus, related

to socio-cultural, as well as socio-economic aspects.

The timing of such initiatives to improve inter-disciplinary approaches to Antarctic
science is appropriate, because the quality and quantity of spatially and temporally
explicit data on the state of the Antarctic environment has increased enormously in the
past few years. This refers especially to variables that are relevant as global change
stressors of ecosystems, including freshwater availability, sea-ice extent, atmosphere
and ocean temperature change, and to other anthropogenic impacts, such as fishing and
the introduction of non-indigenous species. Major advances have also recently been
achieved in application of molecular markers to study the taxonomy, diversity and

distribution of taxa. In addition, the availability of new and historic biogeographic data
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uploaded to repositories and made publicly available allows insights into large-scale
biodiversity patterns (Terauds et al. 2012, De Broyer et al. 2014) and potentially to
assess the role of contemporary and historical processes in shaping these patterns
(Convey et al. 2008). Projections of expected future changes for single physical
environmental variables, and populations of a very few iconic Antarctic species, have
been developed (e.g. Jenouvrier 2009, Bracegirdle & Stephenson 2012). In essence,
enormous single-disciplinary advances happened in the past five to ten years, and
included a transition to a new generation of SCAR SRPs (Bergstrom et al. 2006, Gutt et al.

2013a, Verde et al. 2016).

As a legacy of the SCAR Horizon Scan, a workshop was initiated by the SCAR SRP
Antarctic  Thresholds -  Ecosystem Resilience and Adaptation (AnT-ERA,

http://www.scar.org/srp/ant-era, last access: 17 May 2017; Gutt et al. 2013a). The

workshop focussed on "Interactions between Biological and Environmental Processes in
the Antarctic". The core aim of this workshop was to exchange novel ideas among
scientists to gain an improved understanding of the focal questions generated by the
SCAR Horizon Scan. The first steps towards implementation of these new ideas and
questions were also discussed. These can serve as a basis for research proposals in a
second step of project realisation. In addition, underrepresented cross-disciplinary
concepts that had been difficult to implement in the past were highlighted. Various
developments within disciplines were also discussed, because answering cross-
disciplinary questions still demands specific disciplinary knowledge (for a general
illustration of this concept see Fig. 1). The overarching aim of this paper is to present the
intellectual output of this brainstorming workshop with a focus on the most striking

novel ideas for cross-disciplinary studies in Antarctica and the Southern Ocean.
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Figure 1: Schematic view of how to achieve advanced cross-disciplinary research.

Different scientific disciplines can contribute through cross-disciplinary coordination
and management to improved scientific and societal approaches. This strategy includes

modern cross-disciplinary academic education.

To identify the fields most urgently requiring focus, the outcomes of the workshop were
clustered into eight themes according to an informal survey among the participants.
Apart from sea-ice, the themes were purposely not ecosystem-specific. The authors are
aware that this clustering, necessary for the dissemination of novel ideas, is somewhat
arbitrary. As a result, overlaps exist between the selected themes. Theme 1 on upscaling
and downscaling is considered to cover overarching approaches, which are applicable to
all other themes. Despite an attempt to cover a very broad scientific scope, the authors

accept that this paper does not and cannot claim to represent a complete overview but
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rather the identification of leading novel research themes from, and for, the Antarctic

scientific community.

The workshop was held in September 2015 at the Institute of Marine Sciences in
Barcelona, Spain. SCAR SRPs and research initiatives, which contributed to this
conceptual study in addition to AnT-ERA, were State of the Antarctic Ecosystem (AntEco,

http://www.scar.org/srp/anteco, last access: 17 May 2017), Antarctic Climate Change in

the 21th Century (AntClim21, http://www.scar.org/srp/antclim21, last access: 17 May

2017), Antarctic Climate Change and the Environment (ACCE,

http://www.scar.org/ssg/physical-sciences/acce, last access: 17 May 2017),
Biogeochemical =~ Exchange  Processes at  Sea  Ice  Interfaces  (BEPSI],

http://www.scar.org/ssg/life-sciences/bepsii, last access: 17 May 2017), Past Antarctic

Ice Sheet Dynamics (PAIS, http://www.scar.org/srp/pais, last access: 17 May 2017),

Expert Group on Birds And Marine Mammals (EGBAMM, http://www.scar.org/ssg/life-

sciences/bamm, last access: 17 May 2017), and Integrating Climate and Ecosystem

Dynamics in  the  Southern Ocean  (ICED, Murphy et al. 2008,

http://www.iced.ac.uk/index.htm, last access: 17 May 2017).

1. Theme 1: Spatio-temporal scales: upscaling and downscaling in climate change
research.

1.2 Background and justification.
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Figure 2: Spatio-temporal perspective of research approaches to understanding
multi-scale ecosystems. Currently climate modelling, remote sensing and in situ
observations occupy the distinct regions of understanding. The EPIC approach
(Ensemble Projections Incorporating Climate model uncertainty) is an example of a class
of approaches that seeks to take predictions, contextualise with what is known about

variability and determine implications at smaller scales (Lewis et al. 2017).

Climate change fundamentally operates over a range of spatial scales and involves
multiple variables in addition to air temperature, i.e. impacts extend beyond the often-
used term 'global warming'. Responses of biological systems to climate change, and
more widely to all aspects of environmental variability and change, can operate over a
broad range of temporal scales, from diurnal through to evolutionary, and spatial scales
from square or cubic metres with distinct biological patchiness to many kilometres
(Peck et al. 2006, Peck 2011, Blois et al. 2013). Biological responses, in turn, feed back

on climate so that the system must be viewed as multi-scale (e.g. Lavergne et al. 2010).

Multi-scale is a convenient term, but it is exceedingly challenging to implement in

Antarctic ecosystem studies. Required observations need to be carried out
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simultaneously at a range of scales, and modelling needs to encompass a range of scales
(e.g. Adlandsvik & Bentsen 2007). Spatio-temporal is also a term that suggests a good
understanding of the dynamics is required across multiple spatial and temporal scales
but, again, this is not easily achieved (Fig. 2). The implication then is the requirement to
know everything, everywhere and all the time - something patently impossible.
Furthermore, making observations at high latitudes is logistically challenging. Often it is
difficult to develop simultaneous spatial and temporal perspectives on a given process
let alone interactions between processes (e.g. Sinclair et al. 2014). Simplistically, while
the climate as a driver can be viewed as physical, it is clearly multi-disciplinary as it
incorporates chemical and biological processes (Niiranen et al. 2013) that range across

multiple scales.

This suggests effort must go into focusing on predictive skills for targeted questions,
especially around connecting different spatial scales, both upscaling from small local
scales to hemispheric scales, and downscaling from global to local scales. To aid such
efforts, one needs to consider (a) what are the critical scales for linking biological
responses to climate and where do current knowledge gaps lie, (b) what data are needed
to more effectively link biology and climate, relevant to what is to be predicted, (c) how
and what simulation tools (models) can be best used to upscale and downscale biological
responses. Connecting these scales will be a necessary component of almost all aspects
considering ecological change in relation to climate in Antarctica. In terms of research
structure, it is useful to identify what can be produced in an overarching sense,

irrespective of the ecology in question, and what needs to be process-specific.
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The overarching aim of upscaling should be a comprehensive and spatially explicit large-
scale knowledge of responses of ecosystems to environmental change derived, in part,
from localised data (e.g. Sinclair et al. 2014). Downscaling should lead to a better system
understanding by focussing on a comprehensive understanding of interactions between
selected biological and non-biological variables. This is predominantly based on detailed
observational data, which are also needed to advance ecosystem modelling and
projections but primarily not including spatial variability. However, downscaling must
focus on scenarios that are representative of larger components of the Antarctic
environment, including the ecosystem i.e. extending approaches applied by Rickard et al.

