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Abstract

We investigate the application of temporal planners to the
problem of compiling quantum circuits to newly emerging
quantum hardware. While our approach is general, we focus
our initial experiments on Quantum Approximate
Optimization Algorithm (QAOA) circuits that have few
ordering constraints and allow highly parallel plans. We
report on experiments using several temporal planners to
compile circuits of various sizes to a realistic hardware. This
early empirical evaluation suggests that temporal planning is
a viable approach to quantum circuit compilation.

1 Introduction
We explore the use of temporal planners to optimize
compilation of quantum circuits to newly emerging
quantum hardware. Over the last few decades, stunning
instances of quantum algorithms that provably outperform
the best classical algorithms have been designed, but only
now is prototype hardware on which to run them emerging.
IBM recently provided public access to a 5-qubit processor
through the cloud (IBM 2017), and scalable quantum
computing architectures are being manufactured as well by
other groups such as TU Delft (Versluis et al. 2016), Rigetti
Computing (Sete, Zeng, and Rigetti 2016), and
Google (Boxio 2016). All cited groups have announced
plans to build gate-model quantum processors with 40 or
more qubits in the near term, as well. Previously, only
special purpose quantum hardware was available - quantum
annealers targeting optimization problems. Gate-model
computing expands the potential applications beyond
optimization, as well as enabling a broader array of
quantum approaches to optimization.

Like classical algorithms, quantum algorithms must be
compiled into a set of elementary machine instructions
(gates) applied at specific times in order to run them on
quantum computing hardware. Quantum algorithms are
often specified as quantum circuits on idealized hardware
since the physical hardware constraints vary from
architecture to architecture. For example, emerging
gate-model quantum computer hardware based on
superconducting qubits have planar architectures which
impose nearest-neighbor restrictions on the memory
locations (qubits) to which the gates can be applied. For
this reason, compiling quantum circuits to specific

hardware requires adding new gates that move qubits to
gates that can act on them. Optimizing this compilation
process is a challenging problem due to the parallel
execution of gates with different durations. Further, for
quantum circuits with more flexibility in when the gates can
be applied, or when some gates can be applied in a different
order while still achieving the same computation, the search
space for feasible compilations is larger than for less
flexible circuits. Even though it’s more challenging to find
the optimal compilation on circuits with more flexibility,
there is also a greater potential win from improved
compilation optimization than for less flexible circuits.
While there has been active development of software
libraries to synthesize and compile quantum circuits from
algorithm specifications (Wecker and Svore 2014) (Smith,
Curtis, and Zeng 2016) (Steiger, Häner, and Troyer 2016)
(Devitt 2016) (Barends et al. 2016), few approaches have
been explored for compiling idealized quantum circuits to
realistic quantum hardware (Beals et al. 2013) (Brierly
2015) (Bremner, Montanaro, and Shepherd. 2016), leaving
the problem open for innovation. An analogous issue
arising when compiling classical programs is the register
allocation problem, in which program variables are
assigned to machine registers to improve execution time;
this problem reduces to graph coloring (Fu, Wilken, and
Goodwin 1960).

In this paper, we use temporal planning techniques to
solve the compilation of quantum algorithm on the
gate-model quantum machine. Specifically, we model
machine instructions as PDDL2.1 durative actions,
enabling domain-independent temporal planners to find a
parallel sequence of conflict-free instructions that when
executed can achieve what the high-level quantum
algorithm intends to achieve. While our approach is
general, we focus our initial experiments on circuits that
have few ordering constraints and thus allow highly parallel
plans. We report on experiments using a variety of temporal
planners to compile circuits of various sizes to an
architecture inpired by those currently being built. This
early empirical evaluation suggests that temporal planning
is a viable approach to quantum circuit compilation.
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Figure 1: A generic representation of an example quantum circuit involving three qubits. Lines indicate the flow of time from
left to right. The box with the red stripes represents a two-qubits gate which generically entangles A and B, generating co-
existing alternatives of combination of quantum states. The second box is a gate that swaps the physical location of B and C,
preserving the correlations (pictorialized as dashed lines). The third operation is the end of the algorithm where the qubits are
individually measured. The quantum states and the correlations determines the probability that the final results is a particular
bit-string among the 23 = 8 possible results.

