

Adapting MAIAC algorithm for synergistic ABI-TEMPO processing

Alexei Lyapustin, Omar Torres, GSFC Y. Wang (UMBC), S. Korkin (USRA)

TEMPO Aerosol Workshop ESSIC, September 11, 2017

MAIAC: General Information

Status:

• MODAPS started C6+ re-processing of MODIS with MAIAC (MCD19)

Products (gridded):

- Atmosphere: WV, CM, AOD, aerosol type (background/smoke/dust), FMF (over water) @1km resolution;
- Land Surface: spectral BRDF (RTLS model, naturally gap-filled), BRF (surface reflectance) @1km and 500m in bands 1-12, albedo;
- **Detected Snow**: snow grain size, and sub-pixel snow fraction (1km);

NASA

Processing Diagram: Leo→Geo

Cloud Mask

- Land-Water-Snow Classification;
- Reliable Clouds:
 - Bright;
 - Cold (q.Tb₁₁-Tb₁₁>30° & high $R_{1.38}$ or dTb): assumes smoke <4.5km
 - σ_{500} test;
- <u>Smoke/Dust test;</u>
- <u>R_{1.38} dTb₄₋₁₁ test</u>;

σ_{500} (500m sub-pixel variability)

 TOA RGB (1km)
 CM
 RGB BRF

Lyapustin, A. et al., 2012: Improved cloud screening in MAIAC aerosol retrievals using spectral and spatial analysis, **AMT**, 5, 843–850.

Cloud Mask, cont.

Post Aerosol Retrievals:

- Filter upper AOT>70% at 25km (depending on cloud fraction)
- 3x3 AOD outlier test (original idea of E. Emili, A.Lyapustin et al., 2011: High spatial res. aerosol retrieval with MAIAC: Application to mountain regions, JGR, 116, D23211)
 - In 3x3, filter outlier (max) if τ_{max} - τ_{av} > 0.2. Iterate;

1200 km

Decreasing brightness – moving from backscattering towards forward scattering

NASA

MAIAC Aerosol Type (Smoke/Dust)

Lyapustin, A. et al., 2012: Discrimination of biomass burning smoke and clouds in MAIAC algorithm, **ACP**, 12, 9679–9686.

Phys. principles (~OMI) – enhanced shortwave absorption (Red →Blue →DB)

 $R_{\lambda}^{Aer} = R_{\lambda}^{Meas} - R_{\lambda}^{Molec} - R_{\lambda}^{Surf}(\tau^{a})$ - proxy of aerosol reflectance

- 1) n_i increases $R \rightarrow DB$ for OC (smoke) and dust;
- 2) Multiple scattering, for absorbing aerosols.

Backgr./Smoke/Dust $\delta_{\lambda} = R_{\lambda}^{M} - R_{\lambda}^{T}(\tau_{0.47}^{a} = 0.05)$

Model	Abs.	Size
Backgr.	No	Small
Smoke	Yes	Small
Dust	Yes	Large

ABI – TEMPO Synergy

- Need 400-412nm TEMPO data gridded to ABI grid;
- This will allow to run "standard" MAIAC with good cloud/snow mask and Smoke/Dust detection;
- MAIAC can include window TEMPO bands for the atmospheric correction (BRDF_{λ}) will help TEMPO gas retrievals;
- Use 340 390nm to derive absorption (imaginary refractive index k_{λ} / SSA_{λ})

CM AOD SR

ΤΟΑ

Figure 1. MAIAC processing of HIMAWARI-8 AHI data on day 93, 2016 over 250km area of Australia, centered on capital Canberra. Shown are retrievals from early morning till mid-evening. The 4 columns show 1) TOA RGB from AHI, 2) MAIAC cloud mask (Blue-clear-land; light Blue – clear-water; Red/Yellow – cloud); 3) aerosol optical depth at 0.47 μm; 4) atmospherically corrected RGB surface reflectance.

00

Aerosol Absorption From GLI

- Funding from NASA GeoCAPE project
- Idea: study synergy between GOES-R and TEMPO
 - GOES-R provides high spatial resolution and VIS-SWIR-TIR bands (CM/snow, surface change, AOT, BRF/BRDF/Albedo surface suite etc. from MAIAC)
 - TEMPO gives a hyperspectral coverage in UV-VIS at 2x4km²;
 - Opportunity for retrieval of AOT, SW absorption, and H_{eff}.
- Started with GLI on ADEOS-II:
 - 10:30am orbit; 1600km swath (VZA<45°), 4 days global coverage
 - Almost MODIS-like spectrally (for 1km bands):
 - Lacks NIR WV bands at 0.94µm; adds 399.7, 388nm;
 - Lacks 500m bands; Some bands at 250m, LAC mode;
 - Launched in Dec. 2002; Data available Feb.-October 2003.

Algorithm and Assumptions

- *MAIAC has a dynamic characterization of SRC,* $b_{0.46} = \rho_{0.46} / \rho_{2.2}$ using min reflectance method. For GLI, also compute $b_{0.40}$, $b_{0.388}$
- Run standard MAIAC \rightarrow cloud mask, AOT_{0.46}, aer. type (smoke), spectral surface BRDF etc.
- Assuming aerosol model (SD, (n,k), profile and AOT_{0.46}), retrieve k (SSA) at 0.4 and 0.388µm independently using separate LUT with variable refIM (5 values, k=0.001-0.02) by matching measured radiance.
- Evaluate AAE: $k_{\lambda} = k_{0.55} (\lambda/0.55)^{-AAE}$. Given AAE, repeat joint inversion for $(AOT, k)_{0.46}$ by best fit to measurements at 0.46, 0.4 and 0.388 μm .

High, Moderate and Low Absorption

0.004 0.0068 0.0096 0.0124 0.0152 0.018

At High Resolution, Near Sources

