

















Volatiles Released during Emplacement of Mare Basalts: Implications for a Lunar Atmosphere

Debra Needham
NASA/Marshall Space Flight Center

and

David Kring LPI/CLSE/SSERVI

vitally impacting the future – today

# The Current Lunar Atmosphere

- Detected via Apollo 14, 15 (e.g., Johnson et al., 1972; Stern, 1999 and references therein)
  - Night Pressure:  $\sim 1.6 \times 10^{-13}$  atm
  - Day Pressure:  $\sim 1.6 \times 10^{-15}$  atm
  - Ar, CH<sub>4</sub>, He, CO, CO<sub>2</sub>, N<sub>2</sub>, Rn
- Surface Boundary Exosphere with various sources (Stern, 1999):
  - Solar Wind Impingement
  - Thermal, Sputtering, Chemical
  - Meteoritic
  - Outgassing of Internal Volatiles



Lunar ALSEP deployed during Apollo 12.

• Enhanced impact and volcanic activity >3 Gyr may have enabled development of more substantial collisional lunar atmosphere.

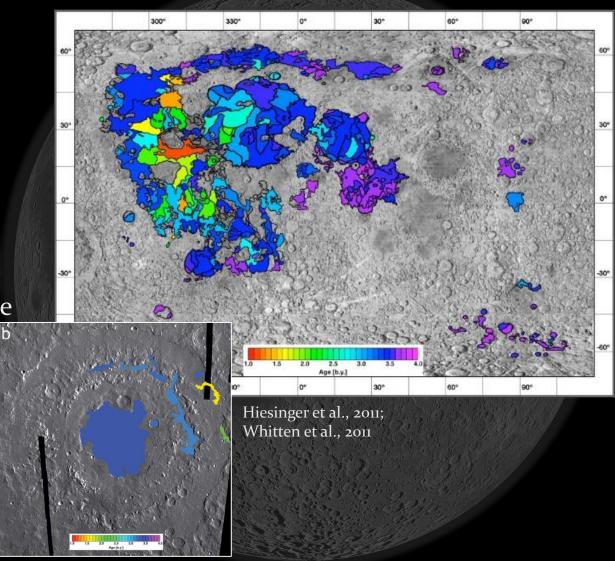
# Finding an Ancient Lunar Atmosphere

- Lunar Mare Production Function
  - Volume of mare
  - Age of emplacement
- Volatile Mass Production Function
  - Lunar mare volatile distributions.
- 3. Atmosphere Pressure, Duration
- 4. Final Volatile Sink