2 Background
Quantum algorithms process information stored in qubits,
the basic memory unit of quantum processors. Quantum
gates are the building blocks of quantum algorithms, just as
instructions on registers are the building blocks of classical
algorithms. For the purposes of this paper, one can
formalize the compilation problem for quantum circuits
entirely classically in terms of memory locations (qubits)
and gates (operations on memory locations) together with
specific constraints on them. In the rest of this section, we
give a brief review of gate-model computing. Impatient
readers can skip to Section 3; for a review of quantum
computing, see (Rieffel and Polak 2011).

A qubit stores a quantum state, specified by three real
numbers, corresponding to a vector in 3D space, with the
up and down corresponding to classical bit values 0 and 1.
These values, encoding probability amplitudes, are not
addressable directly, but the qubit states can be fed as input
to elementary quantum gates, operations that change the
state of either a single qubit or a pair of qubits jointly.

In the process of executing the gates, the state of the
entire set of qubits becomes correlated, even quantum
correlated (i.e. entangled). Even when quantum
correlations exist, for the algorithms we consider, we obtain
a classical output by probabilistically projecting each
quantum state to up or down (0 or 1). The objective of such
quantum algorithms is to obtain, with high probability, a
state which can be associated to a classical bitstring that
solves the problem of interest. Quantum computational
hardware suffers from “decoherence” which degrades the
performance of quantum algorithms over time. Especially
for near-term hardware, which will not be able to mitigate
decoherence, it is important to minimize the duration of the
circuit that carries out the quantum computation to
minimize the decoherence experienced by the computation.

3 Architecture-specific compilation problem
Gate-model quantum computers work on a clock, like
digital classical computers. In a quantum-circuit, a gate has
a start time and a duration in integer units of the clock

cycle. Quantum circuits for general quantum algorithms
(see Fig. 1) are often described in an idealized architecture
in which any 2-qubit gate can act on any pair of qubits.
Physical constraints impose restrictions on which pairs of
qubits support gate interactions in an actual physical
architecture. For superconducting qubit architectures,
qubits in a quantum processor can be thought of as nodes in
a planar graph, and 2-qubit quantum gates are associated to
edges. Gates can operate concurrently when they do not
operate on the same qubits1. Furthermore, there are
different types of quantum gates, each taking different
durations, with the duration depending on the specific
physical implementation.

In order for the computation specified by the idealized
circuit to be carried out, we require a particular type of
2-qubit gate, the swap gate, which exchanges the state of
two qubits. A sequence of swap gates moves the contents of
two distant qubits to a gate where a desired operation can
be carried out. Swap gates may be available only on a
subset of edges in the hardware graph, and swap duration
may depend on where they are located. For the purposes of
this study, we will consider the case in which swap gates
are available between any two adjacent qubits on the chip
and all swap gates have the same duration, but our approach
can handle the more general cases.

Compilation examples: Figure 2 shows a hypothetical chip
design that we will use for our experiments on circuit
compilation. It is inspired by the architecture of the
machine envisioned by Rigetti Computing Inc. (Sete, Zeng,
and Rigetti 2016). Qubits are labeled with ni and the
colored edges indicate the types of 2-qubit gates available,
in this case swap gates and two other types of 2-qubit gate
(further described in Section 4). Given an idealized circuit
consisting only of the non-swap gates, used to define
general quantum algorithms, the circuit compilation
problem is to find a new architecture-specific circuit by
adding swap gates and ordering gates when required. The

1There may be additional restriction on which operations can
be done currently (e.g. see paper by Google Inc. (Boxio 2016)).
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Figure 2: A schematic for the hypothetical chip design
used in our numerical experiments, with available 2-qubit
gates represented by colored arcs in a weighted multigraph.
Each color is associated to a specified, distinct gate-type and
duration: SWAP gates (black) and two other types of 2-qubits
gates (red and blue). The 1-qubit gates are present at each
qubit (black dot). Dashed boxes indicate the 3 different chip
sizes used in our empirical evaluation (see Sec. 6). For visual
clarity, only the label locations and the SWAP-gates for the
smaller chip size are shown.

main objective is to minimize the overall duration to
execute all gates in a new circuit.