(2010) to contribute to a whole ecosystem view.

1.2 Questions.

1. Projections of future changes in climate are best generated using global climate
models, which generally simulate atmosphere, ocean and cryosphere changes at
quite a coarse grid spacing (e.g. horizontal 100 km x 100 km); how efficiently (i.e.
what scales can be transitioned in each step), and to what extent, can climate model
outputs be usefully downscaled?

2. What key elements are missing from these large-scale climate models both
structurally (e.g. ice shelves and their cavities) or in regards to parameterizations
(i.e. parameterization of sub-grid-scale processes)? This approach recognises that
climate projections, remote sensing and in situ observations do not always span the
same spatio-temporal scales (Fig. 2).

3. How interconnected are scientific disciplines (physics, biology, chemistry,

geology/sedimentology) when transitioning various scales?
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4. Is upscaling the simple reverse of downscaling, and vice versa? If not, what are the

fundamental differences?

1.3 First steps towards implementation.
First, goals need to be defined to enable models to work sufficiently as tools to
understand how change will manifest itself in biological/ecological systems. To define
and then achieve these goals, a clear dialogue between observational and modelling
communities needs to be established and maintained.
* Biology must be parameterized well, including definitions of key parameters, to
inform cross-disciplinary models.
* Models from different disciplines should be embedded within each other by
bridging fundamental differences in biological and physical spatio-temporal data.
* A quantified differentiation between realistic variability of the climate system
('noise') and scales not captured by the models ('aliasing') should be developed.
* Specific biophysical systems need to be identified as logical, tractable starting-
points for an overall project.
* Taking a system view, minimum standards for adequately defining and describing
the system should be identified.
* Observational gaps and first-principle models can provide a set of tools for

conducting thought experiments.

2. Theme 2: Risk maps and ecoregions.
2.1 Background and justification.
Our current understanding of Antarctic biodiversity has been catalysed by the growing

discovery of its rich ecological diversity and complex biogeography (Convey et al. 2008,
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2014, Terauds et al. 2012, Gutt et al. 2013b, Chown et al. 2015). In parallel, projections
to 2100 suggest faster rates of change with higher amplitude of physical changes than
previously experienced (IPCC 2013, Bracegirdle & Stephenson 2012). This includes, in
particular, changes in melt-water flux, ocean and atmospheric circulation, sea-ice extent
and thickness, stratospheric ozone concentrations, and CO> fluxes, as well as changes in
the frequency and strength of patterns of change such as the El Nifio - Southern
Oscillation, the Southern Annular Mode and the Pacific Decadal Oscillation. Despite
significant uncertainties that remain, it is apparent that in addition to currently-
observed changes, projected changes in the physical environment will have a
considerable effect on the distribution of organisms due to geographical shifts and

disappearance of suitable habitats, and on ecosystem functioning.

Ecoregions are strongly cohesive and recognizable areas determined by unique
biological assemblages and abiotic (climatic) environments, delimited with distinct but
dynamic boundaries (Spalding et al. 2007, Koubbi et al. 2010, Bailey 2014). They include
habitat suitability, i.e. maps reporting current availability of optimal conditions for
species and communities. Risk maps constitute essential tools for conservation planning
by designating Antarctic Specially Protected Areas (ASPAs) and Marine Protected Areas
(MPAs). They also provide a baseline for establishing key sites for environmental
monitoring, assessing ecosystem vulnerabilities, and predicting the consequences of
future scenarios on biodiversity (Constable et al. 2014, Gutt et al. 2015). Ecoregions can
be used as operational areas on which ecological scenarios of highest risk of biodiversity
loss and functional shifts can be formulated to produce risk maps (i.e. maps forecasting
areas where changes are more likely to occur) and to provide current baselines as

reference points for climate changes, to assess human impacts on the continent. Species
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and community distributional data suitable to produce such maps are still scarce.
However, for some study sites and in some case studies, the quality of data enables such
assessments and models (e.g. Nkem et al. 2006, Pinkerton et al. 2010). Initiatives such as
the OBIS-ENV-DATA pilot project, established to combine biological, physical and
chemical data sets within the same repository, are a major step forward in this direction,
being similar to the approach of the research programme Antarctic Terrestrial Observing

System (ANTOS; http://www.scar.org/ssg/life-sciences/antos, last access: 17 May

2017). The US Long Term Ecological Research Sites of the McMurdo Dry Valleys
(terrestrial) and Palmer Station on the Antarctic Peninsula (marine), and the French
Long Term Ecological Research PROTEKER observatory at the Kerguelen Islands, are

examples of long-term field monitoring of physical processes and ecosystem change.

The long-term objective of this theme is to produce risk maps. They must cover
biologically relevant scales and derive from field observations. This can reach the scale
of the entire Antarctic continent and the Southern Ocean using airborne and satellite
remote sensing techniques. The overarching aim is to define at-risk ecoregions in order
to provide the best possible scientific basis to protect unique, vulnerable and valuable

ecosystems in Antarctica and the Southern Ocean.

2.2 Questions.

1. What are the most important anthropogenic and natural impacts for species
distribution and regional biodiversity?

2. Where are the locations expected to be most impacted by future environmental
changes and how do these correlate with hot-spots and cold-spots in vulnerability to

environmental changes?
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3. Which non-linear changes and thresholds will have a critical impact on
biophysical/biological processes, for instance, changes in liquid water availability
and increased ecosystem connectivity on land as a result of increased glacial melt
and changes in precipitation?

4. What is the regional risk for the introduction of non-native species and their likely
impacts on natural ecosystems, i.e. increase in access, exceeding thresholds in
survivable conditions for endemic species, development of suitable conditions for
non-native species, human traffic, as well as atmospheric transport?

5. To what extent does environmental change alter the effectiveness of dispersal
mechanisms, source/sink dynamics and the potential for both native and non-native
species to spread through e.g. aeolian and oceanic currents and processes?

6. When did current trends of change commence and are there signs of acceleration?

2.3 First steps towards implementation.

A first step towards understanding the impact of physical changes on life in Antarctica
would be high-resolution temporal observations of ecosystem drivers. These are to be
measured within a monitoring network able to help refine models to quantify and deal
with expected uncertainties. Recent efforts by PAGES (PAGES 2ka Consortium 2013) to
develop regional reconstructions of changes in temperature (Stenni et al. 2017) and
snow accumulation over the past 2,000 years (Thomas et al. 2017) are useful efforts to
identify climatic regions and to assess their current trends in view of the recent climate
variability. Such networks should be established further particularly in rapidly changing
regions and, for comparative purposes, in regions expected to remain stable. To quantify

the likely impacts based on currently-available information and models, it will be
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important to develop and apply new metrics and evaluation tools such as the Earth

System Model Evaluation Tool (ESMValTool; Davin et al. 2016).

