
A Vision for Future Software

Open Source and Design Thinking at
NASA

Jay Trimble
NASA Ames Research Center

Frontiers 2017

1960’s

Personal Milestones

1994
Lead Ops Director
Space Radar Lab 1

NASA Jet Propulsion Laboratory

Now
Lunar Rover MOM

NASA Ames Research CenterNASA Johnson Space Center

1989
Science Ops

Voyager Neptune

1981
NASA JSC Intern

NASA Centers

Mission Control: The Icon

Mission Control for Mars Rovers

The Light Speed Constraint

Neptune
~8 hours

Jupiter
~80 Min

Mars
~14 - 40 Min

Earth-Moon
~6 - 25s

Mission Control v. Star Trek

• Star Trek
• Captain (Kirk, Janeway,

Picard, Cisco,…)
• Engineering (Mr. Scott)
• Navigation (Chekov)
• Science Officer (Spock)
• Communications (Uhura)

• NASA
• Flight Director
• Systems
• Trajectory
• Payloads/POCC
• INCO

Mission Control Famous Calls

Mission Control Famous Calls

Mission Control Famous Calls

Houston Mid-1980’s

The Mission

Repair a malfunctioning satellite

In orbit capture and repair has not been done

It's made possible by the Space Shuttle

The First Epiphany

Evolution

Pasadena Early 1990’s

The Mission

Earth Observations Using
Synthetic Aperture Radar

Two missions on Space
Shuttle Endeavor

The Second Epiphany

Write software
requirements

Customer signs
requirements

Expectations and
mental models diverge

MOS shall track
the orientation of
the solar panels
with respect to
Sun (+/- TBR

arcmin)

Expectations Meet Reality

About to get a look Users see the software Why this reaction?

Follow the (as yet undefined for us) road to user
centered agile or, take a long vacation

There must be a better way

Early 2000’s Mars Rover Ops
The Mission

Mars Exploration Rovers (JPL)

Human Centered Computing
(ARC)

We proposed methods, not
specific solutions or tools

We called it Human Centered
Computing, inspired by Don
Norman, The Invisible Computer

Mars Exploration Rover Scenario

Users on Earth

Rover on Mars

Max round trip light
time ~40 min

Acceptance
To fund MER HCC, we had to “sell” the ideas to our funders at NASA
Ames, to the Mars Exploration Rover Project at JPL and to the users

We focused on outcomes and touched on the methods using analogies

Easier to market an artifact or a result than an idea

Mental model example - Ethnography = User observations - what people say and
what they do are often different. How often do you exercise?

Goals - Mission productivity, communications, safety

Note no mention of design thinking, this is 2000

Key Lessons so far
This is a small community and most people know each other

Each mission is it’s own community, somewhat like the cast in a performance

Speak the stakeholders language

Be careful with generalizations like “the invisible computer” or software that adapts to users rather than the other way around

Most of the stakeholders care only about what your product or method does for their mission

Most of users don’t care about design, but they may care about the results

Users who are used to a way of doing things, even an inefficient way, will resist change. Don’t give them change unless it adds
significant value.

Don’t go against established conventions, no change for changes sake, use established, mental models

Do not try to take away existing tools. Give them new tools in shadow mode.

Be careful about getting too excited about your cool new technology

Next

We now believe we need new technology, not just methods and
process

So we embark on a new course and instead of proposing methods
we propose tools…

We are trying to “fix”

Multiple heterogeneous
applications create walls,
turning users into
integrators

The Selling Points
Decrease Cost

Save on maintenance by retiring existing applications, make the users productive

Empower the users

Compose your own displays without programming, all your stuff in one place

Top Down v. Bottom Up

The top provides the funding

The Bottom provides the advocacy (remember this is a small community)

The problem that we could not see yet

The management funded the project based on the retirement of existing applications

Users are open to new technology but less so when they are told that they are going to lose the current capability on which they depend

Participatory Design
Designers facilitate design process, users are
domain experts

We used The Bridge Method

Built a shared language

Built shared mental modes

Enabled us to design solutions with users

Created a tight bond between the design
team and participatory users

Shared ownership

Created an us v. them between the
participatory team and the larger user
community

Agile User Centered Design
12 Week Release

3 Week 3 Week 3 Week 3 Week

Sprint n

Feature
Freeze

Rank
JIRA’s

Coding

Update issues as needed
Continuous build, feature notifications for testing during rollout

Customer
access to continuos

build

Feedback loop
for current sprint

Customer Feedback Design Updates, Fixes

Customer installs
previous sprintTest Previous Sprint Customer Accept/Reject Feature Complete

UE & Tech Spec Updates

Code
Freeze

Testathon

24 hr
Test

Deliver

Optional mid-iteration
gestation

Did we help the users?