To illustrate the challenges of finding effective
compilation, we present some concrete examples, with
reference to the 8-qubit section in the top left of Fig. 2.
Suppose that at the beginning of the compilation, each qubit
location ni is associated to the qubit state qi. Let us also
assume that the idealized circuit requires the application of
a red gate to the states q2 and q4, initially located on qubits
n2 and n4. One way to achieve this task would be to swap
the state in n4 with n1, while at the same time swapping n2
with n3. Another swap, between n1 and n2, positions q4 in
n2 where a red-gate connects it to q2 (which is now in n3).

The sequence of gates to achieve the stated goal are:

{SWAPn4,n1
, SWAPn2,n3

} → SWAPn1,n2
→ REDn2,n3

≡ RED(q2, q3) (1)

The first line refers to the sequence of gate applications,
while the second corresponds to the algorithm objective
specification (a task defined over the qubit states). The
sequence in Eq. (1) takes 2τswap + τred clock cycles where
τ? represents the duration of the ?-gate.

As the second example, the idealized circuit requires
BLUE(q1, q2) ∧ RED(q4, q2), in no particular order. If
τblue > 3 × τswap, the compiler might want to execute
BLUEn1,n2

while the qubit state q4 is swapped all the way
clockwise in five SWAPs from n4 to n3 where REDn2,n3

can

be executed. However, if τswap < 3× τblue, it is preferable
to wait until the end of BLUEn1,n2 and then start to execute
the instruction sequence in Eq. (1).

Problem definition: An idealized quantum circuit consists
of a set of nodes (qubits), which can be thought of as
memory locations, and a specification of start times of
operations (gates), each acting on a single node or a pair of
nodes. Operations have specified durations and there exist
specifications to operations whose time order can be
reversed, either individually or as blocks.
Ideal to hardware-specific quantum circuit compilation
problem: The problem input is an idealized quantum
circuit and a hardware multigraph and the output is a
hardware-specific circuit that implements the idealized
quantum circuit. The objective is to minimize the makespan
(the circuit duration) of the resulting circuit.

4 Compiling QAOA for the MaxCut problem
While our approach can be used to solve a wide range of
quantum circuits and architectures, in this paper we
concentrate on one particular case: QAOA circuits for
MaxCut on an architecture inspired by the machine
manufactured by Rigetti Computing Inc. (Sete, Zeng, and
Rigetti 2016). As described below, there are a relatively
small number of gate ordering constraints for this
architecture. We choose to work with QAOA circuits
because they have many gates that commute with each
other (i.e., no ordering enforced). Such flexibility in the
ordering of the gates means that the compilation search
space is larger than for other circuits. This makes finding
the optimal compilation challenging, but there is great
potential from improved compilation optimization,
compared to other classes of circuits. QAOA circuits have
also been the focus of recent research (Farhi, Goldstone,
and Gutmann. 2014a) (Farhi, Goldstone, and Gutmann.
2014b) (Farhi and Harrow 2016) (Wecker, Hastings, and
Troyer 2016) (Yang et al. 2016) (Guerreschi and
Smelyanski 2017) (Jiang, Rieffel, and Wang 2017) in the
quantum computing community since their introduction by
Farhi et al. in (Farhi, Goldstone, and Gutmann. 2014a). We
chose (Sete, Zeng, and Rigetti 2016) (see Figure 2) as a
template because it has two different classes of qubit pair
gates, red and blue. The durations we assign to the gates are
not derived from actual designs, but are realistic and serve
to illustrate possible future designs.

Idealized QAOA circuits alternate between a phase
separation phase (PS) and a mixing phase. The
phase-separation phase for QAOA for MaxCut (defined in
the later part of this section) is simpler than for other
optimization problems, consisting of a set of identical
2-qubit gates that must be applied between certain pairs of
qubits depending on the graph of the MaxCut instance
under consideration. We will refer to these as p-s gates, and
the main goal of the compilation is to carry them out. The
p-s gates all commute with each other, implying that they
can be carried out in any order (subject to constraints on the
chip, as noted previously). In the mixing phase, a set of
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Figure 3: Example of a 6-vertex MaxCut problem on
a randomly generated graph (qstates q2 and q8 are not
appearing in this instance). The association of quantum
states to every node allows the definition of the compilation
objectives in terms of gates, as exemplified for QAOA p = 2.