A stronger collaboration of biologists, physical oceanographers and climate modellers,
will allow us to more robustly identify key regions and locations that are vulnerable to
future change including improved abilities to map biological communities, determine
species ranges, and physiological vulnerabilities or robustness. These could serve as the
foci of intensive comparisons between modelling and observations to fill in missing data
gaps. Once this monitoring network is established, it will be possible to develop
benchmarks and to understand sensitivity to thresholds for species and communities
that are likely to face environmental changes in the future. Up- and downscaling (see 1.
Theme 1) is likely to play an important role for this approach. Emphasis should be
placed on estimating when and where rapid and especially non-linear changes will
occur, as this could lead to identification of biologically relevant thresholds or ecological
tipping points (Nielsen & Wall 2013, Fountain et al. 2016). This task can only be
achieved by establishing an internationally cooperative and geographically
comprehensive and robust monitoring system to produce a reference baseline and

understanding relevant to ecological processes in this context.

3. Theme 3: Organism responses, resilience and thresholds.

3.1 Background and justification.

Understanding the impacts of Antarctic climate change on marine and terrestrial
organisms ultimately depends on understanding the specific tolerance of species to
changes in their current environment. To define where and when organisms will first

experience conditions that threaten their future persistence therefore requires intimate
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knowledge of species traits and their tolerances. However, in broad terms, organisms
that have high specificity for habitats and, thus, low resilience to change in specific
properties, e.g. sea-ice, or other environmental demands such as a specific food
preference, will likely be the 'losers' of anthropogenic change. By contrast, species
endowed with the adequate physiological plasticity and/or being able to count on
genetic evolution may be 'winners' in future climates, although they may not be able to

compete with non-native species in the longer term.

According to Schofield et al. (2010), the conservation and management of polar marine
populations (Simmonds & Isaac 2007) requires an elucidation of the causes and impacts
of marine ecosystem changes. These studies will only succeed if they can accommodate
the concepts of time-dependent species modifications by natural selection
(microevolution) and phenotypic plasticity. Species and ecosystems may undergo
sudden shocks in response to external changes falling in the proximity of their
thresholds or tipping points. When environmental changes exceed a threshold or tipping
point, life, ranging from a single cell to ecosystems, may rearrange and reach an

alternative stable state (Nielsen & Wall 2013).

Besides altered food availability, the temperature variability may be a major factor in
dictating responses, especially of Antarctic organisms, to environmental change. For
example, terrestrial plants exposed to seasonal temperature variations exhibit higher
physiological plasticity than Antarctic fish, which are exposed to year-round relatively
stable temperatures. For terrestrial organisms water is recognised as the main driver of

biodiversity processes in the Antarctic (Convey et al. 2014).
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The objective of this theme is to highlight the fact that knowledge on species-specific

traits and environmental requirements is essential for most, if not all, approaches to

assess the response of species and thresholds, as well as the resilience of ecosystems to

environmental change.

3.2 Questions.

1.

When and where are environmental changes in Antarctica and the Southern Ocean
projected to surpass natural variability of the climate system; when and where will
such changes exceed tolerance limits of key species?

To what extent can potential biological responses and tipping points be extrapolated
from the fossil record, genetics, and physiology?

To what extent can functional groups/key species be wused to develop
useful/informative systems models, and can these models predict the impacts of
environmental change?

What are the likely range shifts in existing species and where will invasive species
become established under future environmental conditions, e.g. due to changes in
vectors such as currents, winds, frontal zones, running water, permafrost, humans,
sea-ice extent?

What are the most urgent interfaces, where physiologists and geneticists in
particular, must work together with physical scientists to ensure that information
generated is equally relevant across disciplines and as ecologically relevant as

possible?
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3.3 First step towards implementation.

Modern distribution patterns of a wide range of Antarctic organisms can be assessed
from existing biodiversity databases, such as www.biodiversity.aq. Through
collaboration with oceanographers, chemists, sea-ice scientists, geologists, glaciologists
and modellers, distribution patterns can be mapped against environmental datasets to
define the realised environmental envelope of single species and communities.
Additional information on the physiological and ecological limits of an organism or
tissue can be obtained through genetics, advanced biomolecular methods, such as
transcriptomics (e.g., Sadowsky et al. 2016), and implemented in ecological concepts,
models and biogeographical projections (Kearney & Porter 2009, Chevin et al. 2010,
Portner & Gutt 2016). All these approaches could usefully include comparative studies
along gradients in terrestrial, limnetic and marine systems, such as between fjords of the
Antarctic Peninsula and northwards to the South Shetland and South Orkney Islands and
to the sub-Antarctic. Physical models of predicted environmental change should be used
to target those regions that will reach predicted thresholds first, so that monitoring
programmes can be established to detect non-linear changes in populations, including
the establishment of invasive species (see also 2. Theme 2). Environmental variability
and change at biologically relevant scales needs to be identified and tracked (e.g.
ANTOS-type programmes), to accurately advise biological, physical, and Earth science
studies. System models will need to include features such as cascade effects, food webs,
changes to ecosystem function and services, points of no return, new stable/equilibrium

states, highly resilient versus non-resilient assemblages and evolution.

To understand which organisms are likely to be impacted, where thresholds may be

crossed, and where the consequences of change are likely to be strongest, the upper and
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lower tolerance limits controlling their distribution are to be defined. For example,
geographic ranges have been analysed for selected species using existing database
records (see Barnes et al. 2009); a next step would be to take known species ranges and
plot these against the oceanographic, chemical and physical properties to develop more
accurate species environmental requirements. In parallel, the ecophysiology of
ecological key species must be studied because knowing only their current distribution
without further system understanding is obviously not sufficient to model their future
distribution. Environmental envelope modelling, such as illustrated in a preliminary way
in the study of Hughes et al. (2013) assessing the potential current limits to the
distribution of the maritime Antarctic non-native terrestrial midge Eretmoptera
murphyi, illustrate the potential utility of geographic range modelling both under
current and future climate scenarios. One of the biggest challenges is to integrate

biomolecular data into ecological distribution models (Gutt et al. 2012).

Only a collective and a cooperative effort from coordinated and cross-disciplinary
research groups in conducting large-scale meta-studies will encompass the sources and
bias of variability (time and space scale), helping to reach a breadth of knowledge and

avoid the risk of under- or overestimating the impact of climate change on biodiversity.

4. Theme 4: Ecosystem response to natural climate variability and anthropogenic
change: studying the response to multiple stressors.

4.1 Background and justification.

Ecosystems are almost always shaped by several environmental parameters, and in the

Antarctic, biological interactions are not as relevant as in other ecosystems, e.g. tropical
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rainforests and coral reefs. Only rarely it is easy to identify the most important physical
driver, e.g. water availability for terrestrial vegetation. Pelagic species, for instance, are
exposed to increasing carbonate undersaturation due to ocean acidification (OA), which
is driven by atmospheric CO; concentration, pressure and temperature. Since under OA
marine organisms need more energy to maintain their calcium-based shells and
skeletons, OA is never the problem alone; it is always accompanied by temperature,
pressure and food/nutrient availability. For Antarctic benthic species on the deeper
continental shelf, it is not possible to identify only one or two major natural drivers.
Relationships to depth for instance, may relate to associated changes in temperature,
pressure, dissolved oxygen, food availability and depth of iceberg scour. Climate change
and its impacts on ecosystems includes not only include temperature increases, but is a
phenomenon comprising temperature, wind, quality and quantity of precipitation, and is
related to the ozone hole causing increased UV-B radiation. In addition to natural and
indirect anthropogenic drivers such as climate change and OA, all the aforementioned
ecosystems are or were exposed to direct anthropogenic impacts, such as whaling and
fishing, local pollution, invasion of alien species, soundscape changes and terrestrial

habitat loss (Tin et al. 2009).

