

GPM/GMI Polarimetric Observations of Cloud and Precipitation

Dong L. Wu, NASA Goddard Space Flight Center

- Ice cloud microphysical properties as observed by GMI
- Cloud—precipitation processes in severe weather systems
- Sensitivity gaps and observational needs

Caltech/JPL workshop

Pasadena, California

September 26, 2017

Squall Line Storm Case in the US East Coast on April, 29, 2014

GPM 06:50

Aqua 07:10

Channel 31

Pseudo color (37, 89 GHz)

Channel 31

GMI Polarimetric Observations at 18.7, 89 and 166 GHz

(Squall line on April 29, 2014)

Gong and Wu (2017)

GMI Polarimetric Observations at 18.7, 89 and 166 GHz

(Hurricane Irma on September 7, 2017)

(mm/hr)

Radiative transfer models have difficulties to reproduce the observed polarization (i.e."Bell-Curve")

Courtesy of J. Gong

Possible Causes of the "Bell-Curve"

- Random orientation of ice particles
- Rime ice (Jerry Harrington, personal comm.)
- Radiometric saturation at deep convective cores

Cloud-Precipitation Processes

- Roles of dynamics and turbulence
- Roles of ice clouds and their microphysics
- What to improve observation techniques

Lifecycles of Precipitation and Cloud (LifePaC)

GOES WEST NORTHERN HEMISPHERE LONGWAVE IR 26 FEB 10 03:00 SSEC: UW-MADISON

NASA Unified WRF (NU-WRF) simulation (Courtesy of Dr. W-K Tao)

Diurnal Variations of Ice Cloud Microphysical Properties

- GMI 166-GHz polarization difference (PD) anticorrelated with highcloud amount
- Ice particular orientation likely causing the PD and its diurnal variation
- Important implication for cloud-precip processes: when and where clouds will produce rainfall/snowfall

Gong et al. (2017)

Cloud Ice Sensitivity Gap

- Clouds, ice clouds in particular, are a major source of uncertainty in climate models
- Submm-wave sensors fill the sensitivity gap between MW and IR.
- Cloud microphysical properties (particle size and shape) account for large (~200% and 40%) measurement uncertainty.

