Trajectory Specification for Terminal Air Traffic:
Pairwise Conflict Detection and Resolution

Russ Paielli and Heinz Erzberger
NASA Ames Research Center

AIAA ATIO Conference
Denver, CO
June 8, 2017
Outline

- Background
- Trajectory Specification
- Conflict detection
- Conflict resolution
- Pairwise conflict test method
- Results
- Concluding Remarks
Introduction

- NASA is developing the Advanced Airspace Concept (AAC) to automate ATC
 - Applies to both enroute and terminal airspace
 - Goes beyond decision support to enable eventual autonomy (little or no human intervention)

- Trajectory Specification is an enhancement of AAC
 - Has near-term application for trajectory prediction error modeling, but
 - Full concept is far-term because it requires new FMS (Flight Management System) standards
Trajectory Specification: Dynamic “4D” RNP

- Required Navigation Performance (RNP) is based on published routes with fixed cross-track bounds and real-time conformance monitoring.
- Trajectory Specification concept is dynamic and adds vertical and along-track (time-based) bounds.
Required Navigation Performance (RNP)
Trajectory Specification: Horizontal Bounds

- Along-track bounds at a point in time
- Cross-track bounds

Plan view
Trajectory Specification: Vertical Bounds

along-track bounds at a point in time

vertical bounds

side view
Related Concepts

- Joulia and Le Talle (2011-)
 - “4D” contract with elliptical tolerance “bubble”
 - Fixed tolerances too restrictive in light traffic
- Jackson, et al. (2009-)
 - “4D” trajectory datalink (4DTRAD)
 - Allows altitude bounds at several discrete points
 - Allows one required time of arrival (RTA)
 - Works with existing FMSs
 - Does not explicitly bound trajectory at any time

[Trajectory Specification should not be confused with another tube concept that implements “freeways in the sky”]
Trajectory Specification

Features

- Each aircraft constrained to a well defined volume of space at each point in time
- Bounds determined by tolerances relative to a reference “4D” trajectory (position as function of time)
- Tolerances can be piecewise linear function of distance along route (function fixed at time of assignment)
- Tolerances cannot be less than aircraft navigational capability allows but can be as large as current traffic situation permits (without a conflict)
Challenges of Automation

● Failsafe operation required if automated system or datalink goes down (cannot depend on a human controller to take over)

● Trajectories with unbounded prediction errors cannot be guaranteed conflict-free for a sufficient period of time (depends on wind modeling error)
Trajectory Specification

Benefits

- Can guarantee conflict-free trajectories for a specified period of time (assuming conformance) -- facilitates failsafe operation
- Provides more reliable strategic planning and less reliance on tactical backup systems and tactical maneuvering during normal operation
Basic Operational Concept

- Pilot enters route/intent into Flight Management System
- FMS computes “4D” trajectory prediction
- FMS downlinks predicted trajectory to ATC as request
- ATC assigns tolerances, checks for conflicts
- ATC modifies trajectory if necessary to resolve conflicts
- ATC uplinks assigned trajectory with tolerances
- FMS flies assigned trajectory to specified tolerances

Trajectory Specification Language (TSL) based on XML to be documented in a NASA Technical Memorandum
Objective

To develop a research software prototype and demonstrate the computational feasibility of Trajectory Specification as applied to conflict detection and resolution for terminal air traffic
Conflict Detection

Anywhere within the bounding space, the aircraft should be sufficiently separated from all other flights (at any point in their bounding space).
Conflict Detection

Along-track bounds at a point in time

Vertical bounds

Side view
Conflict Detection

- Need to ensure minimum required separation for entire bounding space at each point in time
- Much more computation than simple pointwise separation calculations
- Use coarse checks and large time steps to avoid detailed computation when separation is large
- Horizontal separation of bounding areas can be calculated using polygon approximation
- When horizontal separation of bounding areas is insufficient, use gridded sampling method
Definition of Separation Ratio

Minimum separation standard:
3 nmi horizontal or
1,000 ft (1 kft) vertical

\[
\text{horiz sep ratio} = \text{horiz sep} / 3 \text{ nmi} \\
\text{vert sep ratio} = \text{vert sep} / 1000 \text{ ft}
\]

\[
\text{separation ratio} = \max(\text{horiz, vert}) \text{ sep ratio}
\]

< 1.0 means less than separation standard

Combines horizontal and vertical separation into a single scalar metric (for comparison, ranking, ordering)
Plan view of bounding spaces at a point in time
[Each grid point has an altitude range]
Calculate separation ratio for each pair of grid points and record minimum
Conflict Resolution
Maneuver Types

- Temporary Altitude
- Speed Reduction
- Reroute
- Takeoff Delay
- Other
Altitude Profile
A319 Departure

altitude (kft)

0 2 4 6 8 10

time (minute)
Descent CAS Airspeed Profile
B738 Arrival

CAS (kn) vs time (minute)
Speed Reduction Candidates
B738 Arrival

CAS (kn) vs. time (minute) graph for B738 arrival, showing multiple speed reduction candidates.
Arrival Route
DFW/18R

y (nmi)

x (nmi)
Arrival Reroute Candidates
DFW/18R (53 candidates)
Pairwise Conflict Resolution

- Conflict resolution must avoid conflicts with all traffic
- Pairwise conflict resolution is simpler but is a logical first step
- This paper is limited to pairwise conflict resolution, but a future paper will address general conflict resolution in realistic traffic
Test Environment

- Trajectories generated using NASA simulators:
 - Airspace Concepts Evaluation System (ACES)
 - Kinematic Trajectory Generator (KTG)
- One full day of (unresolved) trajectories generated for DFW and DAL airports
 - DFW arrivals routed direct to final approach
 - Default tolerances applied
- Trajectories modified to simulate maneuvers for resolving conflicts
Departure Routes