1-qubit operations are applied, one to each qubit. All p-s
gates that involve a specific qubit q must be carried out
before the mixing operator on q can be applied. These two
phases are repeated p times. We consider p = 1 and p = 2 in
our experiments (detailed in Section 6).

The constraints on the compilation problem can be
understood, with reference to Fig. 2, as:

• SWAP gates are located at every edge with τswap = 2.

• there are two kind of non-swap gates: P-S gates are 2-
qubit gates and MIX gates are 1-qubit gates.

• P-S gates are located at every edge of the grid, but their
duration τp−s can be 3 or 4 depending on their location
(respectively blue or red edges in Fig.2).

• MIX gates are located at every vertex with τmix=1.

• In an initialization stage, which is not considered as part
of the compilation problem, a quantum state is assigned
to each qubit.

MaxCut Problem: Given a graph G(V,E) with n = |V |
vertices andm = |E| edges. The objective is to partition the
graph vertices into two sets such that the number of edges
connecting vertices in different sets is maximized.

For every vertex i ∈ V , QAOA for MaxCut requires a
quantum state qi to be assigned on a qubit on the chip, and
for every edge (i, j) ∈ E, the PS step of QAOA requires
executing a gate corresponding to P-S(qi, qj). In Fig. 3 an
idealized circuit for QAOA Maxcut with p = 2 is shown on
a 6-vertex MaxCut instance. We ignore the final mixing
phase since it is trivial to compile by just applying the
1-qubit mixing gate to each qubit as the last operation.

5 Compilation of a Quantum Circuit as
Temporal Planning Problem

Planning is the problem of finding a conflict-free set of
actions and their respective execution times that connects
the initial-state I and the desired goal state G. We now
introduce some key concepts that provide the background
for the compilation of QAOA to a temporal planning
problem.

Planning Domain Description Language (PDDL): PDDL is
a modeling language that was originally created to
standardize the input for planners competing in the
International Planning Competition (IPC). Over time, it has
become the de-factor standard modeling languages used by
many domain-independent planners. We use PDDL 2.1,
which allows the modeling of temporal planning
formulation in which every action a has duration da,
starting time sa, and end time ea = sa + da. Action
conditions cond(a) are required to be satisfied either (i)
instantaneously at sa or ea or (ii) required to be true
starting at sa and remain true until ea. Action effects eff (a)
may instantaneously occur at either sa or ea. Actions can
execute when their temporally-constrained conditions are
satisfied, and when executed, will cause state-change
effects. The most common objective function in temporal
planning is to minimize the plan makespan, i.e. the shortest
total plan execution time. This objective matches well with
the objective of our targeted quantum circuit compilation
problem. To enable reuse of key problem features present
in an ensemble of similar instances, the PDDL model of a
planning problem is separated into two major parts: (i) the
domain description that captures the common objects and
behaviors shared by all problem instances of this planning
domain and (ii) the problem instance description that
captures the problem-specific objects, initial state, and goal
setting for each particular problem.

PDDL Planners: a planner takes as input the PDDL domain
and problem descriptions and returns a valid plan if one
exists. Many different approaches have been implemented
to find a viable plan, among them: (i) heuristically search
over the possible valid plan trajectories or over the library
of partial plans or (ii) compile the planning problem into
another combinatorial substrate (e.g., SAT, MILP, CSP) and
feed the problem to off-the-shelf solvers.

Modeling Quantum Gate Compilation in PDDL 2.1:
PDDL is a flexible language that offers multiple alternative
ways to model a planning problems. These modeling
choices can greatly affect the performance of existing
PDDL planners. For instance, many planners pre-process
the original domain description before building plans; this
is time-consuming, and may produce large ‘ground’ models
depending on how action templates were written. Also, not
all planners can handle all PDDL language features
effectively (or even at all). For this project, we have iterated
through different modeling choices with the objective of
constructing a PDDL model that: (i) contains a small
number of objects and predicates for compact model size;
(ii) uses action templates with few parameters to reduce
preprocessing effort; while (iii) ensuring that the model can
be handled by a wide range of existing PDDL temporal
planners.