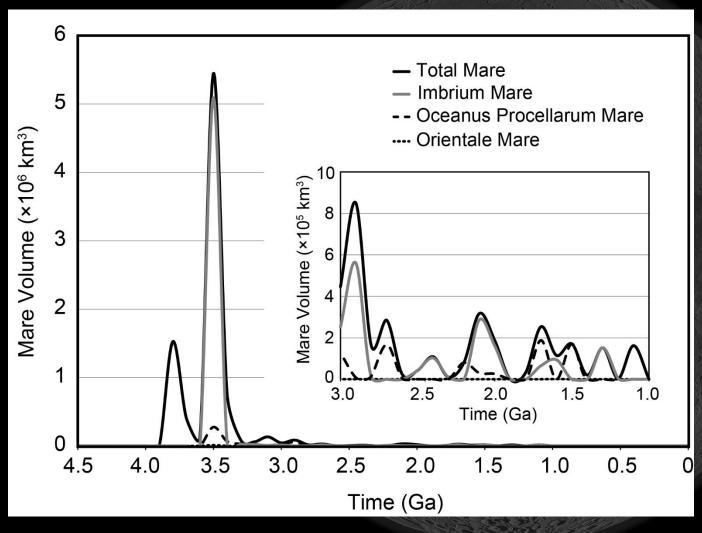
vitally impacting the future – today

#### Lunar Mare Volume


• Volume of mare in lunar basins

| Table 1: Total volume of m | are in lunar basins |                    |              |                         |
|----------------------------|---------------------|--------------------|--------------|-------------------------|
| Basin                      | Total Area (km²)    | Ave. Thickness (m) | Volume (km³) | Thickness Reference     |
| Crisium                    | 156,103             | 2,940              | 458,943      | Williams and Zuber 1998 |
| Grimaldi                   | 15,359              | 3,460              | 53,142       | Williams and Zuber 1998 |
| Humorum                    | 101,554             | 3,610              | 366,611      | Williams and Zuber 1998 |
| Imbrium                    | 1,010,400           | 5,240              | 5,294,497    | Williams and Zuber 1998 |
| Nectaris                   | 64,277              | 840                | 53,993       | Williams and Zuber 1998 |
| Orientale                  | 75,975              | 88                 | 13,294       | Whitten et al 2011      |
| Oceanus Procellarum        | 1,757,799           | 325                | 571,285      | Hörz 1978               |
| Serenitatis                | 342,716             | 4,300              | 1,473,679    | Williams and Zuber 1998 |
| Smythii                    | 28,075              | 1,280              | 35,937       | Williams and Zuber 1998 |
| South Pole - Aitken        | 206,430             | Varied             | 153,240      | Yingst and Head 1997    |
| Tranquillitatis            | 371,257             | 350                | 129,940      | Hörz 1978               |

Total volume of mare:  $\sim 9 \times 10^6$  km<sup>3</sup>, similar to previous estimates.  $(1 \times 10^7$  km<sup>3</sup>, Head and Wilson, 1992)


# Timing of Mare Emplacement

- Timing of mare emplacement
  - Area, thickness of each mapped unit.
  - Age of each mapped unit from crater counting
  - Remaining mare volume assumed to be emplaced at time of oldest surface unit.

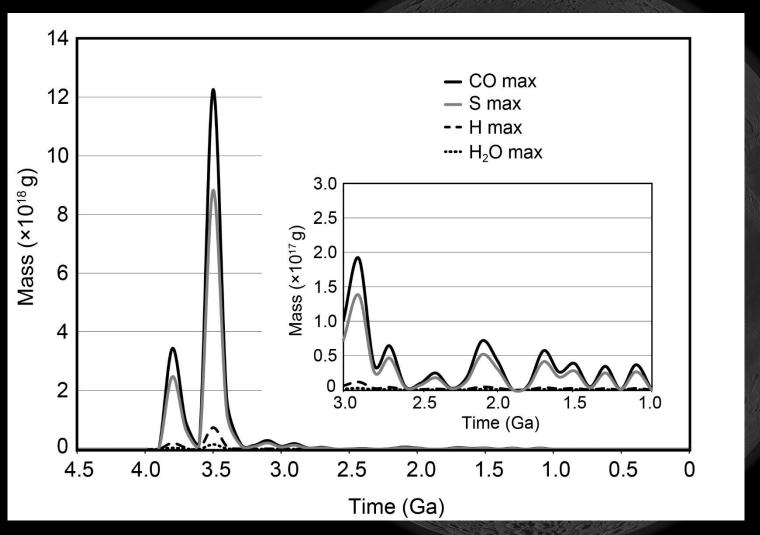


#### Lunar Mare Volume over Time

Volume of erupted basalts as a function of time



#### Mass of Released Mare Volatiles


- Assume density of 3000 kg/m³, calculate total mass of mare.
- Using mare volatile measurements from literature, calculate mass of each released volatile.

| 0 1000           |         |       |          |       |       |                                                              |
|------------------|---------|-------|----------|-------|-------|--------------------------------------------------------------|
| Mare             | Min     | Max   | Released | Min   | Max   |                                                              |
| Volatile         | s (ppm) | (ppm) | (%)      | (ppm) | (ppm) |                                                              |
| со               | 80      | 750   | 100      | 80    | 750   | Sato 1979                                                    |
| H <sub>2</sub> O | 2       | 10    | 90       | 1.8   | 9     | Robinson and Taylor 2014;<br>Elkins-Tanton and Grove<br>2011 |
| Н                | 0.007   | 45    | 100      | 0.007 | 45    | McCubbin et al., 2010                                        |
| S                | 200     | 600   | 90       | 180   | 540   | Shearer et al., 2006                                         |

