Astrobee Guest Science

ISS R+D Conference 07/16/2016

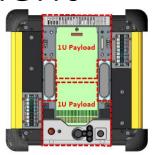
Outline

- Astrobee Overview
- Astrobee Interface
- Astrobee Development Tools

Astrobee Overview

- A total of 3 units on board ISS
- Docking station for recharge and wired comm.
- Built in perching arm using payload interface
- 6 total cameras for various purposes, including one cellphone class HD camera.
- Main purposes:
 - Host guest science payload (GSP payloads)
 - Serve as mobile camera for ISS situational awareness
 - Serve as mobile sensor platform for
- First GSP Payloads
 - REALM RFID reader
 - Zero Robotics High School and Middle School competitions

Interface - Processors

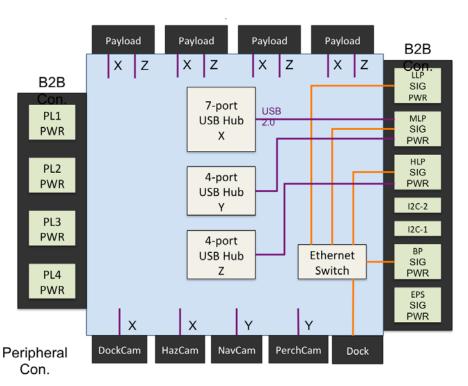

- Three main internal processors
 - High-Level Processor (HLP)
 - Snapdragon 805 Quad-Core SOM
 - Mostly reserved for GSP payload use
 - Runs touch screen and
 - Mid-Level Processor (MLP)
 - Snapdragon 805 Quad-Core SOM
 - Lower rate, higher computation processes
 - Runs most of the core robot software
 - Handles decision making and data communication
 - Low-Level Processor (LLP)
 - Wandboard dual
 - High rate control loop and sensor sampling
 - Pseudo-real time

Interface - Attachment

• Available volume:

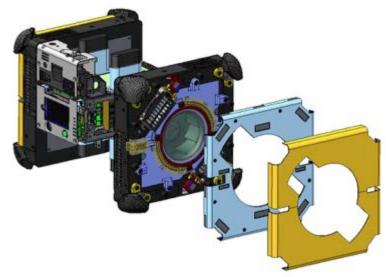
- 12.32 cm by 15.24 cm by 10.16 cm
- Keep outs provided via CAD model
- Payloads may extend beyond the exterior of robot
- Payloads within payload volume use built-in bumpers for impact protection
- Alignment pins
- No-tool quick-release levers attachment system
- Four #8-32 bolt pattern for each GSP payload bay

(a) Top



(b) Front

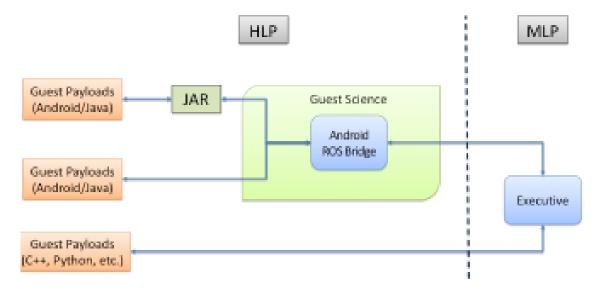
Interface - Electrical


- •Connector:
 - Astrobee side: Glenair M83513/03-E03N
 - Payload side: Glenair M83513/04-E03N
- •Power:
 - 14.4 V 3A unregulated
- Data:
 - USB to HLP and MLP

Interface - Propulsion

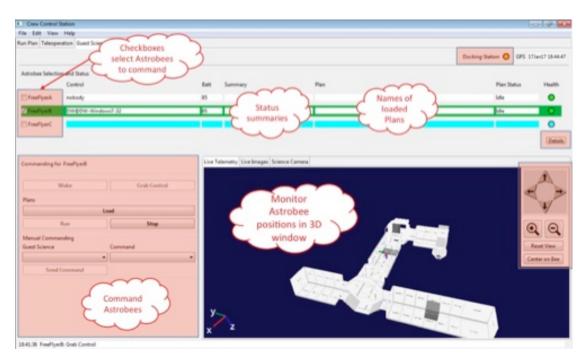
- Two (2) propulsion modules
- Able to instantaneously thrust in any direction and torque about any axis
- Acceleration dependent on weight of GSP payload, but designed to be up to:
 - 10 cm/s² linear
 - 30deg/s² angular
- Maximum thrust: 600mN

Interface - Human


- Touch Screen
- RGB signal lights
- Laser pointer
- Speaker
- Microphone

Interface - Software

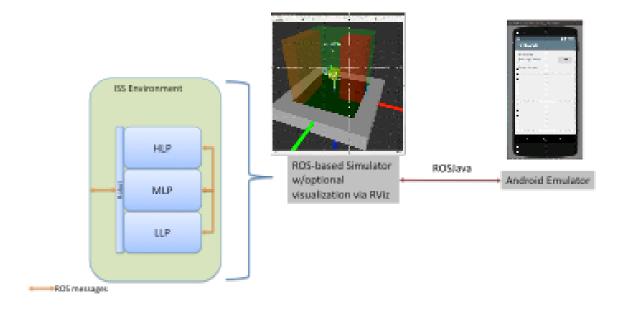
- GSP payloads communicate to Astrobee via the Guest Science Android ROS bridge
- A JAR library will facilitate GSP payload software.
- GSP payloads subscribe to any Astrobee message.
- Advanced users may access lower level functionality.



Interface - Ground

- Easy operator interface
- Custom data message for GSP Payload

Start, stop and send custom commands to


GSP payload

Development - Simulator

- Runs actual flight software
- Simulate sensor inputs
- Runs actual GSP Payload code

Development – Payload Tester

- Main purpose to test payload port functionality and demonstrate GSP payload development path.
- •External processor capable of running Linux and Core Flight Software.
- •Trade study underway to select alternative attachment options, including seat track.