At the high-level, in our domain, we need to model: (i)
conceptually how actions representing P-S, SWAP, and MIX
gates affect qubits and qubit states (qstate); (ii) the actual
qubits and qstates involved with a particular compilation
problem, their initial locations and final goal requirements,



(:durative-action swap 1 2
:parameters (?q1 - qstate ?q2 - qstate)
:duration (= ?duration 2)
:condition

(and (at start (located at 1 ?q1))
(at start (located at 2 ?q2)))

:effect
(and (at start (not (located at 1 ?q1)))

(at start (not (located at 2 ?q2)))
(at end (located at 1 ?q2))
(at end (located at 2 ?q1))))

(:durative-action mix 1 at 1
:parameters ( )
:duration (= ?duration 1)
:condition

(and (at start (located at 1 q1))
(over all (not (mixed q1))))

:effect
(and (at start (not (located at 1 q1)))

(at end (located at 1 q1))
(at end (mixed q1))))

(:durative-action P-S 1stPhaseSeparation at 6-7
:parameters (?q1 - qstate ?q2 - qstate)
:duration (= ?duration 3)
:condition

(and (at start (located at 6 ?q1))
(at start (located at 7 ?q2))
(at start (not (GOAL PS1 ?q1 ?q2)))

:effect
(and (at start (not (located at 6 ?q1)))

(at start (not (located at 7 ?q2)))
(at end (located at 6 ?q1))
(at end (located at 7 ?q2))
(at end (GOAL PS1 ?q1 ?q2))
(at end (GOAL PS1 ?q2 ?q1)))))

(:durative-action P-S 2ndPhaseSeparation at 6-7
:parameters (?q1 - qstate ?q2 - qstate)
:duration (= ?duration 3)
:condition

(and (at start (located at 6 ?q1))
(at start (located at 7 ?q2))
(at start (not (GOAL PS2 ?q1 ?q2)))
(at start (GOAL PS1 ?q1 ?q2))
(at start (mixed ?q1))
(at start (mixed ?q2)))

:effect
(and (at start (not (located at 6 ?q1)))

(at start (not (located at 7 ?q2)))
(at end (located at 6 ?q1))
(at end (located at 7 ?q2))
(at end (GOAL PS2 ?q1 ?q2))
(at end (GOAL PS2 ?q2 ?q1)))))

Figure 4: PDDL model of actions representing some
exemplary SWAP, MIX, P-S gates.

(iii) the underlying graph structure (gates connecting
different pairs of qubits). We follow the conventional
practice of modeling (i) in the domain description while (ii)

is captured in the problem description. One common
practice is to model (iii) within the problem file. However,
given that we target a rather sparse underlying
qubit-connecting graph structure (see Figure 2), we decide
to capture it within the domain file to ease the burden of the
“grounding” and pre-processing step for existing planners,
which can be very time-consuming. Specifically:

Objects: We need to model three types of object: qubits,
qstates, and the location of the P-S and SWAP gates (i.e.,
edges connecting different qubits). Since qstates are
associated (by means of the predicate located at, see
Figure 4 for concrete example) to specific qubits, they have
been modeled explicitly as planning objects, while the
qubits and the gate locations (i.e., edges) are modeled
implicitly. It is clear from the action definitions in Figure 4
that qubit locations are embedded explicitly within the
action declaration. This approach avoids declaring qubits as
part of the action parameters, significantly reducing the
number of ground actions to be generated. For 2-qubit
actions, the potential number of ground actions reduce from
N4 to N2 × |E|, with N the number of qubits in the chip
(up to 40) and E the set of connections between qubits.

Actions: temporal planning actions are created to model: (i)
2-qubit SWAP gates, (ii) 2-qubit P-S gates, and (iii) 1-qubit
MIX gates. For reference, Figure 4 shows the PDDL
description of a SWAP gate between qubits 1 and 2, the MIX
gate of state q1 on qubit 1, and the P-S gates between qubits
6 and 7 at the first and second phase separation. In the
action’s condition list, we specify that gates are
accomplished on the two qstates only if they are located on
the corresponding qubits. To prevent a qstate q currently
belonging to qubit X from being addressed by multiple
gates at the same time (i.e. “mutex” relations in planning
terminology), we assign value FALSE to the predicate
(located at Xq) at the starting time of all actions
involving q.

