

National Aeronautics and Space Administration

The Future of Aviation: A Paradigm for Unmanned Aviation Systems and Urban Air Mobility

Presenter: Parimal Kopardekar

MD: ARMD Date: 06/27/17 TIME: 00:00 PST

NOTE: All presentations will undergo a review by the MDL and then by ITAR/EAR.

INNOVATION | PARTNERSHIP

COMMERCIALIZATION

SMALL BUSINESS INNOVATION RESEARCH (SBIR) & SMALL BUSINESS TECHNOLOGY TRANSFER (STTR)

Topic Overview

- Air Traffic Management (ATM)
- Unmanned Aircraft System Traffic Management (UTM)
- Urban Air Mobility Operations
- Paradigm for Beyond

- UTM is an "air traffic management" ecosystem for uncontrolled airspace
 - UTM utilizes industry's ability to supply services under FAA's regulatory authority where these services do not exist
- UTM development will ultimately identify services, roles/responsibilities, information architecture, data exchange protocols, software functions, infrastructure, and performance requirements for enabling the management of low-altitude uncontrolled UAS operations

Key Operational Assumptions

- FAA maintains regulatory AND operational authority for airspace and traffic operations
- UTM is used by FAA to issue directives, constraints, and airspace configurations
- Air traffic controllers <u>are not required</u> to actively "control" every UAS in uncontrolled airspace or uncontrolled operations inside controlled airspace
- FAA has on-demand access to airspace users and can maintain situation awareness through UTM
- UTM roles/responsibilities: Regulator, UAS Operator, and UAS Service Supplier (USS)
- FAA Air Traffic can institute operational constraints for safety reasons anytime

UTM Principles and Services

Principles

- Users operate in airspace volumes as specified in authorizations, which are issued based on type of operation and operator/vehicle performance
- UAS stay clear of each other
- UAS and manned aircraft stay clear of each other
- UAS operator has complete awareness of airspace and other constraints
- Public safety UAS have priority over other UAS

Key UAS-related services

- □ Authorization/Authentication
- Airspace configuration and static and dynamic geo-fence definitions
- Track and locate
- Communications and control (spectrum)
- Weather and wind prediction and sensing
- Conflict avoidance (e.g., airspace notification)
- Demand/capacity management
- □ Large-scale contingency management (e.g., GPS or cell outage)

UAS Operator

- Assure communication, navigation, and surveillance (CNS) for vehicle
- Register
- Train/qualify to operate
- Avoid other aircraft, terrain, and obstacles
- Comply with airspace constraints
- Avoid incompatible weather

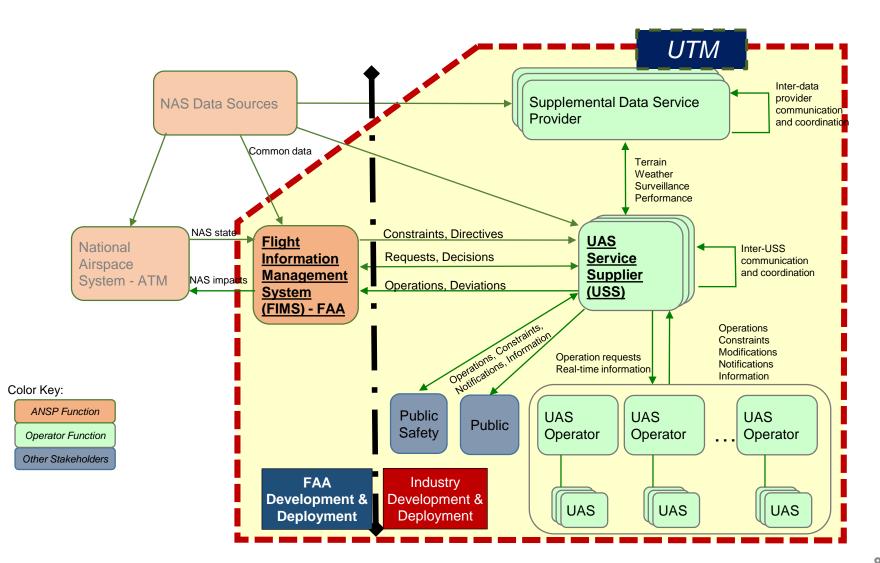
Regulator/Air Navigation Service Provider