Timescales associated with complex ecological processes, briefly described above, range
from nanoseconds (cellular processes) to millions and billions of years (species
evolution). When studying the effects of long-term trends and variability in climate on
ecosystems, scaling climate change projections to biologically relevant temporal and
spatial scales is challenging. Quantifying the extent to which changes in climate push
Antarctic ecosystems beyond the natural variability (e.g. daily to seasonal variation) to

which they have adapted (Fig. 3) requires a combined physical and biological
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perspective. Although increases in temperature or changes in water availability may be
important drivers of Antarctic ecosystems (Convey et al. 2014), exposure to novel
climates could have much greater impacts. To predict the potential impacts of climate
change it is therefore necessary to assess the severity of such events of the past and
presence beyond intrinsic variability. For the physical Antarctic climate system, the
Amundsen Sea Low is the most variable region of the global atmosphere, which must be
taken into account when considering potential future envelopes of change in the
physical system (Hawkins et al. 2016). Long-term sampling can determine the ‘baseline
variability’, but this is limited in the extent to which it can inform projections of

anthropogenic climate change.

Increase in the mean Increase in the variance Increase in the mean
and variance

More
weather Much more

weather

More cold

weather Less change

For cold weathe

More record
hot weather

More record
hot weather

More record
hot weather

Probability of occurrence
Probability of occurrence
Probability of occurrence

Less cold
weather More record

cold weather,

Cold Normal Hot Cold Normal Hot Cold Normal Hot

Figure 3: Environmental shifts and response of species occurrence. A change in
climate at any location can be considered as a shift in the probability density function
(PDF) of the climate variable of interest, such as temperature, a change in the width of
the PDF, or some combination of both. While a shift in the PDF to higher temperatures
may be small (~1°C), the increase in the number of days when maximum temperatures
exceed some threshold can be a factor or 2 or 3 larger. Since biological systems are more
likely to respond to the severity, duration and frequency of such extreme events,
attention must be paid to the tails of the distributions of climate states when considering

biological responses to climate change.
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The objective of this theme is to find solutions to disentangle cause-effect relationships,
and multiple global change stressors. The real challenge therefore, is to identify intrinsic
and extrinsic biotic responses using statistical methods, which permit the design of
hypothesis-driven multiple-stressor experiments as well as provide adequate

parameterization in global ocean-climate models.

4.2 Questions.

1. What methods are available to detect trends beyond natural variability in climate
time series?

2. To what extent does past climate variability moderate species’ responses to
anthropogenic climate change?

3. How can outputs from projections from Earth System Models be tailored to match the
spatial and temporal scales required to understand biological system responses?

4. How can statistical models be used to design robust multiple global-change stressor
experiments?

5. What is the real contribution of biological CO; uptake of the Southern Ocean to the
global CO2 budget and what is its variability in space and time, in the present and

future?

4.3 First steps towards implementation.

To better assess Antarctic ecosystem responses to climate change, large ensembles of
climate model simulations are required. They allow better quantification of future
climate envelopes (Fig. 3) and the definition of ranges of stress, which must then be

applied at ecologically relevant temporal and spatial scales. As they are now just
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becoming available, they provide novel research opportunities, for example, the Large
Ensemble Community Project (Kay et al. 2015). Changes in ecosystems may then
potentially feedback on the climate system. This requires (a) better communication
between the biology and climate physics communities, and (b) techniques that provide
two-way connections between climate models and ecosystems at the relevant spatial
and temporal scales. Semi-empirical models can help to identify which variables, i.e.
environmental factors, are most relevant to determine the response of the biological
system to changes in key climate variables, and thereby contribute to better

understanding of cause-effect relationships.

5. Theme 5: Interactions between biological and climate processes - Antarctic top
predators and food webs.

5.1 Background and justification.

Ecosystem processes occurring in the vast expanses of the Southern Ocean, including
under the sea-ice and ice shelves, remain difficult to examine with conventional methods
(e.g. surveys from research ships, remote sensing). However, this region is regularly
visited by a wide range of species that cover most of the uncharted volume of the
Southern Ocean: from penguins and albatrosses to seals and cetaceans; from the
continental shelf through the deep-sea to the northernmost limits (and beyond) of the
Southern Ocean. With the advent of animal-embarked data-recording technology (bio-
logging, Ropert-Coudert & Wilson 2005), these foraging animals have been turned into
living probes, scouting the environment and delivering not only biological information
on their ecology, but also a wealth of physical information on parts of the Antarctic

environment that are still poorly studied. As an illustration of this, CTD profiles obtained
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by data recorders attached to elephant seals (Mirounga leonina) are achieving more than
simply complementing those given by Argo floats: they are doubling the dataset (Roquet
et al. 2014). In this domain, prospects for future cross-disciplinary studies (e.g. bridging
biology, oceanography, engineering, physics) are booming as the type of data that can be
acquired by animal-embarked technology benefits from progression in, for example, the
mobile phone industry. New sensors measuring dissolved oxygen, bioluminescence, sea-
ice thickness, acoustic signals, amongst others, are set to help physical oceanographers,
biochemists, plankton biologists and trophic ecologists, to address the questions below.
Cameras attached to the heads of seals and penguins provide direct insights in their
feeding behaviour and food preferences, as well as additional information on under ice-

shelf habitats, e.g. isopods living attached to the ice subsurface.

The overarching scientific aim of combining biological and physical methods and
approaches is to identify the major drivers of top predator populations, the position and
functioning of regions of ecological importance, and to predict their development under
climate change. A mechanistic understanding of the biophysical processes controlling
trophic chains in the Southern Ocean is needed for assessing the impact of climate
change scenarios - which are expressed in terms of physical changes - to marine
populations. In turn, this knowledge should support the deployment of conservation

actions, like the establishment of marine protected areas.

5.2 Questions.
1. What are the biotic and abiotic mechanisms controlling energy and biomass flow

from primary producers to top predators at various temporal and spatial scales, and
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change according to shifts in the physical environment? What are the spatio-
temporal scales and key locations associated with these mechanisms?

2. How can dynamic multi-scale food-web models (biomass and carbon-based) be
constructed that include physical and biological data, as well as threats (human
impacts, pollution, fisheries)?

3. What is happening under the sea-ice and ice shelves: new sensors to help us
understand physical and biological processes in habitats that are beyond the reach
of traditional methods?

4. What are the key biophysical mechanisms through which climate change will impact

marine ecosystems?

5.3 First steps towards implementation.

In this context, the assemblage of a network to maximize usage of
chemical/physical /biological, multi-scale data collected by top predators is a priority.
An additional goal of such a network would be to maintain a state-of-the-art survey of
progress in monitoring technologies so as to inform users of animal-embarked devices
from the physical and biological sciences of the latest trends in sensor development.
Continuity is particularly important in these years, in which the anthropogenic signal of
climate change is emerging. Enhanced collaboration between research disciplines
should be favoured through the organization of dedicated programmes/surveys that
would integrate a wide range of expertise, as well as cross-disciplinary fora that would
emphasize data sharing, homogenization and centralization. Finally, urgent questions on
the current state and future of the well-being of Antarctic top predators demands the
integration of the data obtained from modern sensor development and use by advanced
modelling techniques, including the simulation of the dynamics of trophic interactions.