30 Unique Routes

\[\text{y (nmi)} \]

\[\text{x (nmi)} \]
Arrival and Departure Routes
52 Unique Routes: 30 departure, 22 arrival

y (nmi)

x (nmi)
Pairwise Resolution Tests

- 52 unique routes (30 departure, 22 arrival)
- One trajectory to represent each route
- $52 \times 51 / 2 = 1326$ trajectory pairs
- Each pair time shifted in steps of 30 sec
- 1325 pairwise conflicts resulted
- One flight maneuvered per conflict

- All conflicts successfully resolved
- Run time < 1 sec per pairwise conflict (with parallel processing on an Intel 32-core processor)
Departure Reroute Example

separation ratio: 0.657->1.150 depart reroute 12 nmi, 0 deg, 16 nmi (+102 s)
Departure Reroute Example

separation ratio: 0.657->1.150 depart reroute 12 nmi, 0 deg, 16 nmi (+102 s)

red rectangle = bounding area (at min separation)
green oval = buffered bounding area (sep = 3 nmi)
Conflict Planview for Departure Reroute Example

separation ratio: 0.657
Departure Reroute Example

separation ratio: 0.657->1.150 depart reroute 12 nmi, 0 deg, 16 nmi (+102 s)
Departure Reroute Example

separation ratio: 0.657->1.150 depart reroute 12 nmi, 0 deg, 16 nmi (+102 s)
Conflict Planview

separation ratio: 0.037
Conflict Altitude Profiles

separation ratio: 0.037

altitude (kft)

DAL1
DFW1

horizontal separation < 3 nmi
Temporary Altitude Maneuver

DFW1 temp alt 8.0 kft, 3.0 min, separation ratio: 1.50

- DFW1
- DAL1

Horizontal separation < 3 nmi

Altitude (kft) vs. Time (minute)
Conflict Planview
separation ratio: 0.037

y (nmi)

x (nmi)
Temporary Altitude Maneuver Planview

DFW1 temp alt 8.0 kft, 3.0 min, separation ratio: 1.50
Concluding Remarks

- Trajectory Specification is dynamic “4D” RNP (Required Navigation Performance)
- Each flight constrained to a well-defined volume of space at each point in time
- Tolerances can be as large as current traffic situation permits (without a conflict)
- Makes ATC more failsafe and less dependent on backup systems and tactical maneuvers
- Computational feasibility of pairwise conflict detection and resolution demonstrated
Questions?

Russ.Paielli@nasa.gov
Backup Slides
Simplified Longitudinal Flight Control

- Desired altitude rate
- CAS/Mach setting
- Measured CAS/Mach
- Control law
- Throttle
- Elevator
- Aircraft
- Wind
- Altitude
- Distance along route
Enhanced Longitudinal Flight Control
Polygon Approximation of Bounding Area
90 deg turn to base

x position / nmi

y position / nmi

-9
-8
-7
-6

reference route
lateral bounds
polygon approx
Altitude Bounds Example

- Blue line: reference altitude
- Red dashed line: altitude bounds

Graph shows the change in altitude (kft) and along-track distance (nmi) over a period.
Terminal Area Spacing and Separation Requirements

- Terminal areas (airspace within ~40 nmi of a major airport) requires both
 - In-trail spacing for wake vortex (3 – 6 nmi) and
 - General separation (3 nmi lateral or 1000 ft vertical)
- Delay maneuvers for wake vortex spacing also resolve most general separation conflicts
- A proven strategy is to first delay for the necessary arrival spacing, then apply other maneuvers when necessary to achieve general separation
Default Tolerances

- Cross-track: 0.6 nmi constant
- Vertical:
 - Departures: 500 ft constant
 - Arrivals: 500 increasing to 800 ft
- Along-track:
 - Departures: 0.2 increasing to 1.0 nmi
 - Arrivals: 1.0 decreasing to 0.2 nmi
Terminal Areas

- Class B airspace within approximately 40 n. miles (nmi) of a major airport
- Managed in US by Terminal Radar Approach Control facilities (TRACONs)
- Minimum separation standard: 3 nmi horizontally or 1,000 ft vertically
- Have more constraints than enroute airspace and have more and larger turns
- Terminal ATC is currently very tactical, with many heading vectors and speed/altitude clearances
- Throughput limited mainly by wake-vortex spacing requirements (3-6 nmi, depending on weight classes)
Air Traffic Control (ATC) is currently done by human controllers with radar displays and voice communication.

Controllers are human and make mistakes (over 1,800 operational errors in one recent year, including 55 serious cases).

Automation can reduce human error and increase airspace capacity but is difficult due to complexity and safety criticality.
Trajectory Prediction and Specification

airborne FMC

- current state
 - intent (route, airspeed, altitude, etc.)
 - wind data

ground-based ATC

- arrival schedule
 - ref trajectory
 - tolerances

trajectory prediction

trajectory specification

traffic data
Maneuver Type Counts

<table>
<thead>
<tr>
<th>Maneuver Type</th>
<th>Arr</th>
<th>Arr</th>
<th>Dep</th>
<th>Dep</th>
<th>Dep</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>temp alt</td>
<td>11</td>
<td>245</td>
<td>311</td>
<td>282</td>
<td></td>
<td>849</td>
</tr>
<tr>
<td>speed dec</td>
<td>173</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>reroute</td>
<td>55</td>
<td>3</td>
<td>27</td>
<td>79</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>new level alt</td>
<td>5</td>
<td>22</td>
<td>53</td>
<td>11</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>takeoff delay</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>6</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>