

Motivation

Fully automated meshing for Reynolds-Averaged Navier-Stokes Simulations

- Mesh generation for complex geometry continues to be the biggest bottleneck in the RANS simulation process
- Embedded boundary Cartesian methods routinely used for inviscid simulations about arbitrarily complex geometry
 These methods lack of an obvious & robust way to achieve
- near wall anisotropy • Goal: Extend these methods for RANS simulation without sacrificing automation, at an affordable cost

NASA

Previous Work

Analytic wall functions

$$y^{+}(u^{+}) = u^{+} + e^{-\kappa B} \left(e^{\kappa u^{+}} - 1 - \kappa u^{+} - \frac{1}{2} (\kappa u^{+})^{2} - \frac{1}{6} (\kappa u^{+})^{3} \right)$$

SA wall function (2012):
 Derived, using a limiting form of SA turbulence model and integrating the diffusion model

 $u^{+}(y^{+}) = \bar{B} + c_1 \log((y^{+} + a_1)^2 + b_1^2) - c_2 \log((y^{+} + a_2)^2 + b_2^2)$ $- c_3 \arctan(y^{+} + a_1, b_1) - c_4 \arctan(y^{+} + a_2, b_2)$

NASA

- Prefer SA wall function, since it gives direct relationship for velocity as a function of distance
- Knowing u at a point F, iterate to find u_{τ} , so that $u^+(y_F^+) = u_F^+ = u_{\tau}u_F$

Mesh convergence sensitive to far-field boundary placement and LE & TE spacings

• Slight "viscous overshoot" due to coarseness of Cartesian mesh, $\Delta x = \Delta y = 0.2\%C$

Summary

- Atmospheric propagation and ground effects modeling
- presented V&V studies for a new ODE-based wall model for RANS equations
- demonstrated for several well-studied flows including smooth body separation
- bvp4 model:
- Solves coupled solves a coupled set of ODEs posed as two-point boundary value problems for
 the streamwise velocity and the turbulent viscosity
- $\boldsymbol{\cdot}$ includes both the streamwise pressure gradient and the momentum balance valid farther from the wall

permits wall spacing on the Cartesian mesh 4 to 8 x coarser than with analytic wall functions, order of magnitude farther out than analytic wall functions

- wall model itself about 2-3x the computational cost of analytic wf's on same mesh
- Can be applied in body-fitted or non-body fitted meshes

				NA	SA
NACA 0012					
Modified NACA 0012 - Integrated force coefficients		$M_{\infty} = 0.15$ $Re_{\rm L} = 6 \times 10^6$ $\alpha_{\infty} = 10^{\circ}$			
TMR has loads data availab					
 Excellent prediction of viscous drag. Even coarsest mesh (15lev) is within 2 counts 					
 Net lift and drag not as good due to inviscid regions of flow 					
 TMR documents sensitivit (100 C vs 500 C for referen 					
 Trailing edge spacing too large: ~500 x coarser than reference on adapted grid 		C_d Viscous	C _d Pressure	C_d Total	Cl Total
	CFL3D [†] 14.7 M point reference	0.00621	0.00607	0.01227	1.0908
	17 Lev uniform wall spacing, 133 k cells	0.00611	0.00767	0.01378	1.1120
	Adapted 15 lev + 2 near LE, 88k cells	0.00607	0.00751	0.01358	1.1416
[†] Data from CFL3D with SA model on "family II" grid, no point vortex correction & 2nd turbulent advection.					