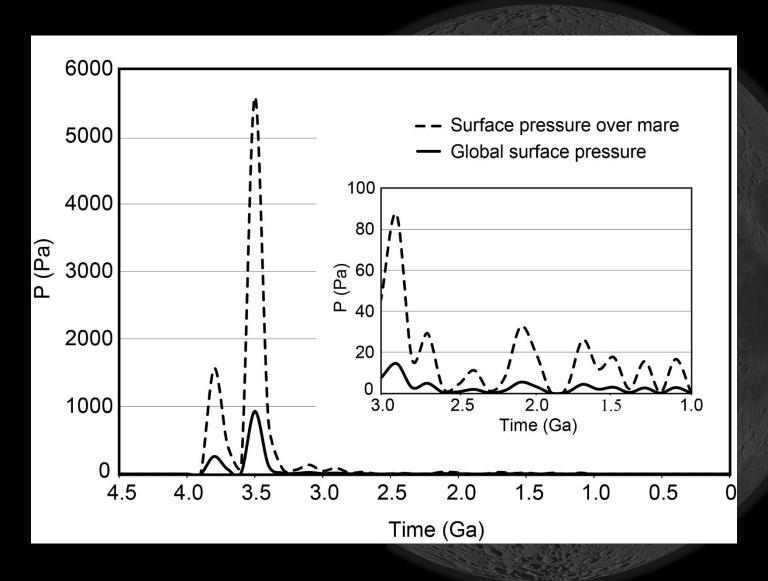
vitally impacting the future – today

#### Mass of Released Mare Volatiles

Volatile mass from all mare eruptions assuming max mare volatile content



# Atmospheric Pressure, Duration


• Total mass released as a function of time.

$$P_{surf} = \frac{mg}{A}$$

 Distributed over whole lunar surface vs.
 Concentrated over mare.

vitally impacting the future – today

# Atmospheric Pressure, Duration



# Implications for a Lunar Atmosphere

- Surface Pressure
  - At peak, ~1000 Pa (~0.01 atm).
    - Global Distribution:
      - ~1% of Earth's current surface pressure.
      - ~1.5 times greater than Mars' current surface pressure.
    - Concentrated Distribution over Mare:
      - ~5,600 Pa (0.06 atm): 6% of Earth's pressure.
- Scale Height of ancient lunar atmosphere:  $\frac{KT}{mg}$ 
  - At Noon: ranges from  $\sim$ 60 km (S) to 1000 km (H<sub>2</sub>).
  - At Midnight: ranges from  $\sim$ 15 km (S) to 250 km (H<sub>2</sub>).

# Implications for a Lunar Atmosphere

- Duration of Lunar Atmosphere
  - Loss rate controlled by particle interactions.
    - Total atmospheric mass exceeds 10<sup>11</sup> g (Vondrak, 1974), -> 10<sup>4</sup> g s<sup>-1</sup>
      - Peak volcanic activity ( $\sim$ 3.5 Ga), total mass is  $10^{16}$  kg.
        - Source half-width > 500 m -> volatile effusion rate >10 $^7$  g s<sup>-1</sup>. (Wilson and Head, 1980)
      - Resulting atmosphere may have required ~70 Ma to dissipate.
- Sink of Lunar Atmospheric Volatiles
  - If 0.1% of vented mare water (~10<sup>17</sup> g) is trapped in PSRs, volcanically-derived volatiles could account for all water in PSRs (10<sup>14</sup> g, Eke et al., 2009).

# CENTER FOR LUNAR SCIENCE AND EXPLORATION Vitally impacting the future – today