In terms of scales, satellite observations are now opening a new frontier, allowing for
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the first time mapping of the environment at a scale that approaches the resolution of
animal telemetry. Thanks to Synthetic Aperture Radar and visible imaging, the details of
complex landscapes like the ice margin are now accessible. In the open ocean, activities
such as the Surface Water and Ocean Topography mission will soon provide fine-scale
details of ocean circulation, making it possible to reconstruct the physical context at the

resolution of the behavioural switches of marine predators.

6. Theme 6: Impact of changing ice sheet dynamics on circumpolar, nearshore, and
off-shore environments.

6.1 Background and justification.

Anthropogenic pressure forces the Antarctic ice shelves and glaciers to retreat and
consequently modify the coastal and continental shelf ecosystems. For example,
phytoplankton blooms in recently opened water areas and the subsequent downward
fluxes of fresh organic matter set conditions for the benthic recolonization of the seabed
(Bertolin & Schloss 2009, Sané et al. 2011). Glacier melt run-off releases sediment and
nutrients into the water column, which can both stimulate and hamper photosynthesis
and also affect benthic life (e.g., clogging, burying) (Sahade et al. 2015). Massive icebergs
calving from the ice shelves can scour the sea floor to several hundred metres in depth
and remove benthic life from it on their way, but also stimulate life in the pelagic realm
(Gutt et al. 2011, 2013c). They can also affect large areas of the continental shelf, where
pelagic life would otherwise flourish (Arrigo et al. 2002, Vernet et al. 2012). At the same
time, melting glaciers and receding ice fronts may result in the exposure of new ice-free
land as well as intertidal zones, which in turn may support terrestrial and limnetic

ecosystem development.
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The developmental trajectories of these new ecosystems obviously depend on a
multitude of factors. These include the bioavailability of nutrients, the connectivity with
existing ecosystems affecting colonization dynamics, microclimatic conditions and biotic
interactions, such as soil formation processes and nutrient remineralisation by
microbes. The effect of physical and chemical parameters on these newly emerged
ecosystems is also expected to vary through time. For example, liquid water may
become increasingly available in a particular region due to direct meltwater input from
retreating glaciers, while conditions may become drier over longer timescales when the
ice front further retreats and local sources of water become exhausted. Many of these
processes have been occurring more extensively in recent decades (e.g. Favero-Longo et
al. 2012) and opened the opportunity to study them for the first time in the history of

science.

With a trend of increasing ice shelf disintegration and glacial retreat, other discrete
regime shifts in coastal waters are expected over the coming decades, and the direction
of these regime shifts may change in a second phase thereafter, their impact on the
terrestrial, near-shore and off-shore ecosystems must be addressed and their effect and
direction in which they may change in the future must be anticipated. Such studies can
also incorporate large field experiments aimed at assessing the general resilience or

vulnerability of Antarctic ecosystems.

6.2 Questions.
1. What is/was the effect of ice-shelf collapse, glacier retreat and iceberg scouring in
the past, present and future on benthic marine, intertidal and terrestrial biodiversity

and nutrient cycles, e.g. biological storage, release, sequestration, and
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remineralization of nutrients over space and time, including the devastation of
benthic assemblages through iceberg scour, and fast-ice occurrence?

2. What is the contribution of nutrients (e.g., iron fertilization) from icebergs and wind
from exposed land surfaces to local and regional primary production in a changing
pelagic environment?

3. How do fjord/coastal ecosystems drivers (e.g., meltwater and glacial sediment
inputs, light regime) and ecological responses change along the Western Antarctic
Peninsula (WAP) and other regions with obvious climate gradients?

4. What are the timescales and dynamics (continuous versus episodic, local versus
regional) of climate shifts around the Antarctic continent, and how will these shifts
be reflected in under-ice shelf, fjord and sea-ice shaped ecosystems?

5. Which Holocene climate-change ice-shelf and sea-ice processes, and their biological
responses, are mirrored by sediment characteristics, which, in turn, affect (other)
biological processes, especially at the sea floor?

6. How will the glacier-retreat affect the appearance of more connected habitats shape
the diversity of terrestrial and limnetic ecosystems, and what will be the short- and
longer-term effects of changing physical, chemical and (micro-) climatic conditions
on these ecosystems and their functioning?

7. How important are microbial microfilms in the recolonization of ice-devastated
benthic habitats and what is the role of the early-life history for the recruitment of

invaders?

6.3 First steps towards implementation.
Improved approaches of upscaling (see 1. Theme 1) have to be applied because glacier

and ice-shelf disintegration is a local phenomenon but the expected impact is regional. It



807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

is important also to apply downscaling techniques, e.g. to understand the consequences
of higher turbidity for pelagic and benthic organisms and to date significant sediment
layers. Emphasis has to be placed onto the dynamics of cryosphere-ocean interactions
(e.g., ice-shelf and marine ice sheet collapse) and ice-sheet processes (e.g., rapid melting,
glacial erosion, pulsed iceberg inputs) to be studied through modelling and
observational surveys (Scambos et al. 2003) as well as documentation of past changes
(Scherer et al. 1998; 2016). This especially refers to biologically relevant changes e.g.
water mass characteristics, rather than the recently emphasized physical changes, such
as sea-level increase. Cross-disciplinary studies can be supported by more
sedimentological results acting as an archive for recent processes in the water column,
e.g. transitions from sub-ice shelf to sea-ice ecosystems in response to climate forcing
(Safié et al. 2013). Better dating of Antarctic marine sediments will benefit more than
studies focussing on ice-related habitats. Biological studies under areas of permanent ice
(sea ice and ice shelves) provide a technical challenge but are broadly significant.
Currently-available technology, such as autonomous underwater vehicles and crawlers
can provide valuable, previously almost non-existent, information across broader scales
and with higher spatial resolution than that obtained through drilling cores. Good
results might also be achieved when remotely operated vehicles are deployed through
drill holes. The application of swarms of autonomous probes using collective intelligence
might solve the problem of obtaining results that are representative for large areas. This
is especially important since these areas are highly relevant to understanding ecosystem
functioning, including feedback processes between life in the ocean, the cryosphere and
the atmosphere. Modelling and long-term observations of ice dynamics and the
relationship to climate forcing (applying ecologically relevant spatial and temporal

scales) improve predictions of the impact of the behaviour of ice bodies on marine
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ecosystems. A better understanding of environmental and biological processes induced
by small-scale upwelling around marine glacier termini and around grounded as well as
floating icebergs will allow the assessment of some still fragmentary knowledge on
polar-specific ecological processes. Terrestrially relevant information can be obtained
from monitoring studies, in combination with space-for-time substitution approaches, in
which glacier forefields can be used to study the short- and longer-term effects of
receding glaciers on the interplay between biological processes and nutrient and carbon

dynamics in soils, wetlands and lake ecosystems.

7. Theme 7: Sea-ice ocean and sea-ice atmosphere boundary layers - impact of
changes on primary production and other biological processes.