- Define and inform airspace constraints
- Facilitate collaboration among UAS operators for de-confliction
- If future demand warrants, provide air traffic management
 - Through near real-time airspace control
 - Through air traffic control integrated with manned aircraft traffic control, where needed

Supporting Functions

WIND & WEATHER INTEGRATION

- Operator responsibility, may be provided by third party
- Actual and predicted winds/weather
- No unique approval required



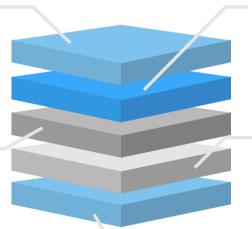
UTM Architecture

UTM Technical Capability Levels

 CAPABILITY 1: DEMONSTRATED HOW TO ENABLE MULTIPLE OPERATIONS UNDER CONSTRAINTS Notification of area of operation Over unpopulated land or water Minimal general aviation traffic in area 	 CAPABILITY 3: FOCUSES ON HOW TO ENABLE MULTIPLE HETEROGENEOUS OPERATIONS Beyond visual line of sight/expanded Over moderately populated land Some interaction with manned aircraft Tracking, V2V, V2UTM and internet connected
 Contingencies handled by UAS pilot 	Product: Requirements for heterogeneous operations
 CAPABILITY 2: DEMONSTRATED HOW TO ENABLE EXPANDED MULTIPLE OPERATIONS Beyond visual line-of-sight Tracking and low density operations Sparsely populated areas Procedures and "rules-of-the road" Longer range applications 	 CAPABILITY 4: FOCUSES ON ENABLING MULTIPLE HETEROGENEOUS HIGH DENSITY URBAN OPERATIONS Beyond visual line of sight Urban environments, higher density Autonomous V2V, internet connected Large-scale contingencies mitigation Urban use cases
Product: Requirements for multiple BVLOS operations including off-nominal dynamic changes	Product: Requirements to manage contingencies in high density, heterogeneous, and constrained operations

Risk-based approach: depends on application and geography

UTM TCL2: Scheduling and Executing Multiple BVLOS Operations



Conflict Alerts

Alert triggered by proximity to other aircraft

Contingency Alerts

Simulated in-flight emergency reported to the UTM research prototype and relayed to impacted operations

Intruder Alerts

Alert triggered from radar submitted warning regions to UTM research prototype

Flight Conformance Alerts

Alert triggered from departing from operational area and relayed to impacted operations

Priority Operations

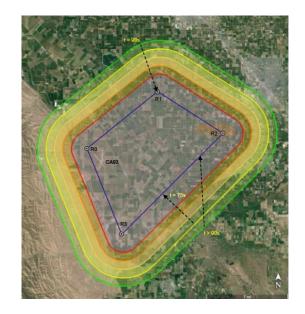
Users with special privileges are given priority of the airspace and impacted operations are informed of any conflicts

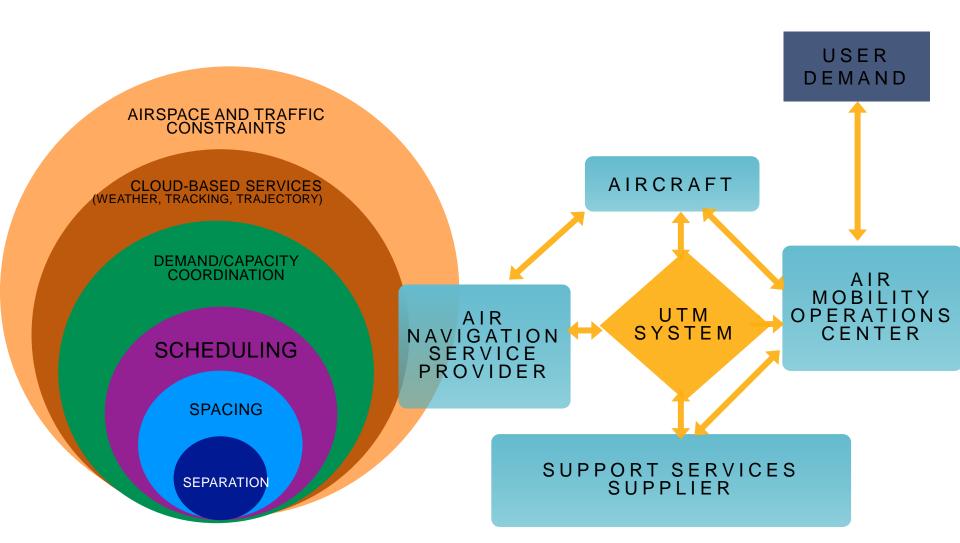
Scheduling and tracking operations and contingency management