The most complex constraint to model is the conditions
to mix a qstate q given the requirement that all P-S gates
involving q in the previous phase separation step have been
executed. We explored several other choices to model this
requirement such as: (i) use a metric variable PScount(q)
to model how many P-S gates involving q have been
achieved at a given moment; or (ii) use ADL quantification
and conditional effect constructs supported in PDDL.
Ultimately, we decided to explicitly model all P-S gates that
need to be achieved as conditions of the MIX(q) action.
This is due to the fact that alternative options require using
more expressive features of PDDL2.1 which are not
supported by many effective temporal planners.2

Objective: we use the standard temporal planning objective
2For example, preliminary tests with our PDDL model using

metric variables to track satisfied goals involving qstate q using
several planners shows that they perform much worse than on non-
metric version, comparatively. This is to be expected as currently,
state-of-the-art PDDL planners still do not handle metric quantities
as well as logical variables.



of minimizing the plan makespan. This coincides with
minimizing the circuit depth, which is the main objective of
the quantum compilation problem.

Alternative model: given that non-temporal planners can
perform much better than temporal planners on problems of
the same size, we have also created the non-temporal
version of the domain by discretizing action durations into
consecutive “time-steps” ti, introducing additional
predicates next(ti, ti+1) enforcing a link between
consecutive time-steps. However, initial evaluation of this
approach with the M/Mp SAT-based planner (Rintanen
2012) (which optimize parallel planning steps) indicated
that the performance of non-temporal planners on this
discretized (larger) model is much worse than the
performance of existing temporal planners on the original
model.

6 Empirical Evaluation
We have modeled the QAOA circuit compilation problem
as described in the previous sections and tested them using
various off-the-shelf PDDL 2.1 Level 4 temporal planners.
The results were collected on a RedHat Linux 2.4Ghz
machine with 8GB RAM.

Problem generation: We consider three problem sizes
based on grids with N = 8, 21 and 40 qubits (dashed boxes
in Figure 2). For each grid size, we generated two problem
classes: (i) p = 1 (only one PS-mixing step) and (ii) p = 2
(two PS-mixing steps). To generate the graphs G for which
a MaxCut needs to be found, for each grid size, we
randomly generate 100 Erdös-Rényi graphs G (Erdös and
Rényi 2005). Half (50 problems) are generated by choosing
N of N(N − 1)/2 edges over respectively 7, 18, 36 qstates
randomly located on the circuit of size 8, 21, and 40 qubits
(referred to herafter as ‘Utilization’ u=90%). The other half
are generated by choosing N edges over 8, 21, and 40
qstates, respectively (referred to herafter as ‘Utilization’
u=100%). In total, we report tests on 600 random problems.

Planner setup: Since larger N and/or p lead to more
complex setting with more predicates, ground actions, and
requires planners to find longer plans, the allocated cutoff
time for different setting are as follow: (i) 10 minutes for
N = 8, (ii) 30 minutes for P = 1, N = 21; (iii) 60 minutes
for other cases. We select planners that performed well in
the temporal planning track of previous IPCs, while at the
same time representing a diverse set of planning
technologies: (i) LPG: which is based on local search with
restarts over action graphs (Gerevini, Saetti, and Serina
2003); (ii) Temporal FastDownward (TFD): a heuristic
forward state-space search planner with post-processing to
reduce makespan (Eyerich, Mattmüller, and Röger 2009),
and (iii) SPGlan: partition the planning problem into
subproblems that can be solved separately, while resolving
the inconsistencies between partial plans using extended
saddle-point condition (Wah and Chen 2004) (Chen and
Wah 2006).

P1 P2
N8 N21 N40 N8 N21

Util 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0

SGPlan 50 50 50 50 50 50 50 50 - -
TFD 50 50 50 50 - - 50 50 50 50
LPG 50 50 50 50 10 14 50 50 - 6

Table 1: Summary of the solving capability of selected
planners. Numbers indicate how many random problems out
of 50 have been solved.

p=1, N8 p=1, N21 p=2, N8
Utilization 0.9 1.0 0.9 1.0 0.9 1.0
SGPlan 0.74 0.76 0.68 0.68 0.76 0.80
TFD 0.96 0.98 0.96 0.95 1.0 0.99
LPG 0.82 0.83 0.83 0.81 0.53 0.51

Table 2: Plan quality comparison between different planners
using IPC formula (higher value indicates better plan
quality).