7.1 Background and justification.

Trends over recent decades in Antarctic sea-ice distribution contrast dramatically with
what is happening in the Arctic. While Arctic sea-ice extent has been reaching record
lows, satellite data have shown that sea-ice extent had been increasing around
Antarctica since the satellite era started in 1979, with the extent exceeding 2 x 107 km?
for the first time in 2014. In 2016/17, however, the recent record Antarctic summer low
highlights the possibility of a switch to future declines in sea ice extent

(http://nsidc.org/arcticseaicenews/2017 /01 /low-sea-ice-extent-continues-in-both-

poles/, last access: 17 May 2017). However, there are large mid-term regional
differences, with slight increases in the Ross Sea area and off East Antarctica and
extensively declining ice cover in the Bellingshausen/Amundsen Seas (Comiso et al.
2017). Variation in sea-ice cover may be associated with large-scale atmosphere-ocean

features like the Southern Annular Mode and the El Nifio-Southern Oscillation (Kwok et
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al. 2016), identified by the decline in ice cover during 2015 and 2016. Currently, the
majority of simulations conducted as part of the Coupled Model Intercomparison Projects
(CMIP) indicate ice-extent trends that are the opposite of what is currently happening.
The reasons for this are difficult to identify and could simply be a consequence of
different timings in natural ocean cycles. Irrespective of the ultimate explanation, the
model-observation differences appear to be associated with inability to reproduce
observed trends in surface temperature in the ice covered and surrounding regions

(Comiso etal. 2017).

The ecology and productivity of the Southern Ocean are strongly influenced by the sea-
ice cover (Smith & Comiso 2008). Sea ice causes the replacement of surface water
through vertical mixing during the growth period when dense water is formed, gets
submerged and is replaced by nutrient-rich water from below. During ice retreat, the
melt-water forms a stable surface layer that is exposed to abundant sunlight and
becomes an ideal platform for photosynthesis. With algal biomasses 1000 times higher
than pelagic concentrations, sea-ice forms a rich support for higher trophic levels. It
seeds pelagic blooms and the high sedimentation rates of ice algae fuel benthic
communities (Riebesell et al. 1991, Isla et al. 2009). Hence, sea-ice-associated
communities also form the basis of Antarctic marine life. Reductions in the extent and
timing of sea-ice around the WAP since 1979 have been associated with phytoplankton
community spatial shifts (Montes-Hugo et al. 2009) and with shifts from a krill-
dominated to a salp-dominated community (Atkinson et al. 2004). Such changes may

have important cascading effects on higher trophic levels (Schofield et al. 2010).
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Sea-ice biogeochemistry is a new and growing scientific discipline. Due to its large
heterogeneity in time and space, sea-ice is a difficult medium to study and from which to
construct a generalized view of state parameters, let alone of quantitative process rates.
Sea-ice is an important mediator in the carbon-cycle, driving carbon exchange from
atmosphere to ocean and vice versa due to extreme and specific physical, chemical and
biological processes in the ice matrix (VanCoppenolle et al. 2013). Sea-ice also
contributes to the dynamics of other climate-relevant gases, such as dimethyl sulfide
(Tison et al. 2010) and halocarbons, and to the oxidative capacity of the cold Antarctic
atmosphere (Simpson et al. 2007). Many processes are still unknown and may be very
different across long regional gradients, making it a challenge to advance our
understanding of the system. Close collaboration between field scientists and modellers

is needed to bring this field of research forward (Steiner et al. 2016).

Given the above, sea-ice as a habitat and driver is highlighted here because (a) sea-ice
biogeochemistry potentially contributes to the global C-cycle and is important for the
Antarctic marine foodweb, (b) this highly relevant issue was not identified in the
questions of the SCAR Horizon Scan, (c) sea-ice - primary production relationships are

not yet well understood.

7.2 Questions.

1. What methods are available to model movement of sea-ice on a bay-scale? How can
these models/results feed climate models?

2. Can physical modellers help with predicting small-scale features like leads, ridges,

first-year ice versus multi-year ice, floe drift and polynya development?
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3. Which are the important predictors of climate gas fluxes and heat exchange between
ocean, sea-ice and atmosphere?

4. How can information on historical shifts in sea-ice extent be improved (e.g. through
sediment records or time-series of pelagic species biomass) to match with ongoing
changes detected from satellite data and model simulations of periods further back in
time?

5. What is the contribution of sea-ice to the global C-cycle in general and specifically to
SO biology?

6. What happens with the coastal and offshore blooms when ice disappears?

7. What is the role of ice-shelf cavities on sea-ice growth and under-ice habitat

structure? How will this change when ocean water warms?

7.3 First steps towards implementation.

Since seasonality is perhaps the most important characteristic of Antarctic sea-ice, year-
round studies are needed to understand the high temporal variability of biogeochemical
processes and feedbacks with climate. Modellers should become involved in the
development of such field experiments at an early stage, so as to collect field data that
can be directly implemented in models. The challenge will be to develop a set of tools
useful for future projections on the impact of sea-ice on the regional carbon/primary
production cycle. This can be done by using scenarios of both rapid sea-ice melt-back
and more stable sea-ice cover in coupled models, thereby taking account of the
uncertainty in future projections (models project significant melt, observations so far

indicate only regional melt).
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Improvements can be made through small-scale modelling of ice movement, formation
and melting by combining weather data with sea-ice extent. To resolve small-scale
features in sea-ice relevant to gas- and heat-exchange processes, statistical distribution
models need to be developed from satellite data that can then be extrapolated to the
regional scale. In order to improve modelling of biogeochemical cycles in sea-ice and the
coupling between sea-ice and ocean, benthos as well as atmosphere, there is an urgent
need for more studies of inter-annual variability using time series of biogeochemical

parameters.

8. Theme 8: Evolution of biota in relation to glaciation history, marine and
terrestrial glacial refugia, trans-Antarctic seaways and connectivity.

8.1 Background and justification.

Antarctic biota are a reservoir for evolutionary novelty, including adaptations to a
unique environment following natural selection over millions of years in response to
past climate changes and tectonic events (Clarke & Crame 1989, Poulin et al. 2002,
Convey et al. 2008, 2009, Fraser et al. 2012, Strugnell et al. 2008, Wilson et al. 2013).
The break-up of Gondwana led to the geographic isolation of the continent, the
formation of the Southern Ocean and in particular the Antarctic Circumpolar Current,
and accelerated the development of continental-scale Antarctic ice sheets (Zachos et al.
2001). Over time, repeated glacial-interglacial cycles have resulted in a wide range of
environmental conditions as well as changes in the connectivity among habitats. These
include the formation of seaways (e.g. between the Ross and the Weddell Seas; Barnes &
Hillenbrand 2010, Strugnell et al. 2012), large fluctuations in sea level, periods of higher

discharge of freshwater and icebergs into the Southern Ocean, increased liquid water
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availability in terrestrial regions, and a higher surface area of ice-free habitats during
warm periods (De Conto & Pollard 2016). During glacial maxima, both marine and
terrestrial (including limnetic and microbial) biota appear to have survived in glacial
refugia (Allcock et al. 2011, Convey et al. 2008, 2009, Pugh & Convey 2008, Vyverman et
al. 2010, Fraser et al. 2012), as revealed by both recent molecular studies (see Allcock &
Strugnell 2012 for review) and classical biogeographic analyses (Terauds et al. 2012)
although the nature and locations of these refugia are still poorly understood (Lyons et
al. 2016). Most terrestrial habitats are extremely isolated. Potential refugial locations
are poorly localised at anything less than regional scale, although in some areas there is
evidence for refugia being located in volcanic and other geothermal areas (Fraser et al.
2014). Marine habitats seem to be more connected, although dispersal limitation
between regions appears to be present. Biogeographic and phylogeographic patterns are
often in conflict due to the presence of cryptic species, or a poor understanding of
taxonomy (e.g. Diaz et al. 2011, Brasier et al. 2016), so generalities of distributions are
not yet well-understood. Thus, historical processes have left a clear imprint on the
contemporary diversity and distribution of biota in Antarctica and resulted in a high
incidence of endemism, geographic structuring of populations, evolution in isolation,
and clear bioregionalization patterns even at small spatial scales in both multicellular
and microbial organisms (Convey et al. 2014). Moreover, this particular evolutionary
history has also led to biological differences between habitats in Antarctica and
comparable counterparts in the Arctic (Fraser et al. 2012, Pointing et al. 2015). Changes
in the permafrost, active layer, freshwater availability and groundwater circulation have
important connections with ecosystem processes. Old permafrost can be an interesting
repository of microbes, metabolic products and biodiversity (Gilichinsky et al. 2007).