UTM Research Platform

UTM concept and research platform supported BVLOS

UTM Core Principles and Guiding Tenet	Tested Feature
UAS should avoid each other	Scheduling and Planning Conformance Alerting Proximity Alerting Separation by Segregation (e.g. Geo- fencing)
UAS should avoid manned aircraft	Intruder Alerting Separation by Notification (e.g. NOTAM)
UAS operators should have complete awareness of all constraints in the airspace	UTM Mobile Application Contingency Management Alerts
Public safety UAS have priority within the airspace	Priority Operations
Flexibility where possible and structure where necessary	Altitude Stratification Dynamic Re-routing 4D Segmented Flight Plans


TCL 3 Evaluations (preparations underway)


High level objectives of TCL 3 evaluations

- System Level Evaluation
 - Contingency Management /Off-Nominal Conditions
 - Priority Operations and Airspace and Ground Constraints
- Separation
 - Non-cooperative aircraft
 - Cooperative Aircraft
 - Ground Obstacles
- Communication and Navigation
 - Direct Communication and Control (e.g. radio controlled)
 - Distributed Communication (e.g. cellular network, mesh networks)
- Navigation (close to people and buildings, terrestrial and satellite-based)
 - Data gathering for modeling, measurement and forecasting of weather
 - UAS/USS weather integration

TCL 3 Evaluations will include testing at Crows Landing, CA in Fall 2017 using COA 2016-WSA-46 that authorizes NASA to conduct BVLOS operations with small UAS at Crows Landing, CA using a radar for separation (instead of visual observers)

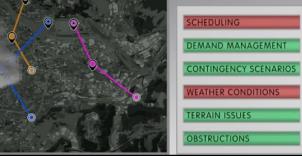
Connected System for Scalability

Research Approach

CRAWL-WALK-RUN APPROACH

Low-density: Initial Operational Capability

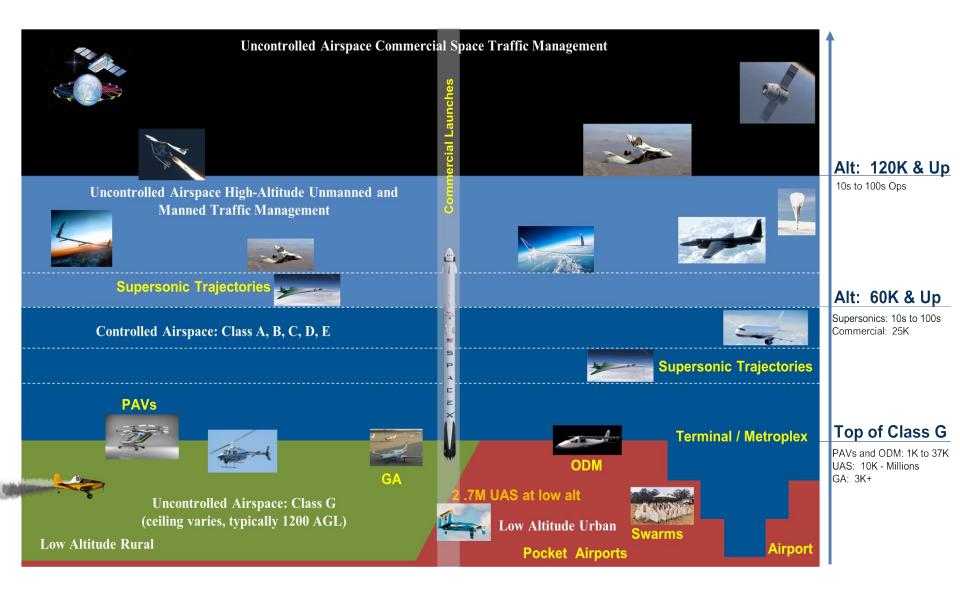
- Helicopter routes using today's procedures
- Clearance into controlled airspace (UTM authorization and notification)
- User created conflict-free trajectories and own tracking

