

IceCube 883-GHz Cloud Radiometer

Adventure and Performance in Space

Dong L. Wu and The IceCube Team

NASA Goddard Space Flight Center

Motivations

- Submm-wave cloud radiometer to fill cloud ice gap in the atmosphere
- Spaceflight demonstration of a commercial 883-GHz receiver for technology maturation (TRL 5->7)
- Utilization of emerging cubesat platform for space access and fast development cycle

Cloud Ice Sensitivity Gap

- Clouds, ice clouds in particular, are a major source of uncertainty in climate models
- Submm-wave sensors fill the sensitivity gap between MW and IR.
- Cloud microphysical properties (particle size) account for ~200% of measurement uncertainty.

Cloud-Induced

IceCube's Journey to Space

A Successful Story for Fast-Track Technology Development and Science Research

• 04/2014	Project start
-----------	---------------

- 04/2016 Payload delivered
- 12/2016 Delivery to NanoRacks (cubesat launcher)
- 4/19/2017 Launched to ISS
- 5/16/2017 Jettisoned from ISS and contacted at WFF
- 6/6/2017 First light
- 6/9-18:19:49 IceCube within 23m from CubeSat HOOPEO
- 6/18-7/20 Daytime-only observations
- 7/17/2017 First 883-GHz cloud radiance map
- 8/2-present Daytime-only observations

IceCube Released from ISS on May 16, 2017

NanoRacks Deployer

Telemetry Ground Station: Wallops Flight Facility (WFF)

Operation

CubeSat Internal Layout

Total

Mass: 4 kg

Power: 18 W

Mass: 1.0 kg Instrument: Volume: 1.3 U

Power: 5.6 W

Motor Temperature

Instrument Temperature

First Light from the 883-GHz Radiometer

First Light Operation: Spin Rates

Pointing: Limb-to-Limb Time

Spin Rate Errors

Radiometric Calibration and Cloud Detection with the 883-GHz Radiometer

IceCube 883-GHz Radiometer

Gain model: G(T_p)

Space Radiance Calibration

883-GHz Receiver Gain Model

(A Function of Temperature Tp)

Cloud Detection

First 883-GHz Cloud Radiance Map

IceCube Cloud-Induced Radiance (Tcir) During 20170620 to 20170702

Summary

- IceCube is a pathfinder to use risky cubesat platforms for tech demo and future science constellation missions.
 - All ground tests suggested that it <u>SHOULD WORK</u>.
 - Fast (<3 years from TRL5) development and return on investment
- Cubesats can spin and deliver science! IceCube is challenging many advertised specs of BCT/XACT for a better product.
- In-flight thermal variability of IceCube is larger than expected.
 - Instrument is calibratable for cloud sciences.
 - More stable system is preferred and achievable.
- Calibration for future constellation missions:
 - Balance between flag-ship (fewer, complex, and expensive) and cubesat sensors (multiple, simple, and inexpensive)
 - Radiometric calibration transfer (i.e., accuracy) using radiative transfer models and simultaneous nadir overpass (SNO)

<u>Payload</u>		IceCube	Team	CubeSat and Operation	
Du Toit, Nelis	MEI	Abresch, Brian	569	Juan Rodriguez-Ruiz	545
Ehsan, Negar	555	Azimi, Behnam	596	Lewis, Christopher	569
Fetter, Lula (Lu)	562	Choi, Mike	545	Hart, Henry	569
Horgan, Kevin	555	Coleman, Alexander	569	Hudeck, John	548
Hudson, Derek	555	Cervantes, Ben	589	Heatwole, Scott	598
Lucey, Jared	555	Corbin, Brian	569	Johnson, Tom	800
Lu, Daniel	555	Cote, Jerry	569/ASR		598
Macmurphy, Shawn	562	Daisey, Ted	548	Parks, Timothy	840/LJT
Marlow, Steven	544	Davis, C. Ray	840/LJT	Pollack, Eric	589
Pellerano, Armi	563	Duer, Con	569	Purdy, Christopher	589
Ortiz-Acosta, Melyane	563	Duran-Aviles, Carlos	564	Simpson, Joel	598
Racette, Paul	555	Esper, Jaime	592	Stancil, Robert K.	589
Solly, Michael	562	Flaherty, Brooks	569	Reddersen, Kurt	ASRC
Topper, Alyson	561	Freeman, Jerry	569	Reddersen, Rare	, torte
Wong, Mark (Englin)	564	Resource Analysts: Au	igust, Mario	on (613/SSAI); Whetzel, Linda (6	10/InuTeq)

Virginia Diode Inc (VDI): Hesler, Jeff; Bryerton, Eric; Retzloff, Steven; Neff, Chuck NanoRacks: Brown, Conor

Science/Algorithms: Aksoy, Mustafa (555/USRA); Gong, Jie (613/USRA); Liu, David (614/SSAI); Yang, Ping (TAMU);

<u>Co-Op/Interns:</u> Bain, Jessica; Bensman, Jonathan; Cooke, Caitlyn: Hudson, Margaret; Lafata, Brad; Stoker-Sprit, Eric;