Biological comparison of taxa inhabiting the two polar regions pinpoints the differences
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in evolutionary histories between the two systems. As a result, for instance, Arctic fish

have higher biodiversity (Mecklenburg et al. 2010).

Despite this unique biological constellation, it is becoming increasingly evident that the
human influence on biological colonization into and within Antarctica is already high
and is only likely to increase in the future, challenging the governance and
environmental management mechanisms of the Antarctic Treaty System (Frenot et al.
2005, Tin et al. 2009, Convey et al. 2012, Chown et al. 2012, Hughes et al. 2015). Robust
knowledge of the evolutionary background of recent life in the Southern Ocean and
Antarctica is essential to assess its contribution to global biodiversity and ecosystem
functioning and to provide reliable estimates of the consequences of projected

anthropogenic climate change and other environmental changes.

8.2 Questions.

1. What strategies allowed biota to persist during glacial cycles, where and when did
glacial refugia exist?

2. Does any generality exist in these processes between marine, terrestrial and
limnetic systems or between large groups of organisms, or are they all unique?

3. Is it possible to reliably predict (remotely) where suitable habitats exist today, and
how will these habitats change under climate-change scenarios and in which
direction, towards higher or lower complexity?

4. How connected are regions at present and have they been in the past in terms of
both colonization and also other biological processes and ecosystem functions (e.g.,
nutrient flows between and among terrestrial and marine ecosystems), what

mechanisms connect them and on what timescales?
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5. Under which environmental conditions will regionally extinct species/taxa re-
colonize?

6. Will new species appear for the first time in Antarctica and the Southern Ocean and
what will future colonization processes be?

7. What is the genetic diversity of Antarctic organisms and can improved constraints
on the timing of key evolutionary events be generated and, resulting from this,

insights into the long-term drivers of taxa distribution provided?

8.3 First steps towards implementation.

There is a particular need for improved spatial coverage of biodiversity surveys and for
molecular phylogenies across more taxonomic groups, including links to non-Antarctic
regions and taxa, and to sample under-represented areas (e.g. sub-ice environments).
This can only be achieved by increased sample and data exchange between national
programmes and individual scientists. Substantial advances in biogeographic
understanding with an evolutionary background, however, will involve correlating
biodiversity distribution, occurrence of ecological key species and communities as well
as ecosystem functions with evolutionary physical drivers. The integration of
bioinformatics and taxonomic skills will facilitate (a) the combination of classical
approaches and state-of-the-art molecular techniques to reveal cryptic species diversity
and (b) large-scale barcoding initiatives of taxa based on molecular markers. These
biodiversity assessments should be interlinked with climate modelling, and physical and
geosciences, including programmes aimed at monitoring environmental properties as
part of large-scale networks, which will enable disentanglement of the drivers of
present-day diversity patterns. There is thus a particular need for developing finer-

resolution glaciological, oceanographic, paleogeographic, atmospheric/climate
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reconstructions and models to study biological processes at biologically relevant scales.
These multidisciplinary programmes are required to achieve congruence between
geological and molecular and fossil-based estimates of evolutionary events, including
adaptive radiations, range expansions and contraction colonization events and regional

extinctions.

Discussion

Most ecosystems on the Antarctic continent and in the Southern Ocean are unique, and
vary greatly in their connectivity to other ecosystems on the planet. However, they all
are exposed to the high spatial and temporal variability of the physical climate
environment. The connection between Antarctic biological and non-biological systems
can be divided into the exposure of biota to environmental impact and the response of
life at all levels of organization to it, which contributes significantly to the functioning of
the entire Earth system. Thus, knowledge about Antarctic ecosystem functions arising
from question-based research is essential to understand these unique ecosystems in a

global context (di Prisco et al. 2012).

The aim of this conceptual study, built on the impetus provided by the SCAR Horizon
Scan, was to identify new science directions focussing on cross-disciplinarity, resulting
in a variety of questions, and to suggest the first steps towards their implementation.
Most of the themes presented herein are polar / Antarctic specific but a few can be
applied to any biological system independent of global region or specific environmental

conditions, for instance the up- and downscaling challenges (1. Theme 1).
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In this discussion overarching challenges are identified to find a certain generality
among the questions from the different themes. This type of clustering could provide an
extended basis for science managers and scientists to plan the realization of novel

approaches.

(A) Cross-disciplinary bridging of methodological incompatibilities between physical
and biological sciences, with respect to scales, is urgently needed. In an ecosystem
research approach both disciplines have the common aim to provide an Antarctic-wide
system understanding and to provide reliable results, which are representative of larger
areas, extended periods, or scientific phenomena, e.g. formation of deep water or
biological COz uptake. If the desired Antarctic-wide geographical cover is not achievable
directly, it may instead be feasible through remote-sensing approaches or the
application of upscaling methods. All disciplines also require detailed insights into
system processes, where downscaling approaches help. Despite this common ground,
biological and non-biological disciplines often differ in important details. The following
requirements are therefore suggested: (1) a conformity of spatial and temporal scales
and resolution at which data are to be acquired and which should serve for up- and
downscaling approaches. Biological approaches generally demand a priori higher spatial
and temporal resolution than physical approaches, e.g. intermediate to small-scale krill
swarming behaviour is highly relevant as well as short-term and rare extreme events,
which can erase sessile benthic assemblages in a short period of time, which is hardly
traceable by physical scientists or biologists. (2) Biological data should be implemented
in interdisciplinary cause-and-effect relationships because biological phenomena
depend on the physical environment. Physical oceanographic information of biological

relevance, for instance changes in up- and down-welling, must be traced back to their
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source, in this case changes in wind regimes, to make spatial and temporal predictions
possible. Temperature increase throughout the entire water column can be the
consequence of horizontal and vertical shifts of water masses and also directly of
atmospheric warming. Changes in ocean pH follow increased atmospheric CO; levels in a
complex cause and effect relationship. Biologists also need specific information from the
sediments, groundwater and soil, e.g. age and biogeochemical characteristics, in order to
explain recruitment processes and optimum or limiting conditions for all life stages of
benthic, terrestrial or limnetic organisms. Less frequently, e.g. in the case of biological
production of climate-related gases, the situation is reversed. Biologists must provide
estimates of the uptake of CO; and production of climate gases mostly by marine
primary producers in order to improve regional and global climate models. Such
knowledge is essential for future projections including both the response of organisms,
communities and ecosystems to environmental change and the effects of life on the

atmosphere and ocean.