Legacy MCT

Steps 20 8
Manual data entries 5 1
External tools used 1 0

Bu
ild

Te
st

Bu
ild

Te
st

Process steps
What actions does it take to build and test a

display?

Process time
How long does it take to accomplish those

steps?

Legacy MCT
Minutes to complete 65 6

90% reduction
in time

60% reduction
in steps

80% reduction in
manual entry
Manual data entry is the primary
source of errors / risk

Key Lessons
Design is not enough

End user composition alone is not enough, it must be mixed with the specific job enabling features that users want. The combination is powerful.

The term end user composition is nerdy and does not grab people, the popular lexicon on this shifts… “mashups,” “dashboards” and can confuse the message

Unknown cultural differences can have a big impact - our first user test, though we stated it as such, was thought by users to be the final software because this
is the only mental model they had

New capabilities take a long time to catch up to “old” capabilities, benefits must outweigh the inconvenience

Don’t take away “old” capabilities, let new co-exist with old in shadow mode, for a period of time

Customers will map what you say into their own expectations, creating a mental model that varies across groups and that may be unknown to the design team

Show constant progress, make it visible and accessible

If it’s not easy, people won’t even try it

Customers want and expect new capabilities, they also want all of their legacy capabilities

Openness increases with time and use

A new mental model, even a better one, at first will be confusing to users

It’s all so simple
Succeed

Know who your stakeholders are, focus

Fail

Try to solve too many problems for an undefined stakeholder base

We did better creating generalizations from instances than creating
instances from generalizations - start by solving real problems not
generalizations

Rebuilding

The desktop version is ultimately cancelled

We rebuild, our funders are now in California

New Stakeholders

Jet Propulsion Lab
Multi-Mission Ground Systems
Multiple missions use the software
over time, at many NASA centers

Jet Propulsion Lab
Many Flight Projects
Each one concerned about
success of their mission

NASA Ames Research Center
Resource Prospector
Successful Mission

Open Source Community
NASA, Commercial, Other
The success of their project

Stakeholder Language
User Test

Our users mental model in the early 2000’s was that software is delivered and that’s what you get (remember those inflexible displays).
We conducted a user test on early software with unforeseen consequences

Prototype

A designer thinks of a prototype as a question rendered as an artifact, the expectation is that there will be many

A system engineer thinks of a prototype as a risk reduction exercise to buy down risk associated with system requirements,
expectation is that there will be few because they tend to be expensive

Demo, Test

Popular mental models, such as dashboards and mashups affect user perception

Say it then sim it

Mental Model Map Example
Design Thinking

Requirements (tendency
fewer ideas)

Observations
Ideation

Synthesis (more ideas)

Prototypes for Risk Reduction,
typically few

System Engineering

Prototypes - questions rendered
as artifacts, typically many

Review Try/Use (“Say it then sim it”)

IterateBuild
Train, FlyTrain, Fly

Open MCT
Open Mission Control Technologies

Goals

Provide users with an all your data in one place
solution

Empower users to compose their own displays

Create new opportunities for collaboration and
community involvement using open source

Take what has been a closed and hence
mysterious world and open it up

https://nasa.github.io/openmct/

Initial Mission Users

Jason-3 Resource Prospector Mars 2020
(expected testbed)

https://nasa.github.io/openmct/

All Your Data in One Place

https://nasa.github.io/openmct/

Create & Compose

https://nasa.github.io/openmct/

Layout is the users canvasExample of user object types

User-Built Compositions

User Testing

For Fun

2001: A Space Odyssey Open MCT

Sprint

GV Style Design
Sprint

The Community
https://nasa.github.io/openmct/

60 Visitors per week then..

User Reddit Post

20k visitors in two days

Outside contributors

Collaborations inside and outside of
NASA that were not possible or
practical before open source

https://nasa.github.io/openmct/

The Role of Failure

“Failure is not an option” - Gene Kranz

Referring to human space flight operations

Design Thinking

…is now an accepted part of our organization, though it is only
practiced by a small number of teams.

My team is moving design thinking from software, where we first
established it, to the design and development of the mission system
for a lunar prospecting rover.

“Say it then sim it”