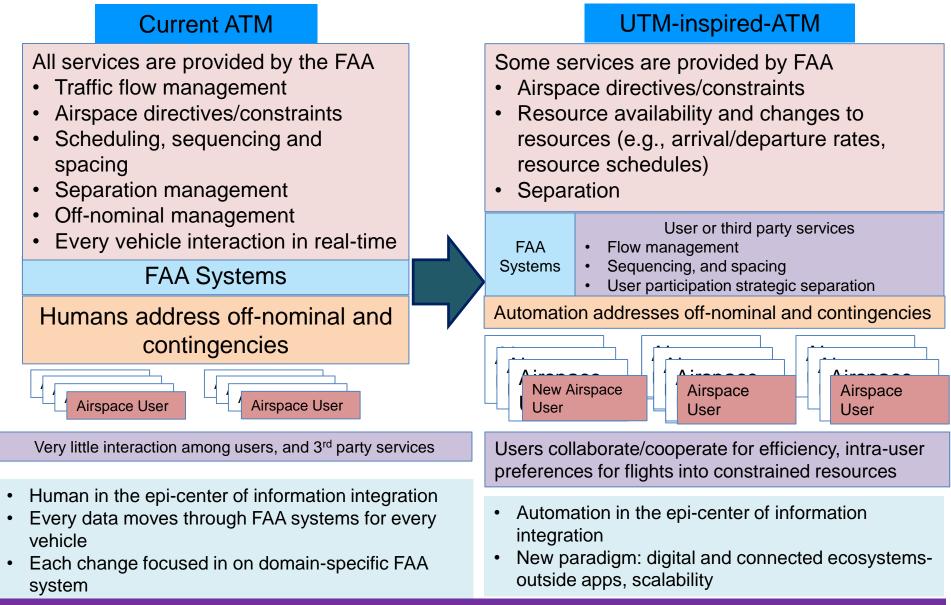

Medium-density: Interim Operational Capability

- User creates conflict-free trajectories
- Interoperable, cooperative, intent sharing through UTM
- Self-managed operations (e.g., detect and avoid, contingency management)

High-density: Mature Operational Capability

- Fully-autonomous planning, scheduling, separations, entry/exit controlled airspace, interoperability, and contingency management
- Multiple, simultaneous take-offs and landings





RESEARCH NEEDED TO IDENTIFY REQUIREMENTS FOR SCALED OPERATIONS

Future Paradigm for Airspace Operations

NASA Unique Role: Architecture, data exchange, service allocation/roles/responsibilities, rules of engagement, service performance requirements, automation for contingency management and disruption handling, machine learning environment and algorithms for continuous improvement, certification/acceptance approaches, and technology transitions

Current State of the Art

- Not scalable due to human-centric decisions and actions
- Virtually all interactions/data goes through FAA systems
- Does not leverage
 industry capabilities

Results In

- Does not accommodate new users and higher density of current users
- Modernization becomes slow process
- All costs are borne by government

Change is needed/Redefine

- Methods and techniques
- Interactions among operators and FAA system
- Service-oriented architecture
- Safety systems increasing airspace access while ensuring safety

If we don't change now, US global leadership will suffer

Big Picture – What's next?

- High altitude UTM cooperative among operators above FL60,000 (Google Loon, Facebook Aquila, Aerovironment)
 - Cooperation through data exchanges, contingency management procedures and technologies
- Urban air mobility: Extension of UTM cooperation through data exchange, regulator provides constraints and operator plans their own operation and avoids others and constraints
- Service-oriented architecture for current ATM operations what can we learn from UTM for ATM

- Very active collaboration with FAA and industry
- UTM construct is adopted globally (e.g., J-UTM, K-UTM, SESAR, ICAO, etc.)
- FAA-NASA UTM RTT construct has been very productive
- Next steps will be UTM pilot and path towards initial operations
- Opportunity to extend UTM paradigm as appropriate

The End THANK YOU FOR YOUR PARTICIPATION!

NOTE: This presentation will be accessible through the Industry Day website.