(B) Other complex questions centre around learning from the past to understand the
present and predict the future. This refers to the research on the molecular and
physiological adaptation of organisms to stable or changing environmental conditions
(3. Theme 3) and on attempts to correlate large-scale geotectonic and climate events
with evolutionary processes (8. Theme 8). Firstly, fundamental differences between
understanding biological processes and correspondingly driven cross-disciplinary and
physical as well as geological approaches are to be recognized. For instance, adaptations
over the past 25 x 10° years are key to understanding lethal temperature thresholds that
have existed until the present day. If this threshold was exceeded even for a short period

of time at any point on this long time axis, the individual, population or even species may
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have become extinct. Knowledge of physical events that happened a few million years
ago can improve our understanding of the present environment but -in contrast to
biological adaptation- the weather of today is independent of the climate e.g. 1 x 10°®
years ago. As a consequence, studies linking long-term environmental and biological
processes demand especially detailed knowledge, for instance on the timing of
geotectonic events that happened a long time ago to answer large-scale biogeographic
questions on the relationships between isolation and speciation. Also important in this
context is robust knowledge of the pace and amplitude of natural paleoclimate
variability in order to assess tolerance limits of species in a today's changing climate and
the potential of microevolution to cope with such changes. Finally, high-resolution
records of the recent past (i.e. the past 200 to 2000 years) allow us to determine when
observed trends started, what the amplitude of change / variability is that the modern
ecosystem has experienced and thus survived, and whether the current change is

accelerating.

(C) A main driver of the intensification of cross-disciplinary approaches must be the
pressing demand of developing future scenarios for ecosystems. Projections for cryo-
pelagic systems including marine primary production, are unimaginable without large-
scale and detailed knowledge of sea-ice dynamics. The development of benthic
communities can only be predicted if physical impacts on these systems can also be
predicted. In this context, important factors can include patterns and trends of iceberg
disturbance, altered sea-ice conditions or changes in turbidity associated with terrestrial
runoff. As a consequence of the latter, light attenuation, primary production and food
availability in shallow water are affected. General linkages between atmospheric and

biological traits are well known, such as the influence of precipitation or wind regimes



1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

on terrestrial ecosystem components. If such relationships are non-linear, as most are,
detailed knowledge on physical/chemical and biological interactions is essential for
understanding them and in quantifying future projected change. This refers especially to

the role of the Southern Ocean as a biological source or sink of CO-.

(D) Another major prerequisite to encourage cross-disciplinary cooperation is to
highlight its added value for scientific and applied purposes. The value of cross-
disciplinary approaches lie in bringing different disciplines together and tackling
questions and challenges, which cannot be answered through single-disciplinary
approaches. Such interactions often demand compromises within each respective
discipline. Notwithstanding the value and progress of fundamental single-disciplinary
research, a broader system understanding is demanded by society. Marine ecosystem
services play an increasing role especially in the IPBES and also in the IPCC assessments.
The value of terrestrial ecosystem protection in Antarctica is well recognised although
yet to be properly achieved (Chown et al. 2017). A recent and first notable success for
the Southern Ocean is the designation of the Ross Sea Marine Protected Area by the
Commission for the Conservation of Antarctic Marine Living Resources, following smaller
predecessors of marine Antarctic Specially Protected Areas and Vulnerable Marine
Ecosystems. Further progress in this direction is expected from the Antarctic Treaty
System and its Committee for Environmental Protection supported with scientific

expertise through SCAR and its SRPs.

(E) The necessity of comparative studies, an approach which is not generally novel but
remains rare in Antarctic research, is particularly important, especially in a cross-

disciplinary context. Useful comparisons can be made between ecosystem functioning in
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areas subject to intensive versus little environmental change, shallow water versus
deep-sea regions, and terrestrial coastal areas of deglaciation versus near-shore marine
systems under the same stress regime. Antarctic-Arctic polar comparisons are generally
beneficial in the context of understanding ecosystem functioning especially under
climate change stress, for instance in the framework of the International Polar Year -
Evolution and Biodiversity in the Antarctic programme Team-Fish (Christiansen 2012).
The fastest environmental changes on Earth, accompanied by sea-ice decline, are
occurring in the Arctic and at the WAP. Predictions from the cross-disciplinary
comparative approach can help in answering questions on response of polar marine
organisms, for instance type and extent of new species distributions, the relationship
between primary production and climate and the capacity to develop resilience to
ongoing global warming. This seems to be especially valuable when predictions for one
system, for instance the Arctic, can be ground-truthed through monitoring programmes
for reliability and then, after necessary modification be applied to the Antarctic. A polar
comparison would also considerably improve assessment of the potential of adaptation

as a result of evolution under two quite different polar scenarios.

(F) Monitoring or long-term observations provide the basis for comparisons of
significant ecological changes or background variability in time and support most of the
Themes 2-7; especially important is the integration of biological with atmospheric,

glaciological, oceanographic, and geological measurements.

The SCAR Horizon Scan (Kennicutt Il et al. 2014, 2015) was the major catalyst leading to
the brain-storming approach of the 2015 Barcelona workshop. A coarse comparison

between the SCAR Horizon Scan and the 'Barcelona' outcomes show a certain overlap but
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also differences. A true comparison is difficult because, despite an interdisciplinary
background, most SCAR Horizon Scan questions are dominated by one scientific
discipline, whilst our approach herein attempted to build bridges between disciplines.
Scale issues, considered either as a scientifically challenging approach or methodological
problem to be solved, are especially highlighted in this study. Compared to the SCAR
Horizon Scan, various aspects of sea-ice research are well represented by the 'Barcelona’
questions. Considerable overlap exists between both studies in climate-change relevant
themes, whilst questions focussing on primarily climate-change independent ecosystem
functioning are more strongly represented in this study. In this study, an attempt was
also made to provide first ideas on how to answer the questions, and societal
requirements by intergovernmental panels and platforms, which are outlined in the
introduction. While the SCAR Horizon Scan (Kennicutt Il et al. 2015) and the Council of
Managers of National Antarctic Programs (COMNAP, Kennicutt Il et al. 2016)
emphasized technological challenges, below we make also some general
recommendations about which developments in science strategies that could strengthen

cross-disciplinary research in Antarctica.

The progress of cross-disciplinary development is largely a matter of science structural
management (Fig. 1). This includes alignment of the scientist's 'attitude’, funding
strategies that genuinely engage with cross-disciplinary proposals, logistic organisation,
especially in the less accessible Antarctic areas, and the recognition and adoption of the
most valuable approaches concurrent with discarding outdated traditions. Most of the
techniques required for advanced cross-disciplinary studies already exist (e.g. Poorter et
al. 2017). They are often expensive and some are under (continual) development often

driven by single-disciplinary projects, such as drilling through ice shelves for physical
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oceanography purposes or deep-sea sampling (Brandt et al. 2016). Other technologies,
such as biomolecular methods, are developed beyond the communities of Antarctic
researchers but must be adapted to the specific polar conditions. Society, which also
drives research budgets, increasingly demands detailed and open information, which
can arise only from cross-disciplinary cooperation. Thus, the conditions for working in
synergy with holistic approaches are currently favourable for expanding such research
effort, which must be further developed along with advances in highly specialized fields
of research. Within the science community, good question-driven science management
will be a key for the success of more advanced cross-disciplinary studies. Major progress
towards such visions may be catalysed by a better implementation of a whole-system
vision in academic education, introducing more cross-disciplinary university courses

and even academic degrees.
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