We ran SGPlan (Ver 5.22) and TFD (Ver IPC2014) with
their default parameters while for LPG (Ver TD 1.0) we ran
all three available options (i) -speed that uses heuristic
geared toward finding a valid plan quickly, (ii) -quality that
uses heuristic balancing plan quality and search steps, and
(iii) -n 10 (k = 10) that will try to find within the time limit
up to 10 plans of gradually better quality by using the
makespan of previously found plan as upper-bound when
searching for a new plan. Since LPG (k = 10) option
always dominates both LPG-quality and LPG-speed by
solving more problems with better overall quality for all
setting, we will exclude results for LPG-quality and
LPG-speed from our evaluation discussion. For the rest of
this section, LPG result is represented by LPG (k = 10).

Evaluation Result Summary: Table 1 shows the overall
performance on the ability to find a plan of different
planners. SGPlan stops after finding one valid plan while
TFD and LPG exhaust the allocated time limit and try to
find gradually improving quality plans. Since no planner
was able to find a single solution for N = 40 and p = 2, we
omit the result for this case from Table 1. Overall, SGPlan
and TFD were able to solve the highest number of
problems, followed by LPG. SGPlan can find a solution
very quickly, compared to the time it takes other two
planners to find the first solution. It is the only planner that
can scale up to N = 40 for p = 1 (finding plans with
150-220 actions). Unfortunately, SGPlan stopped with an
internal error for N = 21 and p = 2. TFD generally spent a
lot of time on preprocessing for p = 1, N = 21 (around 15
minutes) and p = 2, N = 21 (around 30 minutes) but when
it’s done with the pre-processing phase it can find a solution
very quickly and also can improve the solution quality very
quickly. TFD spent all of the 60 minutes time limit on
pre-processing for N = 40 problems. LPG can generally
find the first solution quicker than TFD (still much slower
than SGPlan) but does not improve the solution quality as
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Figure 5: Instance-by-instance comparison of SGPlan, TFD and LPG. Top panel refers to results for N=8: Red dots indicate
instances with u=90% while blue dots are for u=100%. Darker data points (lower makespans) refer to p=1 while lighter points
(higher makespans) refer to p=2 (see Table 1). Bottom panel refers to results for N=21: Green indicates u=90% and yellow
u=100%.

quickly as TFD over the allocated timelimit.

Plan quality comparison: to compare the plan quality
across planners, we use the formula employed by the IPCs
to grade planners in the temporal planning track since
IPC6 (Helmert, Do, and Refanidis 2008): for each planning
instance i, if the best-known makespan is produced by a
plan Pi, then for a given planner X that returns a plan P i

X

for i, the score of P i
X is calculated as: makespan(Pi)

divided by makespan(P i
X). A comparative value closer to

1.0 indicates that planner X produces better quality plan for
instance i. We use this formula and average the score for
our three tested planners over the instance ensembles that
are completely solved by the time cutoff. Table 2 shows the
performance of different planners with regard to plan
quality. For N = 8 and p = 1, TFD found the best or close
to the best quality plans. LPG is about 15% worse while

SGPlan, which unlike TFD and LPG only find a single
solution, produce lower quality plans. The comparison
results for N = 21 and p = 1 is similar. For N = 8 and p =
2, TFD again nearly always produce the best quality plan.
However, for this more complex case, SGPlan produces
overall better quality plans compared to LPG, even though
LPG returns multiple plans for each instance.

Figure 5 shows in further detail the head-to-head
makespan comparison between different pairs of planners,
specifically pairwise comparisons between TFD, SGPLan,
and LPG: TFD always dominates SGPlan, TFD dominates
LPG majority of the times, and SGPlan dominates LPG on
bigger problems, but is slightly worse on smaller problems.

Planning time comparison: Both TFD and LPG use
“anytime” search algorithms and use all of their allocated
time to try finding better gradually better quality plans. In
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Figure 6: Compilation of p = 2 QAOA performed by TFD for the MaxCut problem depicted in Fig. 3 on the N=8 processor
in Fig. 2; with time on the x-axis and qubit locations on the y-axis. Each row indicates what gate operates on each qubit at a
given time during the plan. With reference to Fig. 1, colored blocks represents p-s gates and White blocks are swap gates (both
synchronized in pair, since they are 2-qubit gates, same color indicate same logical gate); black blocks with numbers are mix
gates acting on the corresponding state. Gates marked with a + indicate superfluous gates that were inserted in the plan by
TFD, that could be detected and eliminated in postprocessing.

contrast, LPG-quality and SGPlan return a single solution
and thus generally take a very short amount of time with
the median solving time for SGPlan in p=1|N8, p=1|N21,
P=1|N40 and P=2|N8 are 0.02, 1, 25, and 0.05 seconds3.

Other planners: We have also conducted tests on:
VHPOP, HSP*, and CPT and POPF. While LPG, SGPlan,
and TFD were selected for their ability to solve large
planning problems, we hoped that HSP*, CPT, and VHPOP
would return optimal plans to provide a baseline for plan
quality estimation. Unfortunately, HSP*, CPT, and VHPOP
failed to find a single plan even for our smallest problems
for various reason: CPT underwent internal errors after a
quick search time, VHPOP ran out of memory quickly,
while HSP* couldn’t find any plan for a cutoff time of 2
hours. POPF, which does not guarantee finding optimal
plans, but produced good quality plans for other temporal
planning domain, also does not find any solution.

Discussion: our preliminary empirical evaluation shows
that the test planners provide a range of tradeoff between
scalability and plan quality. At one end, we have SGPlan
that can scale up to large problems and solve them in a
short amount of time while providing reasonably good
quality plans (compared to the best known solutions). At
the other end, we have TFD, which utilizes all of the
allocated time to find the best quality solutions but in
general is the slowest by far to come up with some valid
solution. LPG balances between the two: it can either find
one solution quickly like SGPlan or can utilize the whole
cutoff time to find better quality solutions. What’s missing
from our analysis is the assessment on how good the quality
of the best found plans compared to the optimal solutions.
At the moment, there is no published work on finding
optimal solution for this problem. Moreover, as outlined in
the previous paragraph, our current effort in getting the

3For comparison purpose, LPG-quality, which also try to
returns a single solution of good quality, produces the median
solving time for P=1|N8 and P=2|N8 are 0.9 and 70 seconds
respectively.

existing optimal-makespan planners to find solutions have
not been fruitful. This is one important future research
direction for us.

Figure 6 shows a visualization of a plan in a ’Gantt chart’
format. Based on the “eye-test” and manual analysis, the
best plans returned are usually of good quality but not
without defects. The example plan shown in Figure 6,
generated by TFD, has a very short makespan, but contains
some unnecessary gates. Examples are the repeated swaps
at time 11 and 30, and the mixing of the un-utilized logical
states q2 and q8 at times 1,5. These spurious gates/actions
do not affect the makespan, and they can be identified and
eliminated by known plan post-processing techniques (Do
and Kambhampati 2003). We also believe a tighter PDDL
model can also help eliminate some of the extra gates.

7 Conclusion and Future Work
In this paper we presented a novel approach to the problem
of compiling idealized quantum circuits to specific quantum
hardware, focusing our experiments on QAOA circuits.
Three well-established temporal planners were able to
compile the QAOA circuits with reasonable efficiency,
demonstrating the viability of this approach. A virtue of the
planning approach is that the framework is very flexible
with respect to features of the hardware graph, including
irregular structures. This work paves the way for potentially
impactful future work on the use of artificial intelligence
methods for quantum computing. In future work, we plan
to further tune the performance of the planners, including
choosing an initial assignment of qstates to qubits favorable
for compilation. In order to scale reliably to larger plan
sizes we will develop as well decomposition approaches
where p > 1 could be divided into multiple p = 1 problems
to be solved independently and matched in a postprocessing
phase. We will also compare with other approaches to this
compilation problem such as sorting networks (Beals et al.
2013) (Brierly 2015) (Bremner, Montanaro, and Shepherd.
2016), and we will look at parameters values for the
durations that are fitting existing hardware, in collaboration
with experimental physicists. Moreover, we will include in



the PDDL modeling additional features that are
characteristics of quantum computer architectures, such as
the crosstalk effects of 2-qubit gates and the ability to
quantum teleport qstates across